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Abstract

In this study, the computational properties of a kernel-based least-squares density-
ratio estimator are investigated from the viewpoint of condition numbers. The
condition number of the Hessian matrix of the loss function is closely related to the
convergence rate of optimization and the numerical stability. We use smoothed anal-
ysis techniques and theoretically demonstrate that the kernel least-squares method
has a smaller condition number than other M-estimators. This implies that the
kernel least-squares method has desirable computational properties. In addition, an
alternate formulation of the kernel least-squares estimator that possesses an even
smaller condition number is presented. The validity of the theoretical analysis is
verified through numerical experiments.
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1 Introduction

In this section, we introduce background materials of our target problem addressed in
this study.

1.1 Density-Ratio Estimation

Recently, methods of directly estimating the ratio of two probability densities without
going through density estimation have been developed. These methods can be used to
solve various machine learning tasks such as importance sampling, divergence estimation,
mutual information estimation, and conditional probability estimation (Sugiyama et al.,
2009; Sugiyama et al., 2012).

The kernel mean matching (KMM) method (Gretton et al., 2009) directly yields den-
sity ratio estimates by efficiently matching the two distributions using a special property
of the universal reproducing kernel Hilbert spaces (RKHSs) (Steinwart, 2001). Another
approach is the M-estimator (Nguyen et al., 2010), which is based on the non-asymptotic
variational characterization of the φ-divergence (Ali & Silvey, 1966; Csiszár, 1967). See
Sugiyama et al. (2008a) for a similar algorithm that uses the Kullback-Leibler divergence.
Non-parametric convergence properties of the M-estimator in RKHSs have been elucidated
under the Kullback-Leibler divergence (Nguyen et al., 2010; Sugiyama et al., 2008b).
A squared-loss version of the M-estimator for linear density-ratio models called uncon-
strained Least-Squares Importance Fitting (uLSIF) has also been developed (Kanamori
et al., 2009). The squared-loss version was also shown to possess useful computational
properties, e.g., a closed-form solution is available, and the leave-one-out cross-validation
score can be computed analytically. A kernelized variant of uLSIF was recently proposed,
and its statistical consistency was studied (Kanamori et al., 2012).

In this paper, we study loss functions of M-estimators. In Nguyen et al. (2010), a
general framework of the density-ratio estimation has been established (also see Sugiyama
et al., 2011b). However, when we estimate the density ratio for real-world data analysis,
it becomes necessary to choose an M-estimator from infinitely many candidates. Hence it
is important to study which M-estimator should be chosen in practice. The suitability of
the estimator depends on the chosen criterion. In learning problems, there are mainly two
criteria for choosing the estimator: 1) the estimation accuracy and 2) the computational
cost. Kanamori et al. (2012) studied the choice of loss functions in density-ratio estimation
from the viewpoint of the estimation accuracy. In the present paper, we focus on the
computational cost associated with density-ratio estimators.

1.2 Condition Numbers

In numerical analysis, the computational cost is closely related to the so-called condition
number (von Neumann & Goldstine, 1947; Turing, 1948; Eckart & Young, 1936). Indeed,
the condition number appears as a parameter in complexity bounds for a variety of efficient
iterative algorithms in linear algebra, linear and convex optimization, and homotopy
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methods for solving systems of polynomial equations (Luenberger & Ye, 2008; Nocedal &
Wright, 1999; Renegar, 1995; Renegar, 1987; Smale, 1981; Demmel, 1997).

The definition of the condition number depends on the problem. In computational
tasks involving matrix manipulations, a typical definition of the condition number is the
ratio of the maximum and minimum singular values of the matrix given as the input
of the problem under consideration. For example, consider solving the linear equation
Ax = b. The input of the problem is the matrix A, and the computational cost to
find the solution can be evaluated by the condition number of A, denoted hereafter as
κ(A). hereafter. Specifically, when an iterative algorithm is applied to solving Ax = b,
the number of iterations required to converge to a solution is evaluated using κ(A). In
general, a problem with a larger condition number results in a higher computational cost.
Since the condition number is independent of the algorithm, it is expected to represent
the essential difficulty of the problem.

To evaluate the efficiency of numerical algorithms, a two-stage approach is frequently
used: In the first stage, the relation between the computational cost c(A) of an algorithm
with input A and the condition number κ(A) of the problem is studied. A formula such
as c(A) = O(κ(A)α) is obtained, where α is a constant depending on the algorithm. At
the second stage, the probability distribution of κ(A) is estimated, for example, in the
form of Pr(κ(A) ≥ x) ≤ x−β, where the probability is designed to represent a “practical”
input distribution. As a result, the average computational cost of the algorithm can
be evaluated. For details of this approach, see Blum and Shub (1986); Renegar (1987);
Demmel (1988); Kostlan (1988); Edelman (1988); Edelman (1992); Shub (1993); Shub and
Smale (1994); Shub and Smale (1996); Cheung and Cucker (2002); Cucker and Wschebor
(2002); Beltran and Pardo (2006); Bürgisser et al. (2010).

1.3 Smoothed Analysis

The “average” performance is often controversial, because it is hard to identify the input
probability distribution in real-world problems. Spielman and Teng (2004) proposed the
smoothed analysis to refine the second stage of the above scheme for obtaining more
meaningful probabilistic upper complexity bounds. Smoothed analysis is a hybrid of the
worst and average-case analyses. Consider the averaged computational cost EP [c(A)],
where c(A) is the cost of an algorithm for input A and EP [ · ] denotes the expectation
with respect to the probability P over the input space. Let P be a set of probability
distributions on the input space. Then, in the smoothed analysis, the performance of the
algorithm is measured by maxP∈P EP [c(A)], i.e., the worst-case evaluation of the expected
computational cost over a set of probability distributions.

The smoothed analysis was successfully employed in understanding the practical effi-
ciency of the simplex algorithm for linear programming problems (Spielman & Teng, 2004;
Bürgisser et al., 2006a). In the context of machine learning, the smoothed analysis was ap-
plied to elucidate the complexity of learning algorithms such as the perceptron algorithm
and the k-means method; see Vershynin (2006); Blum and Dunagan (2002); Becchetti
et al. (2006); Röglin and Vöcking (2007); Manthey and Röglin (2009); Bürgisser et al.
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(2006b); Bürgisser and Cucker (2010); Sankar et al. (2006) for more applications of the
smoothed analysis technique.

The concept of the smoothed analysis, i.e., the worst-case evaluation of the expected
computational cost over a set of probability distributions, is compatible with many prob-
lem setups in machine learning and statistics. A typical assumption in statistical infer-
ence is that training samples are distributed according to a probability distribution in
a probability distribution set. The probability distribution may be specified by a finite-
dimensional parameter, or an infinite-dimensional space may be introduced to deal with
a probability distribution set.

1.4 Our Contributions

In this study, we apply the concept of smoothed analysis for studying the computational
cost of density-ratio estimation algorithms. In our analysis, we define the probability
distribution on the basis of training samples, and study the optimal choice of the loss
functions for M-estimators.

More specifically, we consider the optimization problems associated with the M-
estimators. There are some definitions of condition numbers to measure the complexity
of optimization problems (Bürgisser et al., 2006c; Renegar, 1995; Todd et al., 2001). In
unconstrained non-linear optimization problems, the condition number defined from the
Hessian matrix of the loss function plays a crucial role, because it determines the conver-
gence rate of optimization and the numerical stability (Luenberger & Ye, 2008; Nocedal
& Wright, 1999). When a loss function to be optimized depends on random samples, the
computational cost will be affected by the distribution of the condition number. There-
fore, we study the distribution of condition numbers for randomly perturbed matrices.
Next, we derive the loss function that has the smallest condition number among all M-
estimators in the min-max sense. We also give a probabilistic evaluation of the condition
number. Finally, we verify these theoretical findings through numerical experiments.

There are many important aspects to the computational cost of numerical algorithms
such as memory requirements, the role of stopping conditions, and the scalability to large
data sets. In this study, we evaluate the computational cost and stability of learning
problems on the basis of the condition number of the loss function, because the condition
number is a major parameter to quantify the difficulty of the numerical computation as
explained above.

1.5 Structure of the Paper

The remainder of this paper is structured as follows. In Section 2, we formulate the
problem of density-ratio estimation and briefly review existing methods. In Section 3, a
kernel-based density-ratio estimator is introduced. Section 4 is the main contribution of
this paper, i.e., the presentation of condition number analyses of density-ratio estimation
methods. In Section 5, we further investigate the possibility of reducing the condition
number of loss functions. In Section 6, we experimentally investigate the behavior of
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condition numbers, confirming the validity of our theoretical analysis. In Section 7, we
conclude by summarizing our contributions and indicating possible future research direc-
tions. Technical details are presented in Appendix.

2 Estimation of Density Ratios

In this section, we formulate the problem of density-ratio estimation and briefly review
existing methods.

2.1 Formulation and Notations

Consider two probability distributions P and Q on a probability space Z. Let the dis-
tributions P and Q have the probability densities p and q, respectively. We assume
p(x) > 0 for all x ∈ Z. Suppose that we are given two sets of independent and identically
distributed (i.i.d.) samples,

X1, . . . , Xn
i.i.d.∼ P, Y1, . . . , Ym

i.i.d.∼ Q. (1)

Our goal is to estimate the density ratio

w0(x) =
q(x)

p(x)
(≥ 0)

based on the observed samples.
We summarize some notations to be used throughout the paper. For a vector a in

the Euclidean space, ∥a∥ denotes the Euclidean norm. Given a probability distribution
P and a random variable h(X), we denote the expectation of h(X) under P by

∫
hdP

or
∫
h(x)P (dx). Let ∥ · ∥∞ be the infinity norm. For a reproducing kernel Hilbert space

(RKHS) H (Aronszajn, 1950), the inner product and the norm on H are denoted as ⟨·, ·⟩H
and ∥ · ∥H, respectively.

2.2 M-Estimator Based on φ-Divergence

An estimator of the density ratio based on the φ-divergence (Ali & Silvey, 1966; Csiszár,
1967) has been proposed by Nguyen et al. (2010). Let φ : ℜ → ℜ be a convex function,
and suppose that φ(1) = 0. Then, the φ-divergence between P and Q is defined by the
integral

I(P,Q) =

∫
φ(q/p)dP.

Setting φ(z) = − log z, we obtain the Kullback-Leibler divergence as an example of the
φ-divergence. Let ψ be the conjugate dual function of φ, i.e.,

ψ(z) = sup
u∈ℜ

{zu− φ(u)} = − inf
u∈ℜ

{φ(u)− zu}.
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When φ is a convex function, we also have

φ(z) = − inf
u∈ℜ

{ψ(u)− zu}. (2)

We assume ψ is differentiable. See Section 12 and 26 of Rockafellar (1970) for details
on the conjugate dual function. Substituting (2) into the φ-divergence, we obtain the
expression,

I(P,Q) = − inf
w

[∫
ψ(w)dP −

∫
wdQ

]
, (3)

where the infimum is taken over all measurable functions w : Z → ℜ. The infimum is
attained at the function w satisfying

q(x)

p(x)
= ψ′(w(x)), (4)

where ψ′ is the derivative of ψ.
Approximating (3) with the empirical distribution, we obtain the empirical loss func-

tion,

inf
w

1

n

n∑
i=1

ψ(w(Xi))−
1

m

m∑
j=1

w(Yj).

A parametric or non-parametric model is assumed for the function w. This estimator is
referred to as the M-estimator of the density ratio (Nguyen et al., 2010). The M-estimator
based on the Kullback-Leibler divergence is derived from ψ(z) = −1− log(−z). Sugiyama
et al. (2008a) have studied the estimator in detail using the Kullback-Leibler divergence,
and proposed a practical method that includes basis function selection by cross-validation.
Kanamori et al. (2009) proposed unconstrained Least-Squares Importance Fitting (uLSIF)
which is derived from the quadratic function ψ(z) = z2/2.

3 Kernel-Based M-Estimator

In this study, we consider kernel-based estimators of density ratios because the kernel
methods provide a powerful and unified framework for statistical inference (Schölkopf &
Smola, 2002). Let H be an RKHS endowed with the kernel function k defined on Z ×Z.
Then, based on (3), we minimize the following loss function over H.

inf
w

1

n

n∑
i=1

ψ(w(Xi))−
1

m

m∑
j=1

w(Yj) +
λ

2
∥w∥2H, w ∈ H, (5)

where the regularization term λ
2
∥w∥2H with the regularization parameter λ is introduced

to avoid overfitting. Then, an estimator of the density ratio w0 is given by ψ′(ŵ(x)),
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where ŵ is the minimizer of (5). Statistical convergence properties of the kernel estimator
using the Kullback-Leibler divergence have been investigated in Nguyen et al. (2010) and
Sugiyama et al. (2008b), and similar analysis for the squared-loss was given in Kanamori
et al. (2012).

In the RKHSH, the representer theorem (Kimeldorf &Wahba, 1971) is applicable, and
the optimization problem on H is reduced to a finite-dimensional optimization problem.
A detailed analysis leads us to a specific form of the solution as follows.

Lemma 1. Suppose the samples (1) are observed and assume that the function ψ in (5)
is a differentiable convex function, and that λ > 0. Let v(α, β) ∈ ℜn be the vector-valued
function defined by

v(α, β)i = ψ′
( n∑

j=1

αjk(Xi, Xj) +
m∑
ℓ=1

βℓk(Xi, Yℓ)

)
, i = 1, . . . , n,

for α ∈ ℜn and β ∈ ℜm, where ψ′ denotes the derivative of ψ. Let 1m = (1, . . . , 1)⊤ ∈ ℜm

for a positive integer m and suppose that there exists a vector ᾱ = (ᾱ1, . . . , ᾱn) ∈ ℜn such
that

1

n
v(ᾱ,1m/mλ) + λᾱ = 0. (6)

Then, the estimator ŵ, an optimal solution of (5), has the form

ŵ(z) =
n∑
i=1

ᾱik(z,Xi) +
1

mλ

m∑
j=1

k(z, Yj). (7)

The proof is deferred to Appendix A, which can be regarded as an extension of the
proof for the least-squares estimator (Kanamori et al., 2012) to general M-estimators.
This theorem implies that it is sufficient to find n variables ᾱ1, . . . , ᾱn to obtain the
estimator ŵ.

Using Lemma 1, we can obtain the estimator based on the φ-divergence by solving
the following optimization problem

inf
w

1

n

n∑
i=1

ψ(w(Xi))−
1

m

m∑
j=1

w(Yj) +
λ

2
∥w∥2H,

s. t. w(·) =
n∑
i=1

αik(·, Xi) +
1

mλ

m∑
j=1

k(·, Yj), α1, . . . , αn ∈ ℜ.
(8)

Though the problem (8) is a constrained optimization problem with respect to the pa-
rameter α = (α1, . . . , αn)

⊤, it can be easily rewritten as an unconstrained one. In this
paper, our main concern is to study which ψ we should use as the loss function of the
M-estimator. In Section 4 and 5, we will show that the quadratic function is a preferable
choice from a computational efficiency viewpoint.
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Consider the condition (6) for the quadratic function, ψ(z) = z2/2. Let K11, K12, and
K21 be the sub-matrices of the Gram matrix

(K11)ii′ =k(Xi, Xi′), (K12)ij = k(Xi, Yj), K21 = K⊤
12,

where i, i′ = 1, . . . , n, j, j′ = 1, . . . ,m. Then, for the quadratic loss ψ(z) = z2/2, we have

v(α, β) = K11α +K12β,

and thus, there exists a vector ᾱ that satisfies the equation (6). For ψ(z) = z2/2, the
problem (8) is reduced to

min
α

1

2
α⊤

(
1

n
K2

11 + λK11

)
α +

1

nmλ
1⊤
mK21K11α, α ∈ ℜn, (9)

by ignoring the term that is independent of the parameter α. The density-ratio estimator
obtained by solving (9) is referred to as the kernelized uLSIF (KuLSIF) (Kanamori et al.,
2012).

When the matrix K11 is non-degenerate, the optimal solution of (9) is equal to

− 1

nmλ

(
1

n
K2

11 + λK11

)−1

K11K121m = − 1

nmλ

(
1

n
K11 + λIn

)−1

K−1
11 K11K121m

= − 1

nmλ

(
1

n
K11 + λIn

)−1

K121m. (10)

It is straightforward to confirm that the optimal solution of the problem

min
α

1

2
α⊤

(
1

n
K11 + λIn

)
α +

1

nmλ
1⊤
mK21α, α ∈ ℜn. (11)

is the same as (10). The estimator given by solving the optimization problem (11) is
denoted by Reduced-KuLSIF (R-KuLSIF). Though the objective functions in KuLSIF
and R-KuLSIF are different, the optimal solution is the same. In Section 5, we show that
R-KuLSIF is more preferable than the other M-estimators (including KuLSIF) from a
numerical computation viewpoint.

4 Condition Number Analysis for Density-Ratio Es-

timation

In this section, we study the condition number of loss functions for density-ratio esti-
mation. Through the analysis of condition numbers, we elucidate the computational
efficiency of the M-estimator, which is the main contribution of this study.
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4.1 Condition Number in Numerical Analysis and Optimization

The condition number plays a crucial role in numerical analysis and optimization (Dem-
mel, 1997; Luenberger & Ye, 2008; Sankar et al., 2006). The main concepts are briefly
reviewed here.

Let A be a symmetric positive definite matrix. Then, the condition number of A
is defined by λmax/λmin (≥ 1), where λmax and λmin are the maximum and minimum
eigenvalues of A, respectively1. The condition number of A is denoted by κ(A).

In numerical analysis, the condition number governs the round-off error of the solution
of a linear equation Ax = b. A matrix A with a large condition number results in a large
upper bound on the relative error of the solution x. More precisely, in the perturbed
linear equation

(A+ δA)(x+ δx) = b+ δb,

the relative error of the solution is given as (Demmel, 1997, Section 2.2)

∥δx∥
∥x∥

≤ κ(A)

1− κ(A)∥δA∥/∥A∥

(
∥δA∥
∥A∥

+
∥δb∥
∥b∥

)
,

where ∥A∥ is the operator norm for the matrix A defined by

∥A∥ = max
x∈ℜn\{0}

∥Ax∥
∥x∥

.

Hence, a small condition number is preferred in numerical computation.
In optimization problems, the condition number provides an upper bound of the

convergence rate for optimization algorithms. Let us consider a minimization problem
minx f(x), x ∈ ℜn, where f : ℜn → ℜ is a differentiable function and let x0 be a local op-
timal solution. We consider an iterative algorithm that generates a sequence {xi}∞i=1. Let
∇f be the gradient vector of f . In various iterative algorithms, the sequence is generated
in the following form

xi+1 = xi − ηiH
−1
i ∇f(xi), i = 1, 2, . . . , (12)

where ηi is a non-negative number appropriately determined and Hi is a symmetric pos-
itive definite matrix which approximates the Hessian matrix of f at x0, i.e., ∇2f(x0).
Then, under a mild assumption, the sequence {xi}∞i=1 converges to a local minimizer x0.

We introduce convergence rates of some optimization methods. According to the ‘mod-
ified Newton method’ theorem (Luenberger & Ye, 2008, Section 10.1), the convergence
rate of (12) is given by

∥xk − x0∥ = O

( k∏
i=1

κi − 1

κi + 1

)
, (13)

1In general, the condition number for a (possibly non-symmetric) matrix is defined through singular
values. However, the above simple definition is sufficient for our purpose.
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where κi is the condition number of H
−1/2
i (∇2f(x0))H

−1/2
i . Though the modified Newton

method theorem is shown only for convex quadratic functions (Luenberger & Ye, 2008),
the rate-of-convergence behavior is essentially the same for general nonlinear objective
functions. In terms of non-quadratic functions, details are presented in Section 8.6 of
Luenberger and Ye (2008). Equation (13) implies that the convergence rate of the sequence
{xk} is fast if κi, i = 1, 2, . . . are small. In the conjugate gradient method, the convergence
rate is expressed by (13) with

√
κ(∇2f(x0)) instead of κi (Nocedal & Wright, 1999,

Section 5.1). Even in proximal-type methods, the convergence rate is described by a
quantity similar to the condition number, when the objective function is strongly convex.
See Proposition 3 and 4 in Schmidt et al. (2011) for details.

A pre-conditioning technique is often applied to speed up the convergence rate of
the optimization algorithm. The idea behind pre-conditioning is to perform a change of
variables x = Sx̄, where S is an invertible matrix. An iterative algorithm is applied to
the function f̄(x̄) = f(Sx̄) in the coordinate system x̄. Then a local optimal solution x̄0
of f̄(x̄) is pulled back to x0 = Sx̄0.

The pre-conditioning technique is useful, if the conditioning of f̄(x̄) is preferable
to f(x). However, in general, there are some difficulties in obtaining a suitable pre-
conditioning. Consider the iterative algorithm (12) with Hi = I in the coordinate x̄,
i.e., x̄i+1 = x̄i − ηi∇f̄(x̄i). The Hessian matrix is given as ∇2f̄(x̄0) = S⊤∇2f(x0)S.
Then, the best change of variables is given by S = (∇2f(x0))

−1/2. This is also con-
firmed by the fact that the gradient descent method with respect to x̄ is represented as
xi+1 = xi − ηiSS

⊤∇f(xi) in the coordinate system x. In this case, there are at least two
drawbacks:

1. There is no unified strategy to find a good change of variables x = Sx̄.

2. Under the best change of variables S = (∇2f(x0))
−1/2, the computation of the vari-

able change can be expensive and unstable, when the condition number of ∇2f(x0)
is large.

Similar drawbacks appear in the conjugate gradient methods (Hager & Zhang, 2006;
Nocedal & Wright, 1999).

The first drawback is obvious. To find a good change of variables, it is necessary to
estimate the shape of the function f around the local optimal solution x0 before solving
the problem. Except for a specific type of problems such as discretized partial differential
equations, finding a good change of variables is difficult (Benzi et al., 2011; Axelsson
& Neytcheva, 2002; Badia et al., 2009). Though there are some general-purpose pre-
conditioners such as the incomplete Cholesky decomposition and banded pre-conditioners,
their degree of success varies from problem to problem (Nocedal & Wright, 1999, Chap. 5).

To remedy the second drawback, one can use a matrix S with a moderate condition
number. When κ(S) is moderate, the computation of the variable change is stable. In the
optimization toolbox in MATLABR⃝, gradient descent methods are implemented by the
function fminunc. The default method in fminunc is the BFGS quasi-Newton method,
and the Cholesky factorization of the approximate Hessian is used as the transformation
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matrix S at each step of the algorithm. When the modified Cholesky factorization is used,
the condition number of S is guaranteed to be bounded from above by some constant C.
See Moré and Sorensen (1984) for more details.

When the variable change x = Sx̄ with a bounded condition number is used, there
is a trade-off between the numerical accuracy and convergence rate. The trade-off is
summarized as

min
S:κ(S)≤C

κ(S⊤(∇2f(x0))S) = max

{
κ(∇2f(x0))

C2
, 1

}
. (14)

The proof of this equality is given in Appendix B. When C in (14) is small, the compu-
tation of the variable change is stable. Conversely, the convergence speed will be slow
because the right-hand side of (14) is large. Thus, the formula (14) presents the trade-off
between the numerical stability and the convergence speed. This implies that the con-
vergence rate and stable computation are not consistent when the condition number of
the original problem is large. If κ(∇2f(x0)) is small, however, the right-hand side of (14)
will not be too large. In this case, the trade-off is not significant and thus the numerical
stability and convergence speed can be consistent.

Therefore, it is preferable that the condition number of the original problem is kept
as small as possible, despite the fact that some scaling or pre-conditioning techniques are
available. In the following section, we pursue a loss function of the density-ratio estimator
whose Hessian matrix has a small condition number.

4.2 Condition Number Analysis of M-Estimators

In this section, we study the condition number of the Hessian matrix associated with
the minimization problem in the φ-divergence approach, and show that KuLSIF is op-
timal among all M-estimators. More specifically, we will provide two kinds of condition
numbers analyses: a min-max evaluation (Section 4.2.1) and a probabilistic evaluation
(Section 4.2.2).

4.2.1 Min-Max Evaluation

We assume that a universal RKHS H (Steinwart, 2001) endowed with a kernel function
k on a compact set Z is used for density-ratio estimation. The M-estimator is obtained
by solving the problem (8). The Hessian matrix of the loss function (8) is equal to

1

n
K11Dψ,wK11 + λK11, (15)

where Dψ,w is the n-by-n diagonal matrix defined as

Dψ,w =

ψ
′′(w(X1))

. . .

ψ′′(w(Xn))

 , (16)
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and ψ′′ denotes the second-order derivative of ψ. The condition number of the above
Hessian matrix is denoted by κ0(Dψ,w):

κ0(Dψ,w) = κ

(
1

n
K11Dψ,wK11 + λK11

)
.

In KuLSIF, the equality ψ′′ = 1 holds, and thus the condition number is equal to κ0(In).
Now we analyze the relation between κ0(In) and κ0(Dψ,w).

Theorem 1 (Min-max Evaluation). Suppose that H is a universal RKHS, and that K11

is non-singular. Let c be a positive constant. Then, the equality

inf
ψ:ℜ→ℜ,

ψ′′((ψ′)−1(1))=c

sup
w∈H

κ0(Dψ,w) = κ0(cIn) (17)

holds, where the infimum is taken over all convex second-order continuously differentiable
functions satisfying ψ′′((ψ′)−1(1)) = c.

The proof is deferred to Appendix C.
Both ψ(z) = z2/2 and ψ(z) = −1− log(−z) satisfy the constraint ψ′′((ψ′)−1(1)) = 1,

and KuLSIF using ψ(z) = z2/2 minimizes the worst-case condition number, because of
the fact that the condition number of KuLSIF does not depend on the optimal solution.
Note that, because both sides of (17) depend on the samples X1, . . . , Xn, KuLSIF achieves
the min-max solution for each observation.

By introducing the constraint ψ′′((ψ′)−1(1)) = c, the balance between the loss term
and the regularization term in the objective function of (8) is adjusted. Suppose that
q(x) = p(x), i.e., the density ratio is a constant. Then, according to the equality (4),
the optimal w ∈ H satisfies 1 = ψ′(w(x)), if the constant (ψ′)−1(1) is included in H. In
this case, the diagonal of Dψ,w is equal to ψ′′(w(Xi)) = ψ′′((ψ′)−1(1)) = c. Thus, the
Hessian matrix (15) is equal to c

n
K2

11 + λK11, which is independent of ψ as long as ψ
satisfies ψ′′((ψ′)−1(1)) = c. Then, the constraint ψ′′((ψ′)−1(1)) = c adjusts the scaling of
the loss term at the constant density ratio. Under the adjustment, the quadratic function
ψ(z) = cz2/2 is optimal up to a linear term in the min-max sense.

4.2.2 Probabilistic Evaluation

Next, we present a probabilistic evaluation of condition numbers. As shown in (15), the
Hessian matrix at the estimated function ŵ (which is the minimizer of (8)) is given as

H =
1

n
K11Dψ,ŵK11 + λK11.

Let us define the random variable Tn as

Tn = max
1≤i≤n

ψ′′(ŵ(Xi)). (18)



Computational Complexity of Kernel-Based Density-Ratio Estimation 13

Since ψ is convex, Tn is a non-negative random variable. Let Fn be the distribution
function of Tn. The notations Tn and Fn imply that they depend on n. To be precise, Tn
and Fn actually depend on both n and m. Here we suppose that m is fixed to a natural
number including infinity, or m is a function of n as m = mn. Then, Tn and Fn depend
only on n.

Below, we first compute the distribution of the condition number κ(H). Then we
investigate the relation between the function ψ and the distribution of the condition
number κ(H). To this end, we need to study eigenvalues and condition numbers of random
matrices. For the Wishart distribution, the probability distribution of condition numbers
has been investigated by Edelman (1988) and Edelman and Sutton (2005). Recently, the
condition number of matrices perturbed by additive Gaussian noise has been investigated
under the name of smoothed analysis (Sankar et al., 2006; Spielman & Teng, 2004; Tao
& Vu, 2007). However, the statistical property of the above-defined matrix H is more
complicated than those studied in the existing literature. In our problem, the probability
distribution of each element will be far from well-known, and elements are correlated to
each other through the kernel function.

Now, we briefly introduce the core idea of the smoothed analysis (Spielman & Teng,
2004), and discuss its relation with our study. Consider the averaged computational
cost EP [c(X)], where c(X) is the cost of an algorithm for input X, and EP [ · ] denotes
the expectation with respect to the probability P over the input space. Let P be a
set of probabilities on the input space. In the smoothed analysis, the performance of
the algorithm is measured by maxP∈P EP [c(X)]. The set of Gaussian distributions is a
popular choice for P .

Conversely, in our theoretical analysis, we consider the probabilistic order of condi-
tion numbers Op(κ(H)), as a measure of computational costs. The worst-case evalua-
tion of the computational complexity is measured by maxP,QOp(κ(H)), where the sam-
ple distributions P and Q vary in an appropriate set of distributions. The quantity,
maxP,QOp(κ(H)), is the counterpart of the worst-case evaluation of the averaged compu-
tational cost EP [c(X)] in the smoothed analysis. The probabilistic order of κ(H) depends
on the loss function ψ. Then, we suggest that the loss function that achieves the op-
timal solution of the min-max problem, minψmaxP,QOp(κ(H)), is the optimal choice.
The details are shown below, where our concern is not only to provide the worst-case
computational cost, but also to find the optimal loss function for the M-estimator.

Theorem 2 (Probabilistic Evaluation). Let H be an RKHS endowed with a kernel func-
tion k : Z×Z → ℜ satisfying the boundedness condition, supx,x′∈Z k(x, x

′) <∞. Assume
that the Gram matrix K11 is almost surely positive definite in terms of the probability mea-
sure P . Suppose that, for the regularization parameter λn,m, the boundedness condition
lim supn→∞ λn,m < ∞ is satisfied. Let U = supx,x′∈Z k(x, x

′) and tn be a sequence such
that

lim
n→∞

Fn(tn/U) = 1, (19)
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where Fn is the probability distribution of Tn defined in (18). Then, we have

lim
n→∞

Pr

(
κ(H) ≤ κ(K11)

(
1 +

tn
λn,m

))
= 1, (20)

where H is defined as H = 1
n
K11Dψ,ŵK11 + λK11. The probability Pr(·) is defined from

the distribution of samples X1, . . . , Xn, Y1, . . . , Ym.

The proof of Theorem 2 is deferred to Appendix D.

Remark 1. The Gaussian kernel on a compact set Z meets the condition of Theorem
2 under a mild assumption on the probability P . Suppose that Z is included in the ball
{x ∈ ℜd | ∥x∥ ≤ R}. Then, for k(x, x′) = exp{−γ∥x − x′∥2} with x, x′ ∈ Z and γ > 0,
we have e−4γR2 ≤ k(x, x′) ≤ 1. If the distribution P of samples X1, . . . , Xn is absolutely
continuous with respect to the Lebesgue measure, the Gram matrix of the Gaussian kernel
is almost surely positive definite because K11 is positive definite if Xi ̸= Xj for i ̸= j.

When ψ is the quadratic function, ψ(z) = z2/2, the distribution function Fn is given
by Fn(t) = 1[t ≥ 1], where 1[ · ] is the indicator function. By choosing tn = 1 in Theorem
2, an upper bound of κ(H) for ψ(z) = z2/2 is asymptotically given as κ(K11)(1 + λ−1

n,m).
Conversely, for the M-estimator with the Kullback-Leibler divergence (Nguyen et al.,
2010), the function ψ is defined as ψ(z) = −1− log(−z), z < 0, and thus, ψ′′(z) = 1/z2

holds. Then we have Tn = max1≤i≤n(ŵ(Xi))
−2. Note that there is a possibility that

(ŵ(Xi))
2 takes a very small value, and thus it is expected that Tn is of a larger than

constant order. As a result, tn would diverge to infinity for ψ(z) = −1− log(−z). Results
of the above theoretical analysis are confirmed by numerical studies in Section 6.

Using the above argument, we show that the quadratic loss is approximately an optimal
loss function in the sense of probabilistic upper bounds in Theorem 2. Suppose that the
true density ratio q(z)/p(z) is well approximated by the estimator ψ′(ŵ(z)). Instead of
Tn, we study an approximation supz∈Z ψ

′′((ψ′)−1(q(z)/p(z))). Then, for any loss function
ψ such that ψ′′((ψ′)−1(1)) = 1, the inequality

sup
p,q

sup
z∈Z

ψ′′((ψ′)−1(q(z)/p(z))) ≥ 1 = inf
ψ

sup
p,q

sup
z∈Z

ψ′′((ψ′)−1(q(z)/p(z)))

holds, where p and q are probability densities such that (ψ′)−1(q/p) ∈ H. The equal-
ity holds for the quadratic loss. The meaning of the constraint ψ′′((ψ′)−1(1)) = 1
is presented in Section 4.2.1. Thus, tn = 1 provided by the quadratic loss function
is expected to approximately attain the minimum upper bound in (20). The quan-
tity supp,q supz∈Z ψ

′′((ψ′)−1(q(z)/p(z))) is the counterpart of maxP∈P EP [c(X)] in the
smoothed analysis. We expect that the loss function attaining the infimum of this quantity
provides a computationally efficient learning algorithm.

5 Reduction of Condition Numbers

In the previous section, we showed that KuLSIF is preferable in terms of computational
efficiency and numerical stability. In this section, we study the reduction of condition
numbers.
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Let LKuLSIF(α) and LR-KuLSIF(α) be loss functions of KuLSIF (9) and R-KuLSIF (11),
respectively. The Hessian matrices of LKuLSIF(α) and LR-KuLSIF(α) are given by

HKuLSIF = ∇2LKuLSIF(α) =
1

n
K2

11 + λK11, (21)

HR-KuLSIF = ∇2LR-KuLSIF(α) =
1

n
K11 + λIn. (22)

Because of the equality κ(HKuLSIF) = κ(K11)κ(HR-KuLSIF), we have the inequality

κ(HR-KuLSIF) ≤ κ(HKuLSIF).

This inequality implies that the loss function LKuLSIF(α) can be transformed to
LR-KuLSIF(α) without changing the optimal solution, whereas the condition number is
reduced. Hence, R-KuLSIF will be more preferable than KuLSIF in the sense of both
convergence speed and numerical stability as explained in Section 4.1. Though the loss
function of R-KuLSIF is not a member of the regularized M-estimator (8), KuLSIF can
be transformed to R-KuLSIF without any computational effort.

Below, we study whether the same reduction of condition numbers is possible in the
general φ-divergence approach. If there are M-estimators other than KuLSIF whose
condition numbers are reducible, we should compare them with R-KuLSIF and pursue
more computationally efficient density-ratio estimators. Our conclusion is that among
all of the φ-divergence approaches, the condition number is reducible only for KuLSIF.
Thus, the reduction of condition numbers by R-KuLSIF is a special property that makes
R-KuLSIF particularly attractive for practical use.

We now show why the condition number of KuLSIF is reducible from κ(HKuLSIF) to
κ(HR-KuLSIF) without changing the optimal solution. Solving an unconstrained optimiza-
tion problem is equivalent to finding a zero of the gradient vector of the loss function. For
the loss functions LR-KuLSIF(α) and LKuLSIF(α), the equality

∇LR-KuLSIF(α) = K−1
11 ∇LKuLSIF(α)

holds for any α. Hence, for non-degenerate K11, zeros of ∇LR-KuLSIF(α) and ∇LKuLSIF(α)
are the same. In general, for the quadratic convex loss functions L1(α) and L2(α) that
share the same optimal solution, there exists a matrix C such that ∇L1 = C∇L2. Indeed,
for L1(α) = (α−α∗)⊤A1(α−α∗) and L2(α) = (α−α∗)⊤A2(α−α∗), the matrix C = A1A

−1
2

yields the equality ∇L1 = C∇L2. Based on this fact, one can obtain the quadratic loss
function that shares the same optimal solution with a smaller condition number without
further computational cost.

Now, we study loss functions of general M-estimators. Let Lψ(α) be the loss function
of the M-estimator (8), and let L(α) be any other function. Suppose that ∇L(α∗) = 0
holds if and only if ∇Lψ(α∗) = 0. This implies that extremal points of Lψ(α) and L(α)
are the same. Then, there exists a matrix-valued function C(α) ∈ ℜn×n such that

∇L(α) = C(α)∇Lψ(α), (23)
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where C(α) is non-degenerate for any α. Suppose C(α) is differentiable. Then, the
derivative of the above equation at the extremal point α∗ leads to the equality

∇2L(α∗) = C(α∗)∇2Lψ(α
∗).

When κ(∇2L(α∗)) ≤ κ(∇2Lψ(α
∗)), L(α) will be preferable to Lψ(α) for numerical com-

putation.
We require a careful treatment for the choice of the matrix C(α) or the loss function

L(α). If there is no restriction on the matrix-valued function C(α), the most preferable
choice of C(α∗) is given by C(α∗) = (∇2Lψ(α

∗))−1. However this is clearly meaningless for
the purpose of numerical computation because the transformation requires the knowledge
of the optimal solution. Even if the function Lψ(α) is quadratic, finding (∇2Lψ(α

∗))−1 is
computationally equivalent to solving the optimization problem. To obtain a suitable loss
function L(α) without additional computational effort, we need to impose a meaningful
constraint on C(α). Below, we assume that the matrix-valued function C(α) is a constant
function2.

As shown in the proof of Lemma 1, the gradient of the loss function Lψ(α) is equal to

∇Lψ(α) =
1

n
K11v(α,1m/mλ) + λK11α,

where the function v is defined in Lemma 1. Let C ∈ ℜn×n be a constant matrix,
and suppose that the ℜn-valued function C∇Lψ(α) is represented as the gradient of a
function L, i.e., there exists an L such that ∇L = C∇Lψ. Then, the function C∇Lψ
is called integrable (Nakahara, 2003). We now require a ψ for which there exists a non-
identity matrix C such that C∇Lψ(α) is integrable. According to the Poincaré lemma
(Nakahara, 2003; Spivak, 1979), the necessary and sufficient condition of integrability is
that the Jacobian matrix of C∇Lψ(α) is symmetric. The Jacobian matrix of C∇Lψ(α)
is given by

Jψ,C(α) =
1

n
CK11Dψ,αK11 + λCK11,

where Dψ,α is the n-by-n diagonal matrix with diagonal elements

(Dψ,α)ii = ψ′′
( n∑

j=1

αjk(Xi, Xj) +
1

mλ

m∑
ℓ=1

k(Xi, Yℓ)

)
, i = 1, . . . , n.

In terms of the Jacobian matrix Jψ,C(α), we have the following theorem.

Theorem 3. Let c be a constant value in ℜ and the function ψ be second-order contin-
uously differentiable. Suppose that the Gram matrix K11 is non-singular, and that K11

does not have any zero elements. If there exists a non-singular matrix C ̸= cIn such that
Jψ,C(α) is symmetric for any α ∈ ℜn, then, ψ′′ is a constant function.

2We must admit that this is a rather strict condition. It is an important future work to investigate
the relaxation of the condition in a feasible way.



Computational Complexity of Kernel-Based Density-Ratio Estimation 17

The proof is provided in Appendix E.
Theorem 3 implies that for the non-quadratic function ψ, the gradient C∇Lψ(α)

cannot be integrable unless C = cIn, c ∈ ℜ. As a result, the condition number of loss
functions is reducible only when ψ is a quadratic function3. The same procedure works
for kernel ridge regression (Chapelle, 2007; Ratliff & Bagnell, 2007) and kernel PCA
(Mika et al., 1999). However, there exists no similar procedure for M-estimators with
non-quadratic functions.

In general, the change of variables is a standard and useful approach to reducing the
condition number of loss functions. However, we need a good prediction of the Hessian
matrix at the optimal solution to obtain good conditioning. Moreover, additional compu-
tation including matrix manipulation will be required for the coordinate transformation.
Conversely, an advantage of the transformation considered in this section is that it does
not require any effort to predict the Hessian matrix or to manipulate the matrix.

Remark 2. We summarize our theoretical results on condition numbers. Let Hψ-div be
the Hessian matrix of the loss function (8). Then, the following inequalities hold:

κ(HR-KuLSIF) ≤ κ(HKuLSIF) = sup
w∈H

κ(HKuLSIF) ≤ sup
w∈H

κ(Hψ-div).

Based on a probabilistic evaluation, the inequality

κ(HKuLSIF) ≤ κ(Hψ-div)

will also hold with high probability.

6 Simulation Study

In this section, we experimentally investigate the relation between the condition number
and the convergence rate. All computations are conducted using a Xeon X5482 (3.20GHz)
and 32GB physical memory with CentOS Linux release 5.2. For optimization problems,
we applied the gradient descent method and quasi Newton methods instead of the Newton
method, since the Newton method does not efficiently work for high-dimensional problems
(Luenberger & Ye, 2008, introduction of Chap. 10).

6.1 Synthetic Data

In the M-estimator based on the φ-divergence, the Hessian matrix involved in the opti-
mization problem (8) is given as

H =
1

n
K11Dψ,wK11 + λK11 ∈ ℜn×n. (24)

3The linear function does not provide a consistent estimator of density ratios, because ψ′ is constant.
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For the estimator using the Kullback-Leibler divergence (Nguyen et al., 2010; Sugiyama
et al., 2008a), the function φ(z) is given as φ(z) = − log z, and thus, ψ(z) = −1 −
log(−z), z < 0. Then, ψ′(z) = −1/z and ψ′′(z) = 1/z2 for z < 0. Thus, for
the optimal solution wψ(x) under the population distribution, we have ψ′′(wψ(x)) =
ψ′′((ψ′)−1(w0(x))) = w0(x)

2, where w0 is the true density ratio q/p. Then the Hessian
matrix at the target function wψ is given as

HKL =
1

n
K11diag(w0(X1)

2, . . . , w0(Xn)
2)K11 + λK11 ∈ ℜn×n.

Conversely, in KuLSIF, the Hessian matrix is given by HKuLSIF defined in (21), and the
Hessian matrix of R-KuLSIF, HR-KuLSIF, is shown in (22).

The condition numbers of Hessian matrices, HKL, HKuLSIF, and HR-KuLSIF, are numer-
ically compared. In addition, the condition number of K11 is computed. The probability
distributions P and Q are set to the normal distribution on the 10-dimensional Euclidean
space with the identity variance-covariance matrix I10. The mean vectors of P and Q are
set to 0×110 and µ×110 with µ = 0.2 or µ = 0.5, respectively. Note that the mean value
µ only affects the condition number of the KL method, not R-KuLSIF and KuLSIF. The
true density-ratio w0 is determined by P and Q. In the kernel-based estimators, we use
the Gaussian kernel with width σ = 4, where σ = 4 is close to the median of the distance
∥Xi −Xj∥ between samples. Using the median distance as the kernel width is a popular
heuristic (Caputo et al., 2002; Schölkopf & Smola, 2002). We study two setups: In the
first setup, the sample size from P is equal to that from Q, that is, n = m, and in the
second setup, the sample size from Q is fixed to m = 50 and n is varied from 20 to 500.
The regularization parameter λ is set to λn,m = 1/(n ∧m)0.9, where n ∧m = min{n,m}.

In each setup, the samples X1, . . . , Xn are randomly generated and the condition
number is computed. Figure 1 shows the condition number average over 1000 runs. We
see that for all cases, the condition number of R-KuLSIF is significantly smaller than that
of the other methods. Thus, it is expected that R-KuLSIF converges faster than the other
methods and that R-KuLSIF is robust against numerical degeneracy.

Figure 2 and Table 1 show the average number of iterations and average computation
time for solving the optimization problems over 50 runs. The probability distributions
P and Q are the same as those in the above experiments, and the mean vector of Q
is set to 0.5 × 110. The number of samples from each probability distribution is set to
n = m = 100, . . . , 6000, and the regularization parameter is set to λ = 1/(n∧m)0.9. Note
that n is equal to the number of parameters to be optimized. R-KuLSIF, KuLSIF, and
the method based on the Kullback-Leibler divergence (KL) are compared. In addition,
the computation time for solving the linear equation(

1

n
K11 + λIn

)
α = − 1

nmλ
K121m (25)

instead of optimizing (11) is also shown as “direct” in the plot. The kernel parameter σ
is determined based on the median of ∥Xi−Xj∥. To solve the optimization problems for
M-estimators, we use two optimization methods: one is the BFGS quasi-Newton method
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(a) n = m, σ = 4.
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(b) m = 50, σ = 4.

Figure 1: Average condition number of Hessian matrix over 1000 runs. Left panel shows
condition number in case n = m and σ = 4, and right panel shows result when sample
size from Q is fixed to m = 50 and σ is set to 4. KL(µ) denotes condition number of HKL,
when mean vector of probability distribution Q is specified by µ. Note that condition
number of R-KuLSIF and KuLSIF does not depend on µ.

implemented in the optim function in R (R Development Core Team, 2009), and the other
is the steepest descent method. Furthermore, for the “direct” method, we use the solve
function in R. Figure 2 shows the result for the BFGS method and Table 1 shows the result
for the steepest descent method. In the numerical experiments for the steepest descent
method, the maximum number of iterations is limited to 4000, and the KL method reaches
the limit. The numerical results indicate that the number of iterations in the optimization
procedure is highly correlated with the condition number of the Hessian matrices.

Although the practical computational time would depend on various issues such as
stopping rules, our theoretical results in Section 4 are shown to be in good agreement
with the empirical results for the synthetic data. We observed that numerical optimization
methods such as the quasi-Newton method are competitive with numerical algorithms for
solving linear equations using LU decomposition or Cholesky decomposition, especially
when the sample size n (which is equal to the number of optimization parameters in the
current setup) is large. This implies that the theoretical result obtained in this study will
be useful in large sample cases, which is common in practical applications.
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the BFGS method.

Figure 2: Average computation time and average number of iterations in BFGS method
over 50 runs.

Table 1: Average computation time and average number of iterations in steepest descent
method over 50 runs. “>” means that actual computation time is longer than number
described in table.

n = 100, m = 100 n = 300, m = 300 n = 700, m = 700

Estimator
Comput.
time (sec.)

Number of
iterations

Comput.
time (sec.)

Number of
iterations

Comput.
time (sec.)

Number of
iterations

R-KuLSIF 0.07 21.0 0.50 33.7 4.46 49.0
KuLSIF 1.23 288.0 10.16 487.5 78.21 640.4

KL 11.58 1941.6 > 111.83 > 4000 > 539.72 > 4000

6.2 Benchmark Data

Next, we apply the density-ratio estimation to benchmark data sets, and compare the
computational cost. The statistical performance of each estimator for a linear model has
been extensively compared on benchmark data sets in Kanamori et al. (2009), Kanamori
et al. (2012), and Hido et al. (2011). Therefore, here, we focus on the numerical efficiency
of each method.

Let us consider an outlier detection problem of finding irregular samples in a data set
(“evaluation data set”) based on another data set (“model data set”) that only contains
regular samples (Hido et al., 2011). Defining the density ratio over the two sets of samples,
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we can see that the density-ratio values for regular samples are close to one, while those
for outliers tend to deviate significantly from one. Since the evaluation data set usually
has a wider support than the model data set, we regard the evaluation data set as samples
corresponding to the denominator of the density ratio and the model data set as samples
corresponding to the numerator. Then the target density-ratio w0(x) is approximately
equal to one in a wide range of the data domain, and will take small values around outliers.

The data sets provided by IDA (Rätsch et al., 2001) are used. These are binary
classification data sets consisting of positive/negative and training/test samples. We
allocate all positive training samples to the “model” set, while all positive test samples
and 5% of negative test samples are assigned to the “evaluation set.” Thus, we regard
the positive samples as inliers and negative samples as outliers.

Table 2 shows the average computation time and average number of iterations over
20 runs for image and splice and over 50 runs for the other data sets. In the same way
as the simulations in Section 6.1, we compare R-KuLSIF, KuLSIF, and the M-estimator
with the Kullback-Leibler divergence (KL). In addition, the computation time of solving
the linear equation (25) is shown as “direct” in the table. For the optimization, we use
the BFGS method implemented in the optim function in R (R Development Core Team,
2009), and we use the solve function in R for the “direct” method. The kernel parameter
σ is determined based on the median of ∥Xi − Xj∥ which is computed by the function
sigest in the kernlab library (Karatzoglou et al., 2004). The average number of samples
is shown in the second column, and the regularization parameter is set to λ = 1/(n∧m)0.9.

The numerical results show that, when the sample size is balanced (i.e., n and m are
comparable to each other), the number of iterations for R-KuLSIF is the smallest, which
agrees well with our theoretical analysis. On the other hand, for titanic, waveform,
banana, ringnorm, and twonorm, the number of iterations for each method is almost the
same. In these data sets, m is much smaller than n, and thus the second term λK11 in
the Hessian matrix (24) for the M-estimator will govern the convergence property, since
the order of λn,m is larger than O(1/n). This tendency is explained by the result in
Theorem 2. Based on (20), we see that a large λn,m will provide a smaller upper bound
of κ(H).

Next, we investigate the number of iterations when n and m are comparable to each
other. The data sets, titanic, waveform, banana, ringnorm, and twonorm are used. We
consider two setups: In the first series of experiments, the evaluation data set consists of
all positive test samples, and the model data set is defined by all negative test samples.
Therefore, the target density-ratio may be far from the constant function w0(x) = 1.
Table 3 shows the average computation time and average number of iterations over 20
runs. In this case, the number of iterations for optimization agrees with our theoretical
result, that is, R-KuLSIF yields low computational costs for all experiments. In the
second series of experiments, both model samples and evaluation samples are randomly
chosen from all (i.e., both positive and negative) test samples. Thus, the target density-
ratio is almost equal to the constant function w0(x) = 1. Table 4 shows the average
computation time and the average number of iterations over 20 runs. The number of
iterations for “KL” is much smaller than that for the first setup shown in Table 3. This
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Table 2: Average computation time (s) and average number of iterations for benchmark
data sets are shown. BFGS quasi-Newton method in optim function of R environment is
used to obtain numerical solution. Data sets are arranged in ascending order of sample
size n. Results of method having lowest mean are described in bold face.

(a) Computation time (s)

data set n m R-KuLSIF KuLSIF KL direct
thyroid 26 43 0.008 0.015 0.015 0.001
b-cancer 27 58 0.008 0.012 0.013 0.001
heart 49 76 0.01 0.016 0.021 0.001
german 104 211 0.02 0.03 0.05 0.002
diabetes 118 165 0.02 0.04 0.07 0.002
f-solar 241 368 0.05 0.11 0.24 0.01
image 625 746 0.85 2.19 6.02 0.15
titanic 767 47 0.98 0.96 1.11 0.28
splice 1153 483 1.66 3.59 6.50 0.84

waveform 1746 131 4.06 3.96 5.95 2.50
banana 2437 184 11.51 10.77 14.18 6.69
ringnorm 3816 198 18.27 12.77 29.97 24.92
twonorm 3850 203 22.10 15.70 30.14 26.69

(b) Number of iterations

data set n m R-KuLSIF KuLSIF KL
thyroid 26 43 14.1 39.8 36.1
b-cancer 27 58 13.1 30.8 29.8
heart 49 76 14.0 35.0 42.4
german 104 211 15.5 39.1 48.8
diabetes 118 165 14.8 44.3 65.3
f-solar 241 368 14.7 30.8 61.1
image 625 746 22.1 61.3 135.3
titanic 767 47 20.7 16.4 19.7
splice 1153 483 15.0 28.8 49.9

waveform 1746 131 20.3 17.7 28.2
banana 2437 184 28.4 23.2 30.6
ringnorm 3816 198 20.3 13.5 31.7
twonorm 3850 203 22.2 13.2 26.9
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Table 3: For balanced sample size, average computation time (s) and average number of
iterations for benchmark data sets are presented. Titanic, waveform, banana, ringnorm,
and twonorm are used as data sets. Evaluation data set consists of all positive test
samples, and model data set is defined by all negative test samples, i.e., density ratio
will be far from constant function. BFGS quasi-Newton method in optim function of R
environment is used to obtain numerical solution. Data sets are arranged in ascending
order of sample size n. Results of method having lowest mean are described in bold face.

(a) Computation time (s)

data set n m R-KuLSIF KuLSIF KL direct
titanic 1327 2775 6.11 6.24 15.93 1.45

waveform 3032 6168 52.74 155.30 676.53 16.96
banana 4383 5417 97.64 248.08 1466.94 52.97
ringnorm 6933 7067 145.37 169.08 3374.45 177.96
twonorm 7002 6998 145.61 206.12 3243.83 226.20

(b) Number of iterations

data set n m R-KuLSIF KuLSIF KL
titanic 1327 2775 20.9 21.6 54.1

waveform 3032 6168 36.3 132.7 425.6
banana 4383 5417 40.0 110.2 487.2
ringnorm 6933 7067 34.5 48.6 595.1
twonorm 7002 6998 28.6 48.7 545.0

is because the condition number of the Hessian matrix (24) is likely to be small when the
true density-ratio w0 is close to the constant function. R-KuLSIF is, however, still the
preferable approach. Furthermore, the computation time of R-KuLSIF is comparable to
that of a direct method such as the Cholesky decomposition when the sample size (i.e.,
the number of variables) is large.

In summary, the numerical experiments showed that the convergence rate for opti-
mization is well explained by the condition number of the Hessian matrix. The relation
between the loss function ψ and condition number was discussed in Section 4, and our
theoretical result implies that R-KuLSIF is computationally an effective way to estimate
density ratios. The numerical results in this section also indicated that our theoretical
result is useful to obtain practical and computationally efficient estimators.

7 Conclusions

We considered the problem of estimating the ratio of two probability densities and inves-
tigated theoretical properties of the kernel least-squares estimator called KuLSIF. More
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Table 4: For balanced sample size, average computation time (s) and average number of
iterations for benchmark data sets are presented. Titanic, waveform, banana, ringnorm,
and twonorm are used as data sets. Evaluation data set and model data set are randomly
generated from all (i.e., both positive and negative) test samples, i.e., density ratio is close
to constant function. BFGS quasi-Newton method in optim function of R environment
is used to obtain numerical solution. Data sets are arranged in ascending order of sample
size n. Results of method having lowest mean are described in bold face.

(a) Computation time (s)

data set n m R-KuLSIF KuLSIF KL direct
titanic 2052 2050 10.20 11.42 19.93 5.13

waveform 4600 4600 63.55 124.41 536.46 58.55
banana 4900 4900 112.21 130.62 328.56 78.08
ringnorm 7000 7000 135.70 124.79 1694.38 258.03
twonorm 7000 7000 133.44 153.27 1199.00 243.46

(b) Number of iterations

data set n m R-KuLSIF KuLSIF KL
titanic 2052 2050 18.9 17.9 33.7

waveform 4600 4600 25.4 57.0 170.9
banana 4900 4900 34.0 39.9 86.7
ringnorm 7000 7000 23.1 23.4 227.7
twonorm 7000 7000 24.1 29.8 184.4

specifically, we theoretically studied the condition number of Hessian matrices, because
the condition number is closely related to the convergence rate of optimization and the
numerical stability. We found that KuLSIF has a smaller condition number than the other
methods. Therefore, KuLSIF will have preferable computational properties. We further
showed that R-KuLSIF, which is an alternative formulation of KuLSIF, possesses an even
smaller condition number. Numerical experiments showed that practical numerical prop-
erties of optimization algorithms could be well explained by our theoretical analysis of
condition numbers, even though the condition number only provides an upper bound of
the rate of convergence. A theoretical issue to be further investigated is the derivation of
a tighter probabilistic order of the condition number.

Density-ratio estimation was shown to provide new approaches to solving various ma-
chine learning problems (Sugiyama et al., 2009; Sugiyama et al., 2012), including covariate
shift adaptation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller, 2005; Gretton
et al., 2009; Sugiyama et al., 2007; Bickel et al., 2009; Quiñonero-Candela et al., 2009;
Sugiyama & Kawanabe, 2012), multi-task learning (Bickel et al., 2008; Simm et al., 2011),
inlier-based outlier detection (Hido et al., 2008; Smola et al., 2009; Hido et al., 2011),
change detection in time-series (Kawahara & Sugiyama, 2011), divergence estimation
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(Nguyen et al., 2010), two-sample testing (Sugiyama et al., 2011a), mutual information es-
timation (Suzuki et al., 2008; Suzuki et al., 2009b), feature selection (Suzuki et al., 2009a),
sufficient dimension reduction (Sugiyama et al., 2010a), independence testing (Sugiyama
& Suzuki, 2011), independent component analysis (Suzuki & Sugiyama, 2011), causal
inference (Yamada & Sugiyama, 2010), object matching (Yamada & Sugiyama, 2011),
clustering (Kimura & Sugiyama, 2011), conditional density estimation (Sugiyama et al.,
2010b), and probabilistic classification (Sugiyama, 2010). In future work, we will develop
practical algorithms for a wide range of applications on the basis of theoretical guidance
provided in this study.
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A Proof of Lemma 1

Proof. We consider the minimization of the loss function,

1

n

n∑
i=1

ψ(w(Xi))−
1

m

m∑
j=1

w(Yj) +
λ

2
∥w∥2H, w ∈ H. (26)

Applying the representer theorem (Kimeldorf & Wahba, 1971), we see that an optimal
solution of (26) has the form of

w =
n∑
j=1

αjk(·, Xj) +
m∑
ℓ=1

βℓk(·, Yℓ). (27)

Let K11, K12, K21, and K22 be the sub-matrices of the Gram matrix:

(K11)ii′ =k(Xi, Xi′), (K12)ij = k(Xi, Yj), K21 = K⊤
12, (K22)jj′ = k(Yj, Yj′),

where i, i′ = 1, . . . , n, j, j′ = 1, . . . ,m. Then, the extremal condition of (26) under the
constraint (27) is given as

1

n
K11v(α, β)−

1

m
K121m + λK11α + λK12β = 0, and

1

n
K21v(α, β)−

1

m
K221m + λK22β + λK21α = 0.
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If α and β satisfy the above conditions, they are the optimal solution because the loss
function is convex in α and β. Substituting β = 1

mλ
1m, we obtain

1

n
K11v(α,1m/mλ) + λK11α = 0, and

1

n
K21v(α,1m/mλ) + λK21α = 0.

For α = ᾱ, the above equalities are satisfied, since

1

n
v(ᾱ,1m/mλ) + λᾱ = 0

is assumed. Therefore, α = ᾱ and β = 1m/mλ with (27) provide the minimizer of
(26).

B Proof of Equation (14)

Let κ(A) be the condition number of the symmetric positive definite matrix A, then we
shall prove the equality

min
S:κ(S)≤C

κ(S⊤AS) = max

{
κ(A)

C2
, 1

}
,

where S is symmetric and positive definite. The same equality holds, when S is non-
symmetric and the condition number of S is defined through singular values. We prove
the case that S is a symmetric positive definite matrix for simplicity.

Proof. First, we prove minS:κ(S)≤C κ(SAS) ≥ max{κ(A)
C2 , 1}.

The matrix A is symmetric positive definite, thus, there exists an orthogonal matrix
Q and a diagonal matrix Λ = diag(λ1, . . . , λn) such that A = QΛQ⊤. The eigenvalues
are arranged in the decreasing order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λn > 0. In the similar way,
let S be PDP⊤, where P is an orthogonal matrix and D = diag(d1, . . . , dn) is a diagonal
matrix such that d1 ≥ d2 ≥ · · · ≥ dn > 0 and d1/dn ≤ C. Hence,

κ(SAS) = κ(PDP⊤QΛQ⊤PDP⊤) = κ(DP⊤QΛQ⊤PD).

Let Q⊤P be R⊤ which is also an orthogonal matrix. Then the maximum eigenvalue of
DRΛR⊤D is given as

max
∥x∥=1

x⊤DRΛR⊤Dx.

Let R = (r1, . . . , rn), where ri ∈ ℜn, and we choose x1 such that r⊤
i Dx1 = 0 for

i = 2, . . . , n and ∥x1∥ = 1. Then,

max
∥x∥=1

x⊤DRΛR⊤Dx ≥ x⊤
1DRΛR

⊤Dx1 = λ1(x
⊤
1Dr1)

2.
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From the assumption on x1, Dx1 is represented as cr1 for some c ∈ ℜ, and we have
(x⊤

1Dr1)
2 = c2 = x⊤

1D
2x1 ≥ d2n. Hence, we have

max
∥x∥=1

x⊤SASx ≥ λ1d
2
n.

On the other hand, the minimum eigenvalue of DRΛR⊤D is given as

min
∥x∥=1

x⊤DRΛR⊤Dx.

We choose xn such that r⊤
i Dxn = 0 for i = 1, . . . , n− 1 and ∥xn∥ = 1. Then,

min
∥x∥=1

x⊤DRΛR⊤Dx ≤ x⊤
nDRΛR

⊤Dxn

=λn(x
⊤
nDrn)

2

≤ λnx
⊤
nD

2xn (Schwarz inequality)

≤ λnd
2
1.

As a result, the condition number of SAS is bounded below as

κ(SAS) ≥ λ1d
2
n

λnd21
=

κ(A)

(d1/dn)2
≥ κ(A)

C2
.

Next, we prove minS:κ(S)≤C κ(SAS) ≤ max{κ(A)
C2 , 1}. If κ(A) ≤ C2, the inequality

minS:κ(S)≤C κ(SAS) = 1 holds, because we can choose S = A−1/2. Then, we prove

minS:κ(S)≤C κ(SAS) ≤ κ(A)
C2 when 1 ≤ C2 ≤ κ(A) holds.

Let S = QΓQ⊤ with Γ be a diagonal matrix diag(γ1, . . . , γn), then κ(SAS) =
κ(diag(γ21λ1, . . . , γ

2
nλn)) holds. Let γ1 = 1 and γn = C. Since 1 ≤ C2 ≤ κ(A) = λ1/λn

holds, for k = 2, . . . , n− 1 we have

1 ≤ min

{
C,

√
λ1
λk

}
, C

√
λn
λk

≤ min

{
C,

√
λ1
λk

}
and thus, we obtain

max

{
1, C

√
λn
λk

}
≤ min

{
C,

√
λ1
λk

}
, k = 2, . . . , n− 1.

Hence, there exists γk, k = 2, . . . , n− 1 such that

max

{
1, C

√
λn
λk

}
≤ γk ≤ min

{
C,

√
λ1
λk

}
.

Thus, 1 ≤ γk ≤ C holds for all k = 2, . . . , n− 1. Moreover, C2λn ≤ γ2kλk ≤ λ1 also holds.
These inequalities imply κ(S) = C and κ(SAS) = λ1/(C

2λn) = κ(A)/C2. Therefore

minS:κ(S)≤C κ(SAS) ≤ κ(A)
C2 holds if 1 ≤ C2 ≤ κ(A).
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C Proof of Theorem 1

We show the proof of Theorem 1.

Proof. For a fixed function ψ satisfying the assumption in the theorem, let b be a real
number in the domain of ψ such that ψ′(b) = 1. Then, we have ψ′′(b) = c. Let wb be
the constant function taking b over Z. In a universal RKHS, for any δ > 0, there exists
w ∈ H such that ∥wb−w∥∞ ≤ δ. According to Appendix D in Horn and Johnson (1985),
eigenvalues of a matrix are continuous on its entries, and thus the same thing holds for
the minimal and maximal eigenvalues and the condition number as long as the condition
number is well-defined. Then, for any ε > 0 there exists w ∈ H such that

|κ0(Dψ,w)− κ0(cIn)| = |κ0(Dψ,w)− κ0(Dψ,wb
)| ≤ ε, (28)

since ψ′′(wb) = ψ′′(b) = c. For any ψ satisfying the assumption, we show that (28) leads
to the inequality

sup{κ0(Dψ,w) | w ∈ H} ≥ κ0(cIn) (29)

for fixed samples X1, . . . , Xn. We prove (29) by contradiction. Suppose that
sup{κ0(Dψ,w) | w ∈ H} < κ0(cIn) holds, and let δ = κ0(cIn) − sup{κ0(Dψ,w) | w ∈ H}.
Then, δ is positive. The inequality κ0(Dψ,w) ≤ sup{κ0(Dψ,w) | w ∈ H} leads to the
inequality κ0(cIn) − κ0(Dψ,w) ≥ κ0(cIn) − sup{κ0(Dψ,w) | w ∈ H} = δ > δ/2 > 0 for
all w ∈ H. This inequality contradicts (28), because the inequality (28) guarantees that
there exists w ∈ H such that |κ0(Dψ,w)−κ0(cIn)| ≤ δ/2 holds. Hence, the inequality (29)
should hold.

In addition, for the quadratic function ψ(z) = cz2/2, the equality

sup{κ0(Dψ,w) | w ∈ H} = κ0(cIn).

holds. Thus, we obtain (17).

D Proof of Theorem 2

The following lemma is the key to prove Theorem 2.

Lemma 2. Let k be a kernel function on Z × Z satisfying the boundedness condition,
supx,x′∈Z k(x, x

′) < ∞, and U be U = supx,x′∈Z k(x, x
′). Suppose that the Gram matrix

(K11)ij = k(Xi, Xj) is almost surely positive definite in terms of the probability measure
P . Then, the inequality

∀δ > 0, Pr

(
κ(H) > κ(K11)

(
1 +

δ

λ

))
≤ 1− Fn(δ/U) (30)

holds, where H is defined by H = 1
n
K11Dψ,ŵK11 + λK11. In the above expressions, the

probability Pr(· · · ) is defined from the distribution of all samples X1, . . . , Xn, Y1, . . . , Ym.
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Proof. Let ki be the i-th column vector of the Gram matrix K11, and di be ψ
′′(ŵ(Xi)).

Then the matrix H is represented as

H =
1

n

n∑
i=1

dikik
⊤
i + λK11 ∈ ℜn×n.

Let us define

Wn = min
∥a∥=1

a⊤Ha, Zn = max
∥a∥=1

a⊤Ha,

i.e., Wn and Zn are the minimal and maximal eigenvalues of H. Then, the condition
number of H is given as κ(H) = Zn/Wn. Let τ1 and τn be the maximal and minimal
eigenvalues of K11. Since all diagonal elements of K11 are less than or equal to U , we have

0 < τ1 ≤ TrK11 ≤ Un.

Then, we have a lower bound of Wn and an upper bound of Zn as follows:

Wn = min
∥a∥=1

1

n

n∑
i=1

di(k
⊤
i a)

2 + λa⊤K11a ≥ λτn,

Zn = max
∥a∥=1

1

n

n∑
i=1

di(k
⊤
i a)

2 + λa⊤K11a

≤ maxj dj
n

max
∥a∥=1

n∑
i=1

(k⊤i a)
2 + λτ1

=
maxj dj

n
τ 21 + λτ1

≤ Uτ1 max
j
dj + λτ1,

where the last inequality for Zn follows from τ1 ≤ Un. Therefore, for any δ > 0, we have

Pr

(
κ(H) > κ(K11)

(
1 +

δ

λ

))
≤ Pr

(
Uτ1 maxj dj + λτ1

λτn
> κ(K11)

(
1 +

δ

λ

))
=Pr

(
max
j
dj > δ/U

)
=1− Pr

(
max
j
dj ≤ δ/U

)
=1− Fn(δ/U).

In Lemma 2, the distributions of Wn and Zn are separately computed. This idea is
borrowed from smoothed analysis of the condition numbers (Sankar et al., 2006).

Below, we show the proof of Theorem 2.
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proof of Theorem 2. Using (30) in Lemma 2, we have

lim
n→∞

Pr

(
κ(H) > κ(K11)

(
1 +

tn
λ

))
≤ 1− lim

n→∞
Fn(tn/U) = 0.

E Proof of Theorem 3

We show the proof of Theorem 3

Proof. Assume that ψ′′(z) is not a constant function. Since K11 is non-singular, the
vector K11α + 1

mλ
K121m takes an arbitrary value in ℜn by varying α ∈ ℜn. Hence, each

diagonal element of Dψ,α can take arbitrary values in an open subset S ⊂ ℜ. We consider
(CK11)

−1Jψ,C(α)((CK11)
⊤)−1 instead of Jψ,C . Suppose that there exists a matrix C such

that the matrix

(CK11)
−1Jψ,C(α)((CK11)

⊤)−1 =
1

n
diag(s1, . . . , sn)K11(K11C

⊤)−1 + λ(K11C
⊤)−1 (31)

is symmetric for any (s1, . . . , sn) ∈ Sn. Let aij be the (i, j) element of K11(K11C
⊤)−1,

and tij be the (i, j) element of (K11C
⊤)−1. Then, the (i, j) and (j, i) elements of (31) are

equal to 1
n
siaij + λtij and

1
n
sjaji+ λtji, respectively. Due to the assumption, the equality

1

n
siaij + λtij =

1

n
sjaji + λtji

holds for any si, sj ∈ S. When i ̸= j, we obtain aij = aji = 0 and tij = tji. Thus,
K11(K11C

⊤)−1 should be equal to some diagonal matrix, and (K11C
⊤)−1 is a symmetric

matrix. There exists a diagonal matrix Q = diag(q1, . . . , qn) such that K11 = Q(K11C
⊤)

holds. As a result, we have (K11)ij = qi(K11C
⊤)ij, (K11)ji = qj(K11C

⊤)ji, (K11C
⊤)ij =

(K11C
⊤)ji,and (K11)ij = (K11)ji. Hence we obtain

(K11)ij = qi(K11C
⊤)ij = qj(K11C

⊤)ij,

and then, qi = qj or (K11C
⊤)ij = 0 holds for any i and j. Since (K11)ij is non-zero

element, the only possibility is q1 = q2 = · · · = qn ̸= 0. Therefore, the diagonal matrix Q
should be proportional to the identity matrix and there exists a constant c ∈ ℜ such that
the equality C = cIn holds. This equality contradicts the assumption.
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