
1IEICE Transactions on Information and Systems, vol.E96-D, no.3, pp.742-745, 2013.

Winning the Kaggle Algorithmic Trading Challenge
with the Composition of Many Models

and Feature Engineering

Ildefons Magrans de Abril
Tokyo Institute of Technology, Japan.

ildefons@sg.cs.titech.ac.jp

Masashi Sugiyama
Tokyo Institute of Technology, Japan.

sugi@cs.titech.ac.jp
http://sugiyama-www.cs.titech.ac.jp/˜sugi

Abstract

This letter presents the ideas and methods of the winning solution2 for the Kaggle
Algorithmic Trading Challenge. This analysis challenge took place between 11th
November 2011 and 8th January 2012, and 264 competitors submitted solutions.
The objective of this competition was to develop empirical predictive models to
explain stock market prices following a liquidity shock. The winning system builds
upon the optimal composition of several models and a feature extraction and se-
lection strategy. We used Random Forest as a modeling technique to train all
sub-models as a function of an optimal feature set. The modeling approach can
cope with highly complex data having low Maximal Information Coefficients be-
tween the dependent variable and the feature set and provides a feature ranking
metric which we used in our feature selection algorithm.

Keywords

Kaggle Challenge, Model Architecture, Boosting, Feature Selection, High Frequency
Trading, Liquidity Shock, Maximal Information Coefficient

1 Introduction

The goal of the Kaggle Algorithmic Trading Challenge was to encourage the development
of empirical models to predict the short term response of Order-Driven Markets (ODM)
following large liquidity shocks [1]. A liquidity shock is defined as any trade that changes
the best bid or ask price. Liquidity shocks occur when a large trade (or series of smaller
trades) consumes all available volume at the best price.

2Solution designed and implemented by Ildefons Magrans de Abril.



Winning the Kaggle Algorithmic Trading Challenge 2

This letter presents an empirical model meant to predict the short-term response of
the top of the bid and ask books following a liquidity shock. This kind of model can be
used as a core component of a simulation tool to optimize execution strategies of large
transactions. Compared to existing finance research models [2] [3], we were not interested
in understanding the underlying processes responsible for the price dynamics. On the
other hand, by chasing the optimal predictor we may have uncovered interesting insights
that could be a source of research inspiration.

The challenge data consists of training and test datasets. The training dataset is
meant to fit a predictive model and contestants are asked to submit predictions based
on the test dataset using this model. The training dataset consists of 754018 samples of
trade and quote data observations before and after a liquidity shock for several different
securities of the London Stock Exchange (LSE). Changes to the state of the order book
occur in the form of trades and quotes. A quote event occurs whenever the best bid or
the ask price is updated. A trade event takes place when shares are bought or sold.

The test dataset consists of 50000 samples similar to the training dataset but without
the post-liquidity shock observations (i.e., time interval 51-100). Due to a data bug, the
quotes at time 51 and 50 were the same. Therefore, the final objective was to predict the
post-liquidity shock observations in the interval 52-100. In addition to the bid and ask
price time series, each training and test sample contains some few variables to distinguish
the particular security (security id), to indicate whether the trade has been initiated by
a buyer or a seller (initiator), the volume-weighted average price of the trade causing the
liquidity shock (trade vwap) and the total size of the trade causing the liquidity shock
(trade volume) [1].

2 Model

The search for an optimal model was guided by one hypothesis and an additional self-
imposed constraint:

Hypothesis: The predictive potential closer to the liquidity shock should be higher and
it should degrade with the distance. The rationale of this hypothesis is that future events
will depend also on post-liquidity shock events that still need to be predicted. Therefore,
the prediction error will tend to increase with the distance from the liquidity shock.

Constraint: Feature extraction should generate semantically meaningful features. This
self-imposed constraint was motivated by one of the authors’ will to generate a predictive
model with the highest possible explanatory capacity.

In the following sections we will show how these two points were strong potentials that
helped to reach a good solution and finally to win the competition.

2.1 Architecture

The model architecture consists of separate models for bid and ask. Bid and ask models
are each further divided into K sub-models responsible for predicting a constant price at



Winning the Kaggle Algorithmic Trading Challenge 3

Algorithm 1 Time interval partitioning algorithm

1: b← e← 52; P ← NULL; i← 1
2: while b < 100 do
3: Ci ← NULL; e← b+ length(Ci); bestError←∞
4: repeat
5: Ci ← createTimeInterval(b,e)
6: Call ← createTimeInterval(e+1,100)
7: error← evaluateModel(P ,Ci,Call)
8: if bestError > error then
9: bestError← error
10: end if
11: e← e+ 1
12: until bestError ̸= error
13: addTimeInterval(P , Ci)
14: i← i+ 1; b← e
15: end while

specific future time intervals between 52 and 100. The set P consists of K disjoint time
intervals and its union is the full interval 52–100:

Mbid(t) =
K∑
i=1

ai,tMbid,i(t), Mask(t) =
K∑
i=1

ai,tMask,i(t),

where ai,t =

{
1 if t ∈ Ci,

0 otherwise,
t ∈ [52, 100].

Ci represents the i-th K post-liquidity shock time interval and Mbid/ask,i(t) is the sub-
model responsible for predicting the constant price on the interval Ci.

Dividing the future time interval into the set of intervals P should avoid mixing the
low signal-to-noise-ratio of “far-away” prices with the more predictable prices close to
the liquidity shock. An additional model feature is that time intervals should have an
increasing length (i.e., length(Ci+1)≥length(Ci)). This feature is a consequence of the
main hypothesis because an always increasing prediction error may require averaging
longer price time series to obtain a constant price prediction with an acceptable error.

Algorithm 1 is responsible for dividing the future time interval 52–100 into disjoint
and consecutive sub-intervals of increasing length (line 3). It is implemented as a greedy
algorithm and it is able to partition the post-liquidity shock time interval with O(n) time
complexity.

2.2 Feature Engineering

Our feature engineering strategy is, together with the model architecture, one of the
relevant contributions of this letter and an important piece of our success. The following



Winning the Kaggle Algorithmic Trading Challenge 4

two sections describe in detail the feature extraction and selection methods. However,
a key component of the feature selection method, the feature selection algorithm, will
be presented later in Section 2.3 because it has a strong dependency on the modeling
approach that we have chosen.

2.2.1 Feature Extraction

The semantically meaningfulness constraint discussed in the beginning of Section 2 en-
couraged the development of more than 150 features (predictors) with well-known char-
acteristics:

Price: Price features provide information about the bid/ask normalized price time
series (price values divided by the post liquidity shock price). Technical analysis [4] and
statistical estimators are the fundamental instruments to compute these predictors (e.g.,
the detrended price oscillator, the exponential moving average of the last n [bid/ask] prices
before the liquidity shock, the number of price increments during the last n [bid/ask] prices
before the liquidity shock).

Liquidity book: This class contains all features able to provide information about the
depth of the liquidity book (e.g., liquidity book improvements in the last n time periods
understood as bid/ask price increases between two consecutive quotes).

Spread: Spread related features are meant to distill information about the bid/ask
spread. As price features, technical analysis and statistical estimators are the fundamental
instruments to compute these predictors. Before computing the predictor, spread time
series were divided by the minimum price increment allowed for the particular security id
(e.g., exponential moving average of the last n spreads before the liquidity shock).

Rate: This class of features provides information about the arrival rate of orders
and/or quotes (e.g., number of quotes and/or trades during the last n events).

2.2.2 Feature Selection

Not all features have the same predictive potential. Moreover, just choosing a set of
features which are most related to the predicted variable could generate a highly collinear
feature set which could be very confusing for our model fitting algorithm. Overfitting
could also be a consequence of having too many features as we may tend to describe
random errors. In addition, as discussed in Section 2.1, we have to fit bid and ask models
composed in turn by several sub-models. An exhaustive search of the optimum feature set
for all bid and ask sub-models is not feasible. This section discusses the feature selection
strategy. It is meant to identify a suitable minimal subset of features with low mutual
interdependencies and we want to achieve that goal with affordable computing resources
in an acceptable amount of time. Having those goals and constraints, we have defined a
feature selection method which consists of the following components:

Relaxation of the feature selection optimization problem: A highly time consuming
feature selection strategy would consist in choosing an optimal feature sub-set for each of
the many sub-models of the architecture described in Section 2.1. We simplified this step
by choosing only two feature sub-sets: A sub-set common to all sub-models that describe



Winning the Kaggle Algorithmic Trading Challenge 5

the future bid price (Fb) and a second feature sub-set common to all sub-models that
describe future ask price (Fa).

Feature selection algorithm: It is an algorithm to choose the suitable feature sets
(i.e., Fb and Fa). The details of this algorithm will be presented in the following section
together with our modeling approach.

2.3 Modeling Approach

An initial analysis of the mutual information between features and the dependent variable
revealed a very low mutual information and non-functional relationships according to
the Maximal Information Coefficient (MIC [5]): More than 90% of features had mutual
information and functional metric values below 10% of the maximum possible. This initial
analysis suggested us the need for a modeling approach able to cope with the complex
non-linear non-functional nature of the challenge data.

Gradient Boosting Machines [7] and Random Forest [6] have been successfully used
in other challenges of similar complexity [8]. A performance comparison between these
two approaches was carried out. For this exercise, our modeling dataset consisted of
50000 samples randomly sampled from the training dataset with the same security id
proportions than the test dataset. All features were computed for each sample. We used
a 4-fold cross validation with a 75%-25% proportion for training and testing respectively.
Each model performance was measured by separately computing the root mean squared
error (RMSE) for the bid and ask at each time step following a liquidity shock.

The optimized Gradient Boosting Machine and Random Forest models delivered re-
spectively an average cross-validated RMSE of 1.163 and 1.156. This initial result sug-
gested us that Random Forest could be more appropriate for this particular problem.
Besides, the R implementation of the Random Forest [6] has the embedded capability
to measure the importance of each feature using out-of-bag observations. This was an
additional motivation to select this technique as a modeling approach.

2.4 Feature Selection Algorithm

Our feature selection algorithm (see Algorithm 2) is inspired by a similar method [9]
already applied to the Heritage Health Prize dataset [8]. It is a backward feature elimina-
tion method able to select an accurate feature subset with acceptable time and computing
resources. Our variant computes the model performance of Step 2) using the evaluation
metric discussed in Section 2.3, and Steps 3) and 6) compute the feature rank using the
capabilities of the Random Forest R package. We have also added Steps 10)–19). These
additional steps require a human expert. Steps 10)–15) correspond to a backward fea-
ture elimination method and Steps 16)–19) correspond to a method to add features. For
this challenge, the semantic similarity among features was evaluated by one of the authors
with amateur trading skills (e.g., two similar features are the exponential moving averages
of the last 3 and 5 bid prices. Two semantically orthogonal features are the exponential
moving average of the last 3 bid prices and the bid/ask spread before the liquidity shock).



Winning the Kaggle Algorithmic Trading Challenge 6

Algorithm 2 Feature selection algorithm

1: Train a single piece model using all S features
2: Compute model performance against the test set
3: Rank features importance (RF importance method)
4: for each subset size Si=S, S − 1, . . . , 1 : do
5: Retrain the model with only Si most important features
6: Re-compute individual variable importance and re-rank
7: Fit the model to Sf features and rank individual features
8: end for
9: Determine which Si yielded the smallest RMSE. Call this Sf

10: repeat
11: Choose a set of semantically similar features from Sf

12: Select the feature with less rank not selected before
13: Evaluate the model performance
14: If smaller RMSE, then remove the feature
15: until no improvement
16: repeat
17: Choose a feature set among the already removed in Steps 1)-9) considering only

those semantically orthogonal with the already selected in Steps 1)-15)
18: If smaller RMSE, then we add the feature to Sf

19: until no improvement

3 Validation

The first step to validate the model ideas was to select a suitable feature subset. We
applied the feature selection algorithm described in Section 2.4 to the same sample dataset
used in the same section to evaluate the suitability of different modeling approaches.
According to the discussion in Section 2.2.2, we should have applied our feature selection
algorithm separately to single piece bid and ask models defined in the full time interval 52–
100. However, due to time constraints, we only optimized one side Fb. Fa was estimated
from Fb by just taking the ask side of price features. The selected feature sets Fb and Fa

were used by all bid and ask sub-models respectively as suggested by the optimization
problem relaxation described in Section 2.2.2.

The following step was to learn the optimal set P of time intervals. We used again the
same sample dataset used in Section 2.3 to evaluate the suitability of different modeling
approaches and computed the Fb feature subset found in the previous step. The applica-
tion of the partitioning algorithm (Section 2.1) on the bid model (i.e., Mbid(t)) delivered
the following set of time intervals: {52–52, 53–53, 54–55, 56–58, 59–64, 65–73, 74–100}.

Our final model fitting setup consisted of three datasets of 50000 samples each ran-
domly sampled from the training dataset and with the same security id proportions as
the test dataset. We computed Fb and Fa for each sample and trained a complete model
with each training dataset. Finally, the models were applied to the test dataset and the



Winning the Kaggle Algorithmic Trading Challenge 7

0 10 20 30 40 50

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

Evolution of Public and Private Scores

submissions

R
M

S
E

����������	�
�����

�������
������	

�������������
�����������
������	

�����
����

�������

���������
����

���	�
��
����

�����������

Figure 1: Evolution of public (dashed line) and private (solid line) scores. Feature extrac-
tion, selection, model partitioning and final prediction average were performed sequen-
tially as indicated in the plot.

three predictions from each sub-model were averaged. Fig. 1 shows the evolution of the
public and private scores during the two months of the competition. The private score is
the RMSE on the full test set. The private score was only made public after finishing the
competition. The public score is the RMSE calculated on approximately 30% of the test
data. The public score was available in real time to all competitors.

Public and private scores are more correlated during the initial process of adding new
features than during the second process of selecting the optimal feature subset. This
lack of correlation could be due to a methodological bug during the execution of the
feature selection algorithm: During this step the authors used a single dataset of 50000
samples instead of the three datasets used in the other validations stages. This could
have biased our feature selection towards those features that better explain this particular
dataset. Finally, the best solution was obtained by averaging the predictions obtained
from each of three models fitted respectively with the three sample datasets (last three
submissions). In order to test the main hypothesis, we also submitted an additional
solution based on a single-piece model (4th and 5th last submissions). The many-piece
model solution clearly provided the final edge to win. Therefore, we consider that this is
a strong positive indicator for the model hypothesis discussed in Section 2. It is worth
mentioning that, according to information disclosed in the challenge forums, a common
modeling choice among most competitors was to use a single time interval with constant
post liquidity shock bid and ask prices. This is an additional clue that points to the
suitable implementation of our main hypothesis as a key component of our solution.



Winning the Kaggle Algorithmic Trading Challenge 8

4 Conclusions

This letter presented our solution for the Kaggle Algorithmic Trading Challenge. Our
main design hypothesis was that the predictive potential close to the liquidity shock
should be higher and it should be degraded with the distance. This hypothesis guided
the design of our model architecture and it required a complex feature extraction and
selection strategy. An additional self-imposed constraint on this strategy was to uniquely
generate semantically meaningful features. This self-imposed constraint was motivated by
the authors’ will to generate a predictive model with the highest explanatory potential,
but it also helped to identify features which had not been initially selected using a simple
backward feature elimination method.

Acknowledgments: The authors were partially supported by the FIRST program.

References

[1] Kaggle Algorithmic Trading Challenge, http://www.kaggle.com/c/

AlgorithmicTradingChallenge/data

[2] F. Lillo, J. D.Farmer and R. N. Mantegna, “Master curve for price-impact function,”
Nature, vol.421, pp. 129–130, 2003.

[3] T. Foucault, O. Kadan and E. Kandel, “Limit Order Book as a Market for Liquidity,”
Review of Financial Studies, vol.18, no.4, pp.1171–1217, 2005.

[4] J. Ulrich, “Package TTR: Technical trading Rules,” CRAN Repository: http://

cran.r-project.org/web/packages/TTR/TTR.pdf

[5] D. Reshef, Y. Reshef, H. Finucane, S. Grossman, G. McVean, P. Turnbaugh, E.
Lander, M. Mitzenmacher, P. Sabeti, “Detecting novel associations in large datasets,”
Science 334, vol.334, no. 6062, pp.1518–1524, 2011.

[6] A. Liaw, “Package randomForest: Breiman and Cutler’s Random Forest for Clas-
sification and Regression,” CRAN Repository: http://cran.r-project.org/web/

packages/randomForest/randomForest.pdf

[7] G. Ridgeway, “Package gbm,” CRAN Repository: http://cran.r-project.org/

web/packages/gbm/gbm.pdf

[8] Heritage Provider Network, Health Prize, Site: http://www.heritagehealthprize.
com/c/hhp

[9] T. Van Nguyen, B. Mishra, “Modeling Hospitalization Outcomes with Random De-
cision Trees and Bayesian Feature Selection,” Unpublished, Site: http://www.cs.

nyu.edu/mishra/PUBLICATIONS/mypub.html


