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Abstract

The policy gradient approach is a flexible and powerful reinforcement learning
method particularly for problems with continuous actions such as robot control.
A common challenge in this scenario is how to reduce the variance of policy gradi-
ent estimates for reliable policy updates. In this paper, we combine the following
three ideas and give a highly effective policy gradient method: (a) the policy gra-
dients with parameter based exploration, which is a recently proposed policy search
method with low variance of gradient estimates, (b) an importance sampling tech-
nique, which allows us to reuse previously gathered data in a consistent way, and (c)
an optimal baseline, which minimizes the variance of gradient estimates with their
unbiasedness being maintained. For the proposed method, we give theoretical anal-
ysis of the variance of gradient estimates and show its usefulness through extensive
experiments.

1 Introduction

The objective of reinforcement learning (RL) is to let an agent optimize its decision-
making policy through interaction with an unknown environment [25]. Among possible
approaches, policy search has become a popular method because of its direct nature for
policy learning [1]. Particularly, in high-dimensional problems with continuous states and
actions, policy search has been shown to be highly useful in practice [14, 16].
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Among policy search methods [3], gradient-based methods are popular in physical con-
trol tasks because policies are changed gradually [26, 10, 16] and thus steady performance
improvement is ensured until a local optimal policy has been obtained. However, since
the gradients estimated with these methods tend to have large variance and thus they
may suffer from slow convergence.

Recently, a novel approach to using policy gradients called policy gradients with pa-
rameter based exploration (PGPE) was proposed [20]. PGPE tends to produce gradi-
ent estimates with low variance by removing unnecessary randomness from policies and
introducing useful stochasticity by considering a prior distribution for policy parame-
ters. PGPE was shown to be more promising than alternative approaches experimentally
[20, 32]. However, PGPE still requires a relatively large number of samples to obtain
accurate gradient estimates, which can be a critical bottleneck in real-world applications
that require large costs and time in data collection.

To overcome this weakness, an importance sampling technique [7] is useful under the
off-policy RL scenario, where a data-collecting policy and the current target policy are
different in general [25]. An importance sampling technique allows us to reuse previously
collected data, which are collected following policies different from the current one in a
consistent manner [25, 22]. However, naively using an importance sampling technique
significantly increases the variance of gradient estimates, which can cause sudden changes
in policy updates [21, 15, 9, 28]. To mitigate this problem, variance reduction techniques
such as decomposition [18], truncation [28, 27], normalization [21, 15], and flattening [9]
of importance weights are often used. However, these methods commonly suffer from the
bias-variance trade-off, meaning that the variance is reduced at the expense of increasing
the bias.

The purpose of this paper is to propose a new approach to systematically address-
ing the large variance problem in policy search. Basically, this work is an extension of
our previous research [32] to an off-policy scenario using an importance weighting tech-
nique. More specifically, we first give an off-policy implementation of PGPE called the
importance-weighted PGPE (IW-PGPE) method for consistent sample reuse. We then de-
rive the optimal baseline for IW-PGPE to minimize the variance of importance-weighted
gradient estimates, following [8, 29]. We show that the proposed method can achieve
significant performance improvement over alternative approaches in experiments with an
artificial domain. We also investigate that combining the proposed method with the
truncation technique can further improve the performance in high-dimensional problems.

2 Formulations of Policy Gradient

In this paper, we consider the standard framework of episodic reinforcement learning (RL)
in which an agent interacts with an environment modeled as a Markov decision process
(MDP) [25]. In this section, we first review a standard formulation of policy gradient
methods [31, 10, 16]. Then we show an alternative formulation adopted in the PGPE
(policy gradients with parameter based exploration) method [20].
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2.1 Standard Formulation

We assume that the underlying control problem is a discrete-time MDP. At each discrete
time step t, the agent observes a state st ∈ S, selects an action at ∈ A, and then receives
an immediate reward rt resulting from a state transition in the environment. The state S
and action A are both defined as continuous spaces in this paper1. The dynamics of the
environment are characterized by p(st+1|st, at), which represents the transition probability
density from the current state st to the next state st+1 when action at is taken, and p(s1)
is the probability density of initial states. The immediate reward rt is given according to
the reward function r(st, at, st+1).

The agent’s decision making procedure at each time step t is characterized by a param-
eterized policy p(at|st,θ) with parameter θ, which represents the conditional probability
density of taking action at in state st. We assume that the policy is continuously differ-
entiable with respect to its parameter θ.

A sequence of states and actions forms a trajectory denoted by

h := [s1, a1, . . . , sT , aT ],

where T denotes the number of steps called horizon length. In this paper, we assume
that T is a fixed deterministic number. Note that the action at is chosen independently
of the trajectory given st and θ. Then the discounted cumulative reward along h, called
the return, is given by

R(h) :=
T∑
t=1

γt−1r(st, at, st+1),

where γ ∈ [0, 1) is the discount factor for future rewards.
The goal is to optimize the policy parameter θ so that the expected return is maximized.

The expected return for policy parameter θ is defined by

J(θ) :=

∫
p(h|θ)R(h)dh,

where

p(h|θ) = p(s1)
T∏
t=1

p(st+1|st, at)p(at|st,θ).

The most straightforward way to update the policy parameter is to follow the gradient in
policy parameter space using gradient ascent:

θ ←− θ + ε∇θJ(θ),

where ε is a small positive constant, called the learning rate.
This is a standard formulation of policy gradient methods [31, 10, 16]. The central

problem is to estimate the policy gradient ∇θJ(θ) accurately from trajectory samples.

1Note that continuous formulation is not an essential restriction.
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2.2 Alternative Formulation

However, standard policy gradient methods were shown to suffer from high variance in
the gradient estimation due to randomness introduced by the stochastic policy model
p(a|s,θ) [32]. To cope with this problem, an alternative method called policy gradients
with parameter based exploration (PGPE) was proposed recently [20]. The basic idea of
PGPE is to use a deterministic policy and introduce stochasticity by drawing parameters
from a prior distribution. More specifically, parameters are sampled from the prior dis-
tribution at the start of each trajectory, and thereafter the controller is deterministic2.
Thanks to this per-trajectory formulation, the variance of gradient estimates in PGPE
does not increase with respect to trajectory length T . Below, we review PGPE.

PGPE uses a deterministic policy with typically a linear architecture:

p(a|s,θ) = δ(a = θ⊤ϕ(s)), (1)

where δ(·) is the Dirac delta function, ϕ(s) is an ℓ-dimensional basis function vector, and
⊤ denotes the transpose. The policy parameter θ is drawn from a prior distribution p(θ|ρ)
with hyper-parameter ρ.

The expected return in the PGPE formulation is defined in terms of expectations over
both h and θ as a function of hyper-parameter ρ:

J (ρ) :=
∫∫

p(h|θ)p(θ|ρ)R(h)dhdθ.

In PGPE, the hyper-parameter ρ is optimized so as to maximize J (ρ), i.e., the optimal
hyper-parameter ρ∗ is given by

ρ∗ := argmax
ρ
J (ρ).

In practice, a gradient method is used to find ρ∗:

ρ←− ρ+ ε∇ρJ (ρ),

where ∇ρJ (ρ) is the derivative of J with respect to ρ:

∇ρJ (ρ) =
∫∫

p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ. (2)

Note that, in the derivation of the gradient, the logarithmic derivative,

∇ρ log p(θ|ρ) =
∇ρp(θ|ρ)
p(θ|ρ)

,

2Note that transitions are stochastic, and thus trajectories are also stochastic even though the policy
is deterministic.
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was used. The expectations over h and θ are approximated by the empirical averages:

∇ρĴ (ρ) =
1

N

N∑
n=1

∇ρ log p(θn|ρ)R(hn), (3)

where each trajectory sample hn is drawn independently from p(h|θn) and parameter θn

is drawn from p(θn|ρ). We denote samples collected at the current iteration as

D = {(θn, hn)}Nn=1.

Following [20], in this paper we employ a Gaussian distribution as the distribution of
the policy parameter θ with the hyper-parameter ρ. However, other distributions can also
be allowed. When assuming a Gaussian distribution, the hyper-parameter ρ consists of
a set of means {ηi} and standard deviations {τi}, which determine the prior distribution
for each element θi in θ of the form

p(θi|ρi) = N (θi|ηi, τ 2i ),

where N (θi|ηi, τ 2i ) denotes the normal distribution with mean ηi and variance τ 2i . Then
the derivative of log p(θ|ρ) with respect to ηi and τi are given as

∇ηi log p(θ|ρ) =
θi − ηi
τ 2i

,

∇τi log p(θ|ρ) =
(θi − ηi)

2 − τ 2i
τ 3i

,

which can be substituted into Eq.(3) to approximate the gradients with respect to η and
τ . These gradients give the PGPE update rules.

An advantage of PGPE is its low variance of gradient estimates: Compared with a
standard policy gradient method REINFORCE [31], PGPE was empirically demonstrated
to be better in some settings [20, 32]. The variance of gradient estimates in PGPE can
be further reduced by subtracting an optimal baseline (Theorem 4 of [32]).

Another advantage of PGPE is its high flexibility: In standard policy gradient meth-
ods, the parameter θ is used to determine a stochastic policy model p(a|s,θ), and policy
gradients are calculated by differentiating the policy with respect to the parameter. How-
ever, because PGPE needs not calculate the derivative of the policy, a non-differentiable
controller is also allowed.

3 Off-Policy Extension of PGPE

In real-world applications such as robot control, gathering roll-out data is often costly.
Thus, we want to keep the number of samples as small as possible. However, when the
number of samples is small, policy gradients estimated by the original PGPE are not
reliable enough.
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The original PGPE is categorized as an on-policy algorithm [25], where data drawn
from the current target policy is used to estimate policy gradients. On the other hand,
off-policy algorithms are more flexible in the sense that a data-collecting policy and the
current target policy can be different. In this section, we extend PGPE to an off-policy
scenario using importance-weighting, which allows us to reuse previously collected data
in a consistent manner. We also theoretically analyze properties of the extended method.

3.1 Importance-Weighted PGPE

Let us consider an off-policy scenario where a data-collecting policy and the current target
policy are different in general. In the context of PGPE, we consider two hyper-parameters,
ρ for the target policy to learn and ρ′ for data collection. Let us denote data samples
collected with hyper-parameter ρ′ by D′:

D′ = {(θ′
n, h

′
n)}N

′

n=1
i.i.d∼ p(h,θ|ρ′) = p(h|θ)p(θ|ρ′).

If we naively use data D′ to estimate policy gradients by Eq.(3), we have an inconsistency
problem:

1

N ′

N ′∑
n=1

∇ρ log p(θ
′
n|ρ)R(h′

n)
N ′→∞↛ ∇ρJ (ρ),

which we refer to as “non-importance-weighted PGPE” (NIW-PGPE).
Importance sampling [7] is a technique to systematically resolve this distribution mis-

match problem. The basic idea of importance sampling is to weight samples drawn from a
sampling distribution to match the target distribution, which gives a consistent gradient
estimator:

∇ρĴIW(ρ) :=
1

N ′

N ′∑
n=1

w(θ′
n)∇ρ log p(θ

′
n|ρ)R(h′

n)
N ′→∞−→ ∇ρJ (ρ),

where

w(θ) =
p(θ|ρ)
p(θ|ρ′)

is called the importance weight.
An intuition behind importance sampling is that if we know how “important” a sample

drawn from the sampling distribution is in the target distribution, we can make adjustment
by importance weighting. We call this extended method importance-weighted PGPE (IW-
PGPE).

Now we analyze the variance of gradient estimates in IW-PGPE. For a multi-
dimensional space, we consider the trace of the covariance matrix of gradient vectors.
That is, for a random vector A = (A1, . . . , Aℓ)

⊤, we define

Var(A) = tr
(
E
[
(A− E[A])(A− E[A])⊤

])
,

=
ℓ∑

m=1

E
[
(Am − E[Am])

2
]
, (4)
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where E denotes the expectation.
Let

B =
ℓ∑

i=1

τ−2
i ,

where ℓ is the dimensionality of the basis function vector ϕ(s). For a ρ = (η, τ ), we have
the following theorem3:

Theorem 1. Assume that for all s, a, and s′, there exists β > 0 such that r(s, a, s′) ∈
[−β, β], and, for all θ, there exists 0 < wmax <∞ such that 0 < w(θ) ≤ wmax. Then we
have the following upper bounds:

Var
[
∇ηĴIW(ρ)

]
≤ β2(1− γT )2B

N ′(1− γ)2
wmax,

Var
[
∇τ ĴIW(ρ)

]
≤ 2β2(1− γT )2B

N ′(1− γ)2
wmax.

Theorem 1 shows that the upper bound of the variance of ∇ηĴIW(ρ) is proportional
to β2 (the upper bound of squared rewards), wmax (the upper bound of the importance
weight w(θ)), B (the trace of the inverse Gaussian covariance), and (1 − γT )2/(1 − γ)2,
and is inverse-proportional to sample size N ′. It is interesting to see that the upper bound
of the variance of ∇τ ĴIW(ρ) is twice larger than that of ∇ηĴIW(ρ).

It is also interesting to see that the upper bounds are the same as the upper bounds
for the plain PGPE (Theorem 1 of [32]) except for the factor wmax; when wmax = 1,
the bounds are reduced to those of the plain PGPE method. However, if the sampling
distribution is significantly different from the target distribution, wmax can take a large
value and thus IW-PGPE tends to produce a gradient estimator with large variance (at
least in terms of its upper bound). Therefore, IW-PGPE may not be a reliable approach
as it is.

Below, we give a variance reduction technique for IW-PGPE, which leads to a highly
effective policy gradient algorithm.

3.2 Variance Reduction by Baseline Subtraction for IW-PGPE

To cope with the large variance of gradient estimates in IW-PGPE, several techniques have
been developed in the context of sample reuse, for example, by flattening [9], truncating
[28], and normalizing [21] the importance weight. Indeed, from Theorem 1, we can see
that decreasing wmax by flattening or truncating the importance weight reduces the upper
bounds of the variance of gradient estimates. However, all of those techniques are based
on the bias-variance trade-off, and thus they lead to biased estimators.

Another, and possibly more promising variance reduction technique is subtraction of
a constant baseline [24, 30, 8, 29], which reduces the variance without increasing the bias.

3Proofs of all theorems are provided in Appendix, which are basically extensions of the proofs for the
plain PGPE given in [32] to importance-weighting scenarios.



Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration 8

Here, we derive an optimal baseline for IW-PGPE to minimize the variance, and analyze
its theoretical properties.

A policy gradient estimator with a baseline b ∈ R is defined as

∇ρĴ b
IW(ρ) :=

1

N ′

N ′∑
n=1

(R(h′
n)− b)w(θ′

n)∇ρ log p(θ
′
n|ρ).

It is well known that ∇ρĴ b
IW(ρ) is still a consistent estimator of the true gradient for

any constant b [8]. Here, we determine the constant baseline b so that the variance is
minimized, following the line of [32]. Let b∗ be the optimal constant baseline for IW-
PGPE that minimizes the variance:

b∗ := argmin
b

Var[∇ρĴ b
IW(ρ)].

Then the following theorem gives the optimal constant baseline for IW-PGPE:

Theorem 2. The optimal constant baseline for IW-PGPE is given by

b∗ =
Ep(h,θ|ρ′)[R(h)w2(θ)∥∇ρ log p(θ|ρ)∥2]

Ep(h,θ|ρ′)[w2(θ)∥∇ρ log p(θ|ρ)∥2]
,

and the excess variance for a constant baseline b is given by

Var[∇ρĴ b
IW(ρ)]−Var[∇ρĴ b∗

IW(ρ)] =
(b− b∗)2

N ′ Ep(h,θ|ρ′)[w
2(θ)∥∇ρ log p(θ|ρ)∥2],

where Ep(h,θ|ρ′)[·] denotes the expectation of the function of random variables h and θ with
respect to (h,θ) ∼ p(h,θ|ρ′).

The above theorem gives an analytic expression of the optimal constant baseline for
IW-PGPE. It also shows that the excess variance is proportional to the squared difference
of baselines (b − b∗)2 and the expectation of the product of squared importance weight
w(θ) and the squared norm of characteristic eligibility ∥∇ρ log p(θ|ρ)∥2, and is inverse-
proportional to sample size N ′.

Next, we analyze contributions of the optimal baseline to variance reduction in IW-
PGPE:

Theorem 3. Assume that for all s, a, and s′, there exists α > 0 such that r(s, a, s′) ≥ α,
and, for all θ, there exists wmin > 0 such that w(θ) ≥ wmin. Then we have the following
lower bounds:

Var
[
∇ηĴIW(ρ)

]
−Var

[
∇ηĴ b∗

IW(ρ)
]
≥ α2(1− γT )2B

N ′(1− γ)2
wmin,

Var
[
∇τ ĴIW(ρ)

]
−Var

[
∇τ Ĵ b∗

IW(ρ)
]
≥ 2α2(1− γT )2B

N ′(1− γ)2
wmin.
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Assume that for all s, a, and s′, there exists β > 0 such that r(s, a, s′) ∈ [−β, β], and, for
all θ, there exists 0 < wmax <∞ such that 0 < w(θ) ≤ wmax. Then we have the following
upper bounds:

Var
[
∇ηĴIW(ρ)

]
−Var

[
∇ηĴ b∗

IW(ρ)
]
≤ β2(1− γT )2B

N ′(1− γ)2
wmax,

Var
[
∇τ ĴIW(ρ)

]
−Var

[
∇τ Ĵ b∗

IW(ρ)
]
≤ 2β2(1− γT )2B

N ′(1− γ)2
wmax.

This theorem shows that the bounds of the variance reduction in IW-PGPE brought
by the optimal constant baseline depend on the bounds of the importance weight. If
importance weights are larger, using the optimal baseline can reduce the variance more.

Based on Theorems 1 and 3, we get the following corollary:

Corollary 4. Assume that for all s, a, and s′, there exists 0 < α < β such that
r(s, a, s′) ∈ [α, β], and, for all θ, there exists 0 < wmin < wmax < ∞ such that
wmin ≤ w(θ) ≤ wmax. Then we have the following upper bounds:

Var
[
∇ηĴ b∗

IW(ρ)
]
≤ (1− γT )2B

N ′(1− γ)2
(β2wmax − α2wmin),

Var
[
∇τ Ĵ b∗

IW(ρ)
]
≤ 2(1− γT )2B

N ′(1− γ)2
(β2wmax − α2wmin).

Comparing Theorem 1 and this corollary, we can see that the upper bounds for IW-
PGPE with the optimal constant baseline are smaller than those for IW-PGPE with no
baseline because α2wmin > 0. Although they are just upper bounds, they can still intu-
itively show that subtraction of the optimal constant baseline contributes to mitigating
the large variance caused by importance weighting. If wmin is larger, then the upper
bounds for IW-PGPE with the optimal constant baseline can be much smaller than those
for IW-PGPE with no baseline.

4 Experimental Results

In this section, we experimentally investigate the usefulness of the proposed method,
importance-weighted PGPE with the optimal constant baseline (which we denote by IW-
PGPEOB hereafter). In the experiments, we estimate the optimal constant baseline using
all collected data, as suggested in [8, 16, 29]. This approach introduces bias into the
method because the same sample-set is used both for estimating the gradient and the
baseline. Another possibility is to split the data into two parts: One is used for estimating
the optimal constant baseline and the other is used for estimating the gradient. However,
we found that this splitting approach does not work well in our preliminary experiments.
The MATLAB implementation of IW-PGPEOB is available from: http://sugiyama-www.
cs.titech.ac.jp/~tingting/software.html.
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4.1 Illustrative Example

First, we illustrate the behavior of PGPE methods using a toy dataset.

4.1.1 Setup

The dynamics of the environment is defined as

st+1 = st + at + ε,

where st ∈ R, at ∈ R, and ε ∼ N (0, 0.52) is stochastic noise. The initial state s1 is ran-
domly chosen from the standard normal distribution. The linear deterministic controller
is represented by at = θst for θ ∈ R. The immediate reward function is given by

r(st, at) = exp
(
−s2t/2− a2t/2

)
+ 1,

which is bounded in (1, 2]. In the toy dataset experiments, we always set the discount
factor at γ = 0.9, and we always use the adaptive learning rate ε = 0.1/∥∇ρĴ (ρ)∥ [11].

Here, we compare the following PGPE methods:

• PGPE: Plain PGPE without data reuse [20].

• PGPEOB: Plain PGPE with the optimal constant baseline without data reuse [32].

• NIW-PGPE: Data-reuse PGPE without importance weights.

• NIW-PGPEOB: Data-reuse PGPEOB without importance weights.

• IW-PGPE: Importance-weighted PGPE.

• IW-PGPEOB: Importance-weighted PGPE with the optimal baseline.

Suppose that a small amount of samples consisting of N trajectories with length T is
available at each iteration. More specifically, given the hyper-parameter ρL = (ηL, τL) at
the Lth iteration, we first choose the policy parameter θLn from p(θ|ρL), and then run the
agent to generate trajectory hL

n according to p(h|θLn ). Initially, the agent starts from a ran-
domly selected state s1 following the initial state probability density p(s1) and chooses an
action based on the policy p(at|st, θLn ). Then the agent makes a transition following the dy-
namics of the environment p(st+1|st, at) and receives a reward rt = r(st, at, st+1). The tran-
sition is repeated T times to get a trajectory, which is denoted as hL

n = {st, at, rt, st+1}Tt=1.
We repeat the procedure N times, and, the samples gathered at the Lth iteration is
obtained, which is expressed as DL = {(θLn , hL

n)}Nn=1.
In the data-reuse methods, we estimate gradients at each iteration based on the current

data and all previously collected data D1:L = {Dl}Ll=1, by the estimated gradients to
update the policy hyper-parameters (i.e., mean η and standard deviation τ). In the plain
PGPE method and the plain PGPEOB method, we only use the on-policy data DL to
estimate the gradients at each iteration, by the estimated gradients to update the policy
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hyper-parameters. If the deviation parameter τ takes a value smaller than 0.05 during
the parameter-update process, we set it at 0.05.

Below, we experimentally evaluate the variance, bias, and mean squared error of the
estimated gradients, trajectories of learned hyper-parameters, and obtained returns.

4.1.2 Estimated Gradients

We investigate how data reuse influences estimated gradients over iterations. Below, we
focus on gradients with respect to the mean parameter η.

We randomly choose initial mean parameter η from the standard normal distribution,
and fix the initial deviation parameter at τ = 1. We collect N = 10 trajectories with
the trajectory length T = 10 at each iteration, and update hyper-parameters over 20
iterations. Here, the variance and squared bias of estimated gradients at each iteration
(e.g., at the Lth iteration, L = 1, . . . , 20) are investigated for M = 10000 trials:

Var :=
1

M

M∑
m=1

∥∥∥∥∥∇ηLĴm(ρL)−
1

M

M∑
m′=1

∇ηLĴm′
(ρL)

∥∥∥∥∥
2

,

Bias2 :=

∥∥∥∥∥ 1

M

M∑
m=1

∇ηLĴm(ρL)−∇ηLJ (ρL)

∥∥∥∥∥
2

,

where ∇ηLĴm(ρL) is an estimated gradient in the m-th trial. More specifically, we es-
timate the gradients M times with different random seeds at the Lth iteration as fol-
lows: We generate samples D1:L

m = {Dl
m}Ll=1 following the corresponding distributions

{Dl
m

i.i.d∼ p(h, θ|ρl)}Ll=1 in each trial (m = 1, . . . ,M), and we estimate the gradient

∇ηLĴm(ρL) with the generated samples D1:L
m . The variance and squared bias at the

Lth iteration are calculated based on the estimated gradients from M trials. In this ex-
periment, the true gradient ∇ηLJ (ρL) at the Lth iteration is approximated by the plain
PGPE method using Eq.(3) with N = 10000 on-policy samples. Note that the sum of the
variance and squared bias agrees with the mean squared error:

Var+Bias2 =
1

M

M∑
m=1

∥∇ηLĴm(ρL)−∇ηLJ (ρL)∥2. (5)

We update the hyper-parameters ρL based on the estimated true gradient ∇ηLJ (ρL),
and obtain ρL+1. Then, we investigate the variance and bias at the next iteration, i.e.,
the (L+ 1)th iteration, following the above procedures. Figure 1 shows the variance and
squared bias over 20 iterations.

From Figure 1(a), we can see that IW-PGPEOB provides gradient estimates with the
lowest variance among the compared methods. IW-PGPE has a larger variance than
NIW-PGPE, which well agrees with our theoretical analysis: According to Theorem 1,
upper bounds of the variance are proportional to the importance weight, which is always
1 in NIW-PGPE, but is very large in IW-PGPE if the target distribution is significantly



Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration 12

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

V
ar

ia
nc

e 
in

 lo
g−

sc
al

e

Iteration

 

 

IW−PGPE
IW−PGPE

OB

 

 

NIW−PGPE
NIW−PGPE

OB

 

 

PGPE
PGPE

OB

(a) Variance

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

10

B
ia

s2  in
 lo

g−
sc

al
e

Iteration

 

 

IW−PGPE
IW−PGPE

OB

 

 

NIW−PGPE
NIW−PGPE

OB

 

 

PGPE
PGPE

OB

(b) Bias2

Figure 1: Variance and Bias2 of gradient estimates with respect to the mean parameter
η through parameters update iterations.

different from the sampling distribution. In order to see whether the upper bound of
importance weights is really large, we measure the maximum value of importance weights
over iterations, which is shown in Figure 2. Figure 2(a) shows that the maximum value
of importance weights tends to be larger over iterations, which further illustrates how
importance weights influence the variance of gradient estimates in IW-PGPE.

We can also see that the gap in the variance between IW-PGPE and IW-PGPEOB

tends to be larger over iterations, which is also consistent with our theoretical analysis:
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Figure 2: Average maximum values of importance weights over 20 runs through parameter
update iterations.

According to Theorem 3, the larger the importance weight is, the more the optimal
constant baseline contributes to reducing the variance. The importance weight may get
larger at later iterations, because distributions in the first and the last iterations may
be significantly different (Figure 2 exactly illustrates this phenomenon). Thus, variance
reduction from IW-PGPE to IW-PGPEOB by the optimal constant baseline tends to be
more significant in later iterations. Gradient estimates in both NIW-PGPEOB and IW-
PGPEOB are with smaller variance than the plain PGPEOB method, because the more
data we use, the smaller variance of gradient estimates we can obtain as expected from
the theory. IW-PGPEOB provides smaller variance than NIW-PGPEOB, which is our
expected result: According to Theorem 3, if the importance weights are larger, using the
optimal constant baseline can reduce variance more, while the importance weights are
always 1 in NIW-PGPEOB (see Figure 2(b)). The plain PGPEOB has smaller variance
than the plain PGPE, which well agrees with the results reported in [32].

Figure 1(b) shows that introduction of the optimal baseline does not increase the bias.
NIW-PGPE and NIW-PGPEOB have very large bias, because naively reusing previous
data leads to an inconsistent and biased gradient estimator. The bias of gradient estimates
in IW-PGPE is fairly small, because IW-PGPE is not only consistent, but also unbiased.
The plain PGPE and plain PGPEOB are also with small bias, as expected.

Because our proposed IW-PGPEOB has small bias and the smallest variance among
the compared methods, it also gives the smallest mean squared error (see Eq.(5)).

4.1.3 Hyper-Parameter Trajectories

Next, we illustrate how learned hyper-parameters change over iterations. Here we compare
the behavior of the following three methods: NIW-PGPE, IW-PGPE and our proposed
method IW-PGPEOB. We fix the initial deviation parameter at τ = 1, and test the three
different initial mean parameters: η = −1.6, −0.8, and −0.1. Figure 3 depicts the contour
of the expected return, where the maximum of the return surface is located at the middle
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Figure 3: Trajectories of policy hyper-parameters over iterations.
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bottom.
First, let us investigate how the hyper-parameters change over 20 iterations in a large-

sample case with N = 10. From Figure 3(a), we can see that NIW-PGPE can not
properly update the solutions, which means that the inconsistency can not be overcome
by increasing the number of samples. On the other hand, Figure 3(c) shows that IW-
PGPE can lead the solutions to an area with large returns sometimes, but can not always
reach an area with large returns after 20 iterations. This indicates that the consistency of
importance weighting tends to be helpful when the number of samples is large, but it can
not converge rapidly because of the large variance. Figure 3(e) shows that IW-PGPEOB

gives the reliable update directions and the three paths converge rapidly to the vicinity
of the maximum point without detours. This shows that the optimal constant baseline
highly contributes to improving the convergence property of IW-PGPE.

Next, we investigate the performance over 200 iterations with only N = 1. Figure 3(b)
shows that NIW-PGPE can not properly update the solutions to the maximum point
because of the inconsistency, and Figure 3(d) shows that the IW-PGPE solutions can
not always reach an area with large returns (middle bottom) after 200 iterations, which is
because the variance in IW-PGPE is crucial in this extreme scenario. However, Figure 3(e)
shows that the proposed IW-PGPEOB can still find fairly reliable update directions with
only N = 1.

Next, we investigate the directions of estimated gradients more systematically. We fix
the starting point at η = −0.8 and τ = 0.5. The true gradient direction is calculated
by the plain PGPE method with 10000 on-policy samples. In this experiment, we first
collect N ′ = 10 off-policy samples, which are drawn from N (−1.6, 1). We then reuse these
off-policy samples to estimate the gradients in the data-reuse methods. We calculate the
gradients 20 times with different random seeds, and investigate the angle between the
true gradient and the estimated gradients. The results are summarized in Figure 4.
In Figure 4(a), the red line denotes the true gradient and blue lines are the estimated
gradients by the NIW-PGPE method. The histograms of angles between the true gradient
and the estimated gradients are plotted in Figure 4(b). The graph shows that the angles
are concentrated in [−150,−90], which further explains the inconsistent property of the
NIW-PGPE method. Observing the angle distribution for IW-PGPE in Figure 4(d), we
can see that the angles are widely distributed in [−180, 180], which clearly illustrates the
large variance problem of IW-PGPE. On the other hand, the angles for the IW-PGPEOB

method are concentrated in [−60, 60], which highlights the small variance and consistent
properties of IW-PGPEOB.

4.1.4 Performance of Learned Policies

Finally, we evaluate average expected returns obtained by each method over 20 runs. The
expected return at each trial is approximated using 100 newly-drawn test episodic data
(which are not used for policy learning). The initial mean parameter η is chosen randomly
from the standard normal distribution, and the deviation parameter is fixed at τ = 1.

Figure 5 shows that IW-PGPEOB improves the performance over iterations and con-
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Figure 4: Directions of estimated gradients.
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Figure 5: Average expected returns through policy update iterations over 20 runs for toy
data. Error bars denote standard errors.

verges very fast. The performance of NIW-PGPE is not largely improved over iterations,
which is caused by biased gradient estimates (see Figure 3(a) again). IW-PGPE works
better than NIW-PGPE, but the performance is saturated after 9 iterations. IW-PGPEOB

does not outperform NIW-PGPEOB that much at the first several iterations, because the
difference between the target distribution and a sampling distribution is not that large
at the beginning. However, the upper bound of importance weights tends to become
larger over iterations (see Figure 2(b) again), which makes IW-PGPEOB more reliable
than NIW-PGPEOB in the latter iterations. The plain PGPEOB method works fairly well
with N = 10 on-policy samples, but it is still not as good as IW-PGPEOB.

4.2 Mountain Car

Next, we evaluate our proposed method in the mountain car task, which is illustrated in
Figure 6. The task consists of a car and two hills whose landscape is described as sin(3x).
The top of the right hill is the goal to which we want to guide the car.

We compare the following 7 methods:

• TIW-eNAC: Truncated importance-weight episodic natural actor-critic, which is
an episodic version of the sample-reuse NAC method [28, 17]. Following the same
line as [28], we truncate the importance weight as w = min{w, 2}.

• IW-REINFORCEOB: Importance-weighted REINFORCE with the optimal base-
line, which is basically a combination of the off-policy implementation of the episodic
REINFORCE method [12] and the optimal baseline [16], although we could not ex-
actly find this method in literature.
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Figure 6: Mountain car.

• R3: Reward-weighted regression with sample reuse [9].

• PGPEOB: Plain PGPEOB without data reuse.

• NIW-PGPEOB: Data-reuse PGPEOB without importance weighting.

• IW-PGPE: Importance-weighted PGPE.

• IW-PGPEOB: Importance-weighted PGPE with the optimal baseline.

The state space S is two-dimensional and continuous, which consists of the horizontal
position x[m] ∈ [−1.2, 0.5] and the velocity ẋ[m/s] ∈ [−1.5, 1.5], i.e., s = (x, ẋ)⊤. This is
non-linearly transformed to a feature space via a basis function vector ϕ(s). We use 12
Gaussian kernels with mean c and standard deviation κ = 1 as the basis functions,

ϕ(s) = exp

(
−∥s− c∥2

2κ2

)
,

where the kernel centers c are distributed over the following grid points:

{−1.2,−0.35, 0.5} × {−1.5,−0.5, 0.5, 1.5}.

The action space A is one-dimensional and continuous, which corresponds to the force
applied to the car (note that the force of the car is not strong enough to climb up the slope
to directly reach the goal). We use the Gaussian policy model for IW-REINFORCEOB,
TIW-eNAC, and R3:

p(a|s,θ) = 1

σ
√
2π

exp

(
−(a− µ⊤ϕ (s))2

2σ2

)
, (6)

where µ is the mean policy parameter and σ is the deviation policy parameter. We
employ a linear deterministic policy model (1) for the PGPE methods, which corresponds
to Eq.(6) with σ → 0.
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Figure 7: Average expected returns over 10 runs as functions of the number of iterations
for the mountain-car task. Error bars are standard errors.

The dynamics of the car (i.e., the update rules of the position and the velocity) are
given by

xt+1 = xt + ẋt+1∆t,

ẋt+1 = ẋt + (−9.8w cos(3xt) +
at
w
− kẋt)∆t,

where at is the action taken at time t. We set the problem parameters as follows: The
mass of the car w = 0.2[kg], the friction coefficient k = 0.3, and the simulation time step
∆t = 0.1[s]. The reward function is defined as

r(st, at, st+1) =

{
1 if xt+1 ≥ 0.45,

−1 otherwise.

The initial mean parameter η is chosen randomly from the standard normal distribu-
tion, and the initial deviation parameter is set at τ = 1. The initial state of the car is
set at the bottom of the mountain with the velocity ẋ = 0. The agent collects N = 10
episodic samples with trajectory length T = 40 at each iteration. In the data reuse meth-
ods, we reuses all previous data at later iterations. In the plain PGPEOB method, we
just use N = 10 on-policy samples at each iteration to estimate policy gradients. The
discount factor is set at γ = 0.95. The learning rate is ε = 1/∥∇ρĴ (ρ)∥.

We investigate average expected returns over 10 trials as functions of policy-update
iterations. The expected return at each trial is computed over 100 newly-drawn test
episodic samples (which are not used for policy learning). The experimental results are
plotted in Figure 7. This shows that IW-PGPEOB improves the performance very fast
over policy-update iterations, and it achieves superior performance improvement than
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(a) CB-i (b) Simulated upper-body model

Figure 8: Humanoid robot CB-i and its upper-body model.

all other methods. IW-PGPE can also improve the performance over iterations well,
implying that the consistency of the IW estimator is useful in this task. However, it is
outperformed by the proposed IW-PGPEOB, perhaps because the estimation variance in
IW-PGPE is large. NIW-PGPEOB performs fairly well, which maybe because the bias
of policy gradient estimators is not that crucial in this experiment. The plain PGPEOB

can improve the performance throughout the iterations, which indicates that N = 10
on-policy samples is enough for this mountain-car task. Other data-reuse methods can
improve the performance over iterations, but slowly, and they are outperformed by the
compared PGPE methods. IW-REINFORCEOB outperforms TIW-eNAC, which maybe
because the optimal constant baseline contributes significantly in IW-REINFORCEOB and
truncating the importance weights can lead to a larger bias over iterations in TIW-eNAC.
R3 can not improve the performance over iterations. Overall, thanks to the low variance,
IW-PGPEOB achieves smooth and fast policy improvement throughout iterations, and its
performance is the best among the compared methods.

4.3 Upper-body Humanoid Control

Finally, we evaluate the performance of our proposed method on a highly nonlinear dy-
namic control problem of the simulated upper-body model of the humanoid robot CB-i
[4] (see Figure 8(a)). We use its simulator in our experiments (see Figure 8(b)). The goal
is to lead the end-effector of the right arm (right hand) to a target object.

4.3.1 Setup

We compare the performance of the following 4 methods:

• IW-REINFORCEOB: Importance-weighted REINFORCE with the optimal base-
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line.

• NIW-PGPEOB: Data-reuse PGPEOB without importance weighting.

• PGPEOB: Plain PGPEOB without data reuse.

• IW-PGPEOB: Importance-weighted PGPE with the optimal baseline.

The simulation is based on the upper body of the CB-i humanoid robot illustrated in
Figure 8(b), which has 9 degrees of freedom corresponding to main joints of the upper
body: The shoulder pitch, shoulder roll, elbow pitch of the right arm, shoulder pitch,
shoulder roll, elbow pitch of the left arm, waist yaw, torso roll, and torso pitch.

At each time step, the controller receives states from the system and sends out actions.
The state space is 18-dimensional, which corresponds to the current angle and the current
angular velocity of each joint. The action space is 9-dimensional, which corresponds to
the target angle of each joint. Both states and actions are continuous.

The initial positions of the robot and an object are fixed, where the initial position of
the robot is set at the state of standing up straight with the arms down, and the position
of the target object depends on the task. Note that the position of the target object is
only used in the designing of the reward function. The reward function is given by

rt = k1 exp(−10dt)− k2 min{ct, 10000},

where k1 = 1, k2 = 0.0005, dt is the distance between the robot’s right hand and the target
object at the time step t, and ct is the sum of control costs for each joint. Note that the
results may change with different k1 and k2 for the reward function. In order to keep
the value of exp(−10dt) and ct in the reward function to the same order of magnitude,
we need to choose k1 and k2 reasonably. We use the same policy model as the mountain
car experiment, i.e., the linear deterministic policy for PGPE and the Gaussian policy for
IW-REINFORCEOB with the basis function ϕ(s) = s.

The initial mean parameter η is randomly chosen from the standard normal distribu-
tion, and the initial standard deviation parameter τ is set to 1. To evaluate the usefulness
of the data reuse methods with a small number of samples, the agent collects only N = 3
on-policy samples with trajectory length T = 100 at each iteration. In the data reuse
methods, we reuse all previous data at later iterations. In the plain PGPEOB, we just use
the on-policy samples to estimate the gradients. The discount factor is set at γ = 0.9,
and the learning rate is set at ε = 0.1/∥∇ρĴ (ρ)∥.

4.3.2 Reaching Task with 2 Degrees of Freedom

First, we investigate the performance on the reaching task with only 2 degrees of freedom.
We fix the body of the robot and use only the right shoulder pitch and right elbow pitch.
Figure 9 depicts the averaged expected return over 10 trials as a function of the number
of iterations. The expected return at each trial is computed from 50 newly-drawn test
episodic data (which are not used for policy learning). The graph shows that IW-PGPEOB
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Figure 9: Average expected returns over 10 runs as functions of the number of iterations
for the reaching task with 2 degrees of freedom (right shoulder pitch and right elbow
pitch).

nicely improves the performance over iterations only with a small number of on-policy
samples. The plain PGPEOB can also improve the performance over iterations, but slowly.
NIW-PGPEOB is not as good as IW-PGPEOB especially at the later iterations, which is
because of the inconsistent property of the NIW estimator. The initial mean parameter
is randomly chosen in this experiment, which makes IW-REINFORCEOB not able to
improve the performance significantly over iterations. This result is consistent with the
observation that the REINFORCE method is sensitive to the initial parameter values [32].

The distance from the right hand to the object and the control costs along the tra-
jectory are also investigated. We test the initial policy, the policy obtained at the 20th
iteration by IW-PGPEOB, and the policy obtained at the 50th iteration by IW-PGPEOB.
The results are shown in Figure 10. From Figure 10(a), it is clear to see that the policy
obtained at the 50th iteration decreases the distance fastest compared with the initial
policy and the policy obtained at the 20th iteration. This means the robot can reach
the object fast by using the learned policy. On the other hand, Figure 10(b) shows that
the control cost required for executing the policy obtained at the 50th iteration decreases
steadily until the reaching task is completed. This is because the robot mainly adjusts
the shoulder pitch in the beginning, which consumes a larger amount of energy than the
energy required for controlling the elbow pitch. Then, once the right hand gets closer to
the target object, the robot starts to adjust the elbow pitch reach the target object. The
policy obtained at the 20th iteration actually consumes less control costs, but it cannot
move the arm to the target object.

Figure 11 shows a typical solution of the reaching task with 2 degrees of freedom by
IW-PGPEOB (with the policy obtained at the 50th iteration). The images show that the
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Figure 10: Distance and control costs of arm reaching with 2 degrees of freedom using
the policy learned by IW-PGPEOB.
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Figure 11: Typical example of arm reaching with 2 degrees of freedom using the policy
obtained by IW-PGPEOB at the 50th iteration.
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policy learned by our proposed method successfully leads the right hand to the target
object within only 10 time steps.

4.3.3 Reaching Task with 4 Degrees of Freedom

Next, we evaluate the performance on the reaching task with 4 degrees of freedom. We
use the right shoulder pitch, right elbow pitch, right shoulder roll, and torso yaw joint.
By using the torso yaw joint, the robot can reach a distant object which can not be
achieved by only using the right arm. The results are shown in Figure 12. The graph
shows that IW-PGPEOB achieves fast policy improvement throughout iterations, and the
performance is the best among the compared methods.

Figure 13 depicts a representative example of object reaching with 4 degrees of freedom
by IW-PGPEOB. Note that the object is distant from the robot and it can not be reached
by only using the right arm. The robot first adjusts the torso yaw joint, and then uses the
right arm to reach the object. The images show that the policy learned by our proposed
method successfully leads the right hand to the distant object.

4.3.4 Reaching Task with All Degrees of Freedom

At last, we evaluate the performance on the reaching task with all degrees of freedom. The
position of the target object is the same as the task in the 4-degrees-of-freedom setting.

In this experiment, we use all degrees of freedom to reach the object. This increases
the dimensionality of the state space, which actually may grow the values of importance
weights exponentially [22, 5]. In order to mitigate the large values of importance weights,
we decided not to reuse all previously collected samples, but only samples collected in the
last 5 iterations. This allows us to keep the difference between the sampling distribution
and the target distribution reasonably small, and thus the values of importance weights
can be suppressed to some extent. Furthermore, following [28], we truncate the importance
weights as w = min{w, 2}. This version of IW-PGPEOB is denoted as Truncated IW-
PGPEOB below.

The results are shown in Figure 14. The graph shows that the performance of Trun-
cated IW-PGPEOB is the best, which implies that the truncation of importance weights
is helpful when applying our proposed method to high-dimensional problems.

Through all the arm-reaching experiments, we can see that the returns tend to be lower
as the dimension is increased, even though we run the higher-dimensional experiment for
a larger number of iterations. In the task with all degrees of freedom (Figure 14), the
largest number of iteration is 400. If we continue the experiment for more iterations, the
returns may sligtly increase, but are still less than the returns in the low-dimensional
experiments. This is because the more joints the robot uses, the larger energy will be
consumed, and thus the returns tend to be lower in high-dimensional cases.

Overall, the proposed IW-PGPEOB is shown to be a promising method, although in
the last experiment it is obvious that just like other importance weight-based methods,
the performance degrades in high-dimensional problems without the use of additional
correction techniques such as weight truncation.
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Figure 12: Average expected returns over 10 runs as functions of the number of iterations
for the reaching task with 4 degrees of freedom (right shoulder pitch, right elbow pitch,
right shoulder roll, and torso yaw joint).
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Figure 13: Typical example of arm reaching with 4 degrees of freedom using the policy
obtained by IW-PGPEOB at the 50th iteration.
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Figure 14: Average expected returns over 10 runs as functions of the number of iterations
for the reaching task with all degrees of freedom.

5 Discussions and Conclusions

In many real-world reinforcement learning problems, reducing the number of training
samples is desirable because the sampling cost is often much higher than the computa-
tional cost. In this paper, we proposed a new policy gradient method equipped with
efficient sample reuse, which systematically combines a reliable policy gradient method,
PGPE, with importance sampling and the optimal constant baseline. We showed that
the introduction of the optimal constant baseline can mitigate the large-variance problem
of importance weighting under some conditions. Through experiments with an artificial
domain, the usefulness of the proposed method was demonstrated. More over, through
robotic experiments, we found that the truncation technique was helpful when applying
the proposed method to high-dimensional problems.

The low variance of PGPE was brought by considering a deterministic policy and
introducing the stochasticity by drawing a policy parameter from a prior distribution.
This per-trajectory formulation was indeed shown to be useful in reducing the variance
of policy gradient estimates. However, PGPE has limitations, too. For example, the
use of a finite horizon is essential in PGPE, because the gradient estimates need full
trajectories. In particular, it is not straightforward to handle the infinite-horizon case.
Another issue is an extension to a partially-observable case. It is known that for every
finite Markov decision problem (MDP) there exists a deterministic policy that is optimal
[19]. However, in a partially-observable MDP (POMDP), the best stationary stochastic
policy can be arbitrarily better than the best stationary deterministic policy [23]. Thus,
the deterministic policy in PGPE can be a limitation when extending it to the POMDP
framework. It is trivial to extend the current formulation to consider stochastic policies.
However, this may lead to an increase of variance and thus slow down convergence. These
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issues need to be further investigated in the future work.
The baseline and importance weighting techniques are two independent techniques.

More specifically, importance weighting is used in the off-policy scenario to efficiently reuse
previously collected samples, by using importance weighting the consistency between the
data sampling distribution and the target distribution is kept. On the other hand, the
optimal constant baseline is used to reduce the variance of gradient estimates.

The use of a baseline technique has been first proposed in terms of reinforcement
comparison in [24], which intuitively means the comparison between the expected return R
and the baseline b: IfR > b we adjust learned parameters ρ so as to increase the probability
of θ, and, if R < b, we do the opposite. Based on this idea, Williams [30] demonstrated
that a baseline technique did not introduce bias, which is because the expectation of

the coefficient of b is zero, i.e., E
[
∇ρp(θ|ρ)
p(θ|ρ)

]
= 0. The effect of the baseline on variance is

considered in [6]. The intuition behind the baseline is that subtracting a baseline from the
return reduces the magnitude, and thus reduces the variance. Technically, subtracting a
baseline can be viewed as a control variate technique [7], which is an effective approach to
reducing variance of Monte Carlo estimates of integrals. The experimental results in the
paper suggest that the removal of the baseline is possibly the primary factor in improving
performance compared with the importance weighting techniques.

In episodic policy gradient methods, the optimal baseline which does not bias policy
gradient estimates is given by a single scalar for all trajectories [16]. However, in the
non-episodic policy gradient methods, the optimal baseline can depend on the current
state [8, 13, 17]. Thus, if a good parameterization for the baseline is known, e.g., in
a generalized linear form b(st) = wTϕ(st), this can significantly improve the gradient
estimation process. However, the selection of the basis function can be difficult and often
impractical in robotics [16]. On the other hand, it is interesting to see that if the value
function is used as the baseline function in non-episodic policy gradient methods, such as
in [17, 26], the term Q(s, a)− V (s) will lead to the advantage function [2], where Q(s, a)
is action value function and V (s) is the value function.
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Appendix

In the appendix, we give proofs of the theorems.
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A Proof of Theorem 1

Proof. Due to the fact that the sampled data {(θ′
n, h

′
n)}N

′
n=1 are independent and identi-

cally distributed, we have

Var
[
∇ηĴIW(ρ)

]
=

1

N ′ Var [w(θ)∇η log p(θ|ρ)R(h)] , (7)

where h and θ are random variables and follow the distributions p(h,θ|ρ′).
Note that we consider the trace of the covariance matrix of gradient vectors, that is,

the sum of the variance of the components of the vector. Then by upper-bounding the
variance with the second moment, we have the following upper bound:

Var [w(θ)R(h)∇η log p(θ|ρ)]

≤
ℓ∑

i=1

Ep(h,θ|ρ′)

[
(w(θ)R(h)∇ηi log p(θ|ρ))2

]
=

ℓ∑
i=1

∫∫
p(h|θ)p(θ|ρ′)

(
p(θ|ρ)
p(θ|ρ′)

)2

(R(h))2(∇ηi log p(θ|ρ))2dhdθ

=
ℓ∑

i=1

∫∫
p(h|θ)p(θ|ρ)w(θ)(R(h))2(∇ηi log p(θ|ρ))2dhdθ

≤
ℓ∑

i=1

(
β(1− γT )

1− γ

)2

wmax

∫∫
p(h|θ)p(θ|ρ)(∇ηi log p(θ|ρ))2dhdθ

=
ℓ∑

i=1

(
β(1− γT )

1− γ

)2

wmaxEp(θ|ρ)
[
(∇ηi log p(θ|ρ))2

]
,

where Ep(θ|ρ)[·] denotes the expectation of the function of random variable θ with respect
to θ ∼ p(θ|ρ). Subsequently, given the proof of the first part of Theorem 1 in [32], we

get the upper bound of Var
[
∇ηĴIW(ρ)

]
.

Similarly, given the same technique and the proof of the later part of Theorem 1 in

[32], we could get the conclusion of the upper bound of Var
[
∇τ ĴIW(ρ)

]
.

B Proof of Theorem 2

Proof. First, let us derive some elementary expressions. Let A, C be random variables
taking values in the ℓ-dimensional space and let b be a scalar. Then,

Var[A− bC] = Var[A] + b2 Var[C]− bCov[A,C]− bCov[C,A].
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We still consider the trace of the covariance matrix of gradient vectors for multi-
dimensional space. Assume that E[C] = 0. Then, we could have

Var[A− bC] =Var[A] + b2 Var[C]− 2bCov[A,C]

=Var[A] + E[C⊤C]

{
b2 − 2b

E[A⊤C]

E[C⊤C]

}
(8)

=Var[A] + E[C⊤C]

{(
b− E[A⊤C]

E[C⊤C]

)2

−
(
E[A⊤C]

E[C⊤C]

)2
}
.

Simple calculus shows that the foregoing is minimized when

b =
E[A⊤C]

E[C⊤C]
.

The optimal baseline for IW-PGPE follows immediately by plugging in

A = Rw∇ρ log p(θ|ρ)

and
C = w∇ρ log p(θ|ρ)

for A and C. Note that Eq.(8) uses the conclusion of E[w∇ρ log p(θ|ρ)] = 0, which can
be found in the proof of Theorem 4 in [32].

As the sampled data are independent and identically distributed, we have

Var[∇ρĴ b
IW(ρ)] =

1

N ′ Var[A− bC].

Then, according to Eq.(8) and the definition of b∗, we could have

Var[∇ρĴ b
IW(ρ)]−Var[∇ρĴ b∗

IW(ρ)]

=
1

N ′

(
b2E[C⊤C]− 2bE[A⊤C] +

(E[A⊤C])2

E[C⊤C]

)
=

1

N ′ (b− b∗)2 E[C⊤C],

where the expectation is over random variables h and θ such that (h,θ) ∼ p(h,θ|ρ′).
This completes the proof of Theorem 2.

C Proof of Theorem 3

Proof. We define ∇η and ∇ηi
as

∇η =∇η log p(θ|ρ),
∇ηi

=∇ηi
log p(θ|ρ).
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We still denote the subscripts ρ′ as p(h,θ|ρ′). According to Theorem 2, by setting b = 0,
it is easy to know that

Var
[
∇ηĴIW(ρ)

]
−Var

[
∇ηĴ b∗

IW(ρ)
]
=

(
Eρ′ [R(h)w2(θ)∇⊤

η∇η]
)2

N ′Eρ′ [w2(θ)∇⊤
η∇η]

.

We already know that

Eρ′ [R(h)w2(θ)∇⊤
η∇η] ≤

β(1− γT )

(1− γ)
Eρ′

[
w2(θ)∇⊤

η∇η

]
.

Hence,

Var
[
∇ηĴIW(ρ)

]
−Var

[
∇ηĴ b∗

IW(ρ)
]

≤ β2(1− γT )2

N ′(1− γ)2
Eρ′

[
w2(θ)∇⊤

η∇η

]
≤ β2(1− γT )2

N ′(1− γ)2
wmax

ℓ∑
i=1

Ep(θ|ρ)
[
(∇ηi)

2
]

(9)

=
β2(1− γT )2B

N ′(1− γ)2
wmax, (10)

where Eq.(9) is based on the same technique used in Section A, and Eq.(10) is given by
results of the proof of Theorem 1 in [32].

Similarly, we can have the lower bound as

Var
[
∇ηĴIW(ρ)

]
−Var

[
∇ηĴ b∗

IW(ρ)
]
≥ α2(1− γT )2B

N ′(1− γ)2
wmin.

By using the same techniques, we get the bounds of the variance reduction of gradient
estimation with respect to the deviation parameter τ ,

Var
[
∇τ ĴIW(ρ)

]
−Var

[
∇τ Ĵ b∗

IW(ρ)
]
≤ 2β2(1− γT )2B

N ′(1− γ)2
wmax,

Var
[
∇τ ĴIW(ρ)

]
−Var

[
∇τ Ĵ b∗

IW(ρ)
]
≥ 2α2(1− γT )2B

N ′(1− γ)2
wmin,

which completes the proof.
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