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Abstract

The semi-supervised support vector machine
(S3VM) is a maximum-margin classification
algorithm based on both labeled and unla-
beled data. Training S3VM involves either
a combinatorial or non-convex optimization
problem and thus finding the global optimal
solution is intractable in practice. It has been
demonstrated that a key to successfully find
a good (local) solution of S3VM is to gradu-
ally increase the effect of unlabeled data, à la
annealing. However, existing algorithms suf-
fer from the trade-off between the resolution
of annealing steps and the computation cost.
In this paper, we go beyond this trade-off by
proposing a novel training algorithm that effi-
ciently performs annealing with an infinites-
imal resolution. Through experiments, we
demonstrate that the proposed infinitesimal
annealing algorithm tends to produce better
solutions with less computation time than ex-
isting approaches.

1. Introduction

Semi-supervised learning, the paradigm of learning
from labeled and unlabeled data, has been extensively
studied in the last decade (Chapelle et al., 2006). The
semi-supervised support vector machine (S3VM) or
transductive SVM (Vapnik & Sterin, 1977; Joachims,
1999) is one of the popular semi-supervised classifica-
tion algorithms that inherits the large-margin concept

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

of supervised SVMs (Boser et al., 1992; Vapnik, 1996;
Cortes & Vapnik, 1995). The basic idea of S3VM is to
improve the supervised SVM solution (obtained only
from labeled data) with the help of unlabeled data
(Joachims, 1999). A key challenge for the success of
S3VM is to optimally control how strongly the effect
of unlabeled data is incorporated into a classifier.

From an algorithmic point of view, S3VM tries to
maximize the margin over both labeled and unlabeled
data, and this is cast as either a combinatorial op-
timization problem of assigning labels to unlabeled
data (Joachims, 1999) or a non-convex optimization
problem of maximizing the margin for unlabeled data
(Collobert et al., 2006). As described in Chapelle
et al. (2007), it is practically difficult to find the global
optimal solution for large problems. For that rea-
son, a great deal of effort has been made to obtain
good sub-optimal solutions efficiently (Joachims, 1999;
Sindhwani et al., 2006; Chapelle, 2007).

It was pointed out in Chapelle et al. (2008) that most
of the successful S3VM training algorithms proposed
so far can actually be viewed as annealing (Korte &
Vygen, 2000; Hromkovic, 2001; Kirkpatrick & Gelatt,
1983; Colorni et al., 1991). That is, starting from the
original supervised SVM formulation, a sequence of
sub-problems where the effect of unlabeled data is in-
creasingly strengthned, is solved to obtain a final so-
lution. However, in this annealing procedure, there
is a trade-off between the number of annealing steps
and the computation cost. Thus, enhancement of the
annealing resolution is possible only at the expense
of increasing the computation cost, which is a critical
limitation in the current implementations of S3VM.

The goal of this paper is to go beyond this trade-off:
We propose a new training algorithm for S3VM that ef-
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ficiently performs annealing with an infinitesimal res-
olution. Technically, our algorithm can be regarded as
a non-trivial extension of the parametric programming
(Allgower & George, 1993; Best, 1996; Ritter, 1984;
Efron & Tibshirani, 2004; Hastie et al., 2004; Takeuchi
et al., 2009; Karasuyama et al., 2012), and it gives a
path of local optimal solutions when the effect of un-
labeled data is continuously increased. Interestingly,
through the analysis of necessary and sufficient con-
ditions for the local optimality of S3VM, we find that
the local solution path followed by the infinitesimal
annealing steps is not continuous; a solution path ac-
tually contains a finite number of abrupt jumps. Our
algorithm can exactly identify such jumps and trace
the entire path of local optimal solutions. To the best
of our knowledge, this is technically a novel contribu-
tion to the parametric programming community.

Through experiments, we demonstrate that our in-
finitesimal annealing algorithm tends to produce bet-
ter solutions with less computation time than existing
approaches.

2. Semi-Supervised SVM (S3VM)

We review S3VM (Joachims, 1999) here. Suppose that
we are given labeled instances {(xi, yi)}i∈L and unla-
beled instances {xi}i∈U , where xi ∈ Rd is an input
vector and yi ∈ {−1, 1} is a class label. The decision
function

f(x) = b + w>φ(x),

is learned in S3VM, where φ is a feature map, w are
the parameters to learn, and > denotes the transpose.
In S3VM, the bias term b is usually fixed as b = 2r−1
in order to satisfy a class-balance constraint of unla-
beled instances, where r = 1

|L|
∑

i∈L max(0, yi). See
Chapelle & Zien (2005) for details.

The problem of S3VM training is interpreted as a com-
binatorial optimization problem (Joachims, 1999) or
a non-convex optimization problem (Collobert et al.,
2006). Below, we review both interpretations.

S3VM as Combinatorial Problem: The basic
idea is to learn the decision function and labels of
unlabeled instances simultaneously to maximize the
margin:

min
f,ŷ

J(f, ŷ) :=
1
2
‖w‖22 + C

∑
i∈L

[1− yif(xi)]+

+ C∗
∑
i∈U

[1− ŷif(xi)]+, (1)
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Figure 1. Loss functions for S3VM. Left: Convex hinge loss
for labeled instances. Right: Non-convex symmetric hinge
loss for unlabeled instances.

where ŷ ∈ {−1, 1}|U| is a vector of predicted labels
of unlabeled instances and [1 − z]+ is so-called the
hinge loss function (see the left panel of Figure 1).
C and C∗ are regularization parameters for labeled
and unlabeled instances, respectively. Because labeled
instances are more reliable than unlabeled ones, they
are chosen to satisfy C∗ ≤ C.

At the optimal solution of the minimization problem
(1), the predicted labels should satisfy

ŷif(xi) ≥ 0, i ∈ U (2)

because, if one of the predicted labels, ŷi, violates this
condition, the objective function J(f, ŷ) can be strictly
decreased by flipping it.

Introducing this condition, we can rewrite the S3VM
training criterion (1) as

min
ŷ

{
min

f
J(f, ŷ) s.t. (2)

}
. (3)

This formulation can be interpreted as a combinato-
rial optimization problem of finding the best predicted
label vector ŷ that minimizes J(f, ŷ) from all possible
2|U| candidates in {−1, 1}|U|.

S3VM as Non-Convex Problem: If a predicted
label ŷi, i ∈ U is chosen to satisfy (2), we can elimi-
nate ŷi by ŷif(xi) = |f(xi)|. Then the optimization
problem (1) can be rewritten as

min
f

1
2
‖w‖22 + C

∑
i∈L

[1− yif(xi)]+

+ C∗
∑
i∈U

[1− |f(xi)|]+. (4)

Because the loss for unlabeled instances, [1− |f(x)|]+,
is non-convex as plotted in the right panel of Figure 1,
(4) is a non-convex optimization problem.

3. Proposed Algorithm: S3VMpath

As explained in the previous section, S3VM has either
a combinatorial or a non-convex nature. Thus, the
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Figure 2. Illustration of S3VM local optimal solutions.
Each green line in the solution space represents f(xi) =
0, i ∈ U . If predicted labels ŷ is given, a convex polytope
pol(ŷ) is defined by a set of these green lines. (Left) The
conditionally optimal solution f∗

ŷ in pol(ŷ) is local optimal
because it is located in the strict interior of pol(ŷ). (Right)
On the other hand, f∗

ŷ is not local optimal because it is at
the boundary of pol(ŷ).

practical goal of existing S3VM studies has been to
develop an algorithm that can find a good local opti-
mal solution (Joachims, 1999; Sindhwani et al., 2006;
Chapelle, 2007).

As pointed out in Chapelle et al. (2008), these exist-
ing S3VM algorithms utilize the concept of annealing
either explicitly or implicitly to find a local optimal so-
lution: Starting from the supervised SVM (C∗ = 0), a
sequence of sub-problems with increasing C∗ is solved.
In this annealing procedure, there is a trade-off be-
tween the number of annealing steps and the compu-
tation cost. This means that the annealing resolution
can be enhanced only at the expense of increasing the
computation cost, which is a critical limitation in the
current implementations of S3VM.

Our goal is to go beyond this limitation by developing
an infinitesimal annealing algorithm for S3VM named
S3VMpath. The basic idea of S3VMpath is to use a
convex parametric programming technique (Allgower
& George, 1993; Gal, 1995; Best, 1996) for comput-
ing the entire solution path of S3VM for C∗ ∈ [0, C].
However, since S3VM is non-convex, our target is to
compute a path of local optimal solutions.

To this end, we need to characterize the properties of
S3VM local optimal solutions. Given that we have a
convex optimization problem defined in a convex poly-
tope for fixed predicted labels ŷ (the inner optimiza-
tion problem in (3)), we define the following notion:

Definition 1 (Conditionally optimal solution)
For a given ŷ ∈ {−1, 1}|U|, we refer to the optimal
solution of the convex problem

f∗
ŷ := arg min

f∈pol(ŷ)
J(f, ŷ) (5)

Figure 3. (Left) The conditionally optimal solution f∗
ŷ is at

a boundary of the convex polytope pol(ŷ), which indicates
that f∗

ŷ is not a local optimal solution (see Theorem 4). By
flipping some labels in ŷ, another convex polytope (blue
one) is defined, and f∗

ŷ is feasible also in this polytope.
(Right) According to Theorem 5, f∗

ŷ is not conditionally
optimal in the adjacent polytope pol(ŷ′), where ŷ′ is de-
fined by (10). The conditionally optimal solution f∗

ŷ′ would
be elsewhere in the blue polytope, and it is guaranteed to
be strictly better than f∗

ŷ .

as the conditionally optimal solution in pol(ŷ), where

pol(ŷ) := {f |ŷif(xi) ≥ 0, i ∈ U} (6)

is the convex polytope defined by the constraints in (2).

Roughly speaking, the solution space of S3VM consists
of many such convex polytopes. As we will show in
the next section, the S3VM solution space possesses
the following two important properties:

• If a conditionally optimal solution is in the strict
interior of the current convex polytope, it is an
S3VM local optimal solution (see Figure 2 and
Theorem 4).

• If a conditionally optimal solution is at a boundary
of the current convex polytope, it is not local opti-
mal, and a better solution can be always found in
its adjacent polytope (see Figure 3 and Theorem
5).

These two properties indicate that a path of S3VM lo-
cal optimal solutions is inevitably discontinuous and
contains a finite number of abrupt jumps. To cope
with the discontinuity, the proposed S3VMpath algo-
rithm consists of the continuous path (CP) step and
the discrete jump (DJ) step. More specifically, start-
ing from C∗ = 0, the S3VMpath algorithm iterates the
CP step (following the local optimal solution path in
a polytope) and the DJ step (once the path reaches
a boundary of the polytope, find another local opti-
mal solution in the adjacent polytope) until C∗ = C.
Figure 4 illustrates the behavior of the algorithm, in
which the red ones indicate the CP step, while the blue
ones indicate the DJ step.
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Figure 4. A Schematic illustration of the behavior of the
S3VMpath algorithm. (Left) S3VM solution space consists
of a number of convex polytopes, each characterized by
the predicted label ŷ. As long as the conditionally optimal
solution (see Definition 1) is in the strict interior of the
current polytope, we can use a conventional parametric
programming (a.k.a. regularization path following) to keep
track of a local optimal solution path (the CP step: Red
arrows and points). However, once the solution reaches
a boundary of the current convex polytope, the algorithm
jumps to the conditionally optimal solution in the adjacent
polytope (the DJ step: Blue arrows and points). (Right)
Illustration of how C∗ is increased in S3VMpath. We con-
tinuously increase C∗ from 0 to C while we are comput-
ing a local optimal solution path (CP step: red lines and
points). Once we reaches a boundary of the polytope, we
fix C∗ until we find a local optimal solution at that C∗ (DJ
step: blue lines and points).

In the next section, we formally discuss the properties
of S3VM local optimal solutions stated above. Then
we describe implementation details of the S3VMpath

algorithm in Section 5.

4. S3VM local optimal solutions

In this section, we formally discuss the properties of
S3VM local optimal solutions.

To begin with, the following proposition clarifies the
relationship between conditionally optimal solutions
and local optimal solutions:

Proposition 2 Any local optimal solution f of S3VM
is the conditionally optimal solution in pol(ŷ), where
ŷ satisfies ŷif(xi) ≥ 0, i ∈ U .

This proposition is clear because, if a solution f is not
conditionally optimal for ŷ, there exists a strictly bet-
ter feasible solution in the neighborhood of f . Note
that the converse is not always true, i.e., every con-
ditionally optimal solution is not necessarily a local
optimal solution of (4). Therefore, we need to clarify
which conditionally optimal solutions are local opti-
mal.

Since each local optimal solution corresponds to one
of the conditionally optimal solutions, the Lagrangian
multiplier theory (Boyd & Vandenberghe, 2004) im-
plies that a local optimal solution can be written in
the dual form as

f(x) = b +
∑
i∈L

αiK(x, xi) +
∑
i∈U

αiK(x, xi), (7)

where K is the kernel function and {αi}i∈L∪U are the
Lagrange multipliers. Note that, in the standard SVM,
the 2nd term is usually written as

∑
i αiyiK(x, xi).

Here, we augment αi to include yi for notational sim-
plicity.

Then we have the following necessary and sufficient
conditions for the local optimality of S3VM:

Lemma 3 For C∗ ∈ (0, C], necessary and sufficient
conditions for f to be local optimal are

yif(xi) > 1, i ∈ L ⇒ yiαi = 0, (8a)
yif(xi) = 1, i ∈ L ⇒ yiαi ∈ [0, C], (8b)
yif(xi) < 1, i ∈ L ⇒ yiαi = C, (8c)
ŷif(xi) > 1, i ∈ U ⇒ ŷiαi = 0, (8d)
ŷif(xi) = 1, i ∈ U ⇒ ŷiαi ∈ [0, C∗], (8e)

0 < ŷif(xi) < 1, i ∈ U ⇒ ŷiαi = C∗, (8f)
ŷif(xi) 6= 0, i ∈ U , (8g)

and all the constraints (2) are non-active, i.e.,

ŷif(xi) 6= 0, ∀i ∈ U . (9)

The proof of Lemma 3 is given in the supplementary.

A non-trivial part of the local optimality conditions is
the non-activeness condition (9). To clarify this, we
rephrase Lemma 3 as follows:

Theorem 4 A conditionally optimal solution in
pol(ŷ) for a certain ŷ is a local optimal solution if and
only if it is strictly in the interior of pol(ŷ).

This theorem is directly deduced from Lemma 3 be-
cause (8) is a part of the KKT optimality conditions of
the conditionally optimal solutions in pol(ŷ), while (9)
indicates that the solution cannot be at the boundary
of pol(ŷ) (see the proof of Lemma 3 in the supplemen-
tary for details). Theorem 4 indicates that the path
of f∗

ŷ s is guaranteed to be local optimal as long as
it stays in the interior of the convex polytope pol(ŷ),
and the solution is not local optimal anymore when
the path arrives at a boundary of the convex polytope
(see Figure 2).

In order to explain why a conditionally optimal solu-
tion f∗(ŷ) at the boundary cannot be a local optimal



Infinitesimal Annealing for Semi-Supervised SVMs

solution, let us consider the “adjacent” convex poly-
tope pol(ŷ′), where

ŷ′
i :=

{
−ŷi, i ∈ S,

ŷi, i /∈ S,
S := {i ∈ U|f∗

ŷ (xi) = 0}. (10)

Then, as stated in the following theorem, the condi-
tionally optimal solution f∗

ŷ′ in pol(ŷ′) is guaranteed
to be a strictly better S3VM solution than f∗

ŷ :

Theorem 5 Let f∗
ŷ be the conditionally optimal solu-

tion in pol(ŷ), and suppose that ŷif
∗
ŷ (xi) = 0, i ∈ S,

holds for a non-empty set S ⊆ U . If we define a new
label vector ŷ′ by (10), i.e., the labels ŷi for i ∈ S are
flipped, then the conditionally optimal solution f∗

ŷ′ on
pol(ŷ′) satisfies

J(f∗
ŷ′ , ŷ′) < J(f∗

ŷ , ŷ), (11)

i.e., f∗
ŷ′ is a strictly better S3VM solution than f∗

ŷ .

This theorem can be proved by comparing the KKT
optimality conditions of the two solutions f∗

ŷ and f∗
ŷ′

and showing that the former cannot be optimal in
pol(ŷ′). Its detailed proof is given in the supplemen-
tary.

Theorem 5 shows that, after we flip the label as in (10),
the new conditionally optimal solution f∗

ŷ′ in the adja-
cent convex polytope pol(ŷ′) is strictly better than the
previous one. This means that, once a solution path
reaches a boundary of the current polytope, we can al-
ways find a better feasible solution by computing the
conditionally optimal solution in the polytope pol(ŷ′)
(see Figure 3).

Actually, Theorem 5 proves the “only if” part of Theo-
rem 4. That is, the strict improvement of the solution
in Theorem 5 indicates that, if f∗

ŷ is at the boundary of
pol(ŷ), then it cannot be local optimal because there
exists a strictly better feasible solution in the adjacent
polytope pol(ŷ′).

5. Implementation Details of S3VMpath

In this section, we describe implementation details of
the S3VMpath algorithm.

The pseudo-code of the S3VMpath algorithm is sum-
marized in Algorithms 1, 2, and 3. In these pseudo-
codes, we denote f[(C∗)] and ŷ[C∗] to represent a local
optimal solution and the corresponding label vector at
C∗, respectively. In addition, a path of local optimal
solutions for C∗ ∈ [C∗

0 , C∗
1 ] is written as f[C∗

0 ,C∗
1 ].

Entire Procedure (Algorithm 1): The S3VMpath

algorithm is initialized at C∗ = 0 with the stan-

dard supervised SVM trained only on labeled in-
stances {(xi, yi)}i∈L. The predicted labels ŷ[0] for
unlabeled instances are initialized based on the sign
of f[0](xi), i ∈ U , where f[0](xi) denotes the decision
function obtained by the initial SVM. After the ini-
tialization, the algorithm enters the CP-step, where
the path of conditionally optimal solutions f∗

ŷ s is com-
puted with increasing C∗ by using a convex parametric
programming technique.

If the path arrives at a boundary of the convex poly-
tope pol(ŷ), then, it exits from the CP-step, and enters
the DJ-step. In the DJ-step, C∗ is fixed, and a bet-
ter feasible solution is sought for by computing the
conditionally optimal solution f∗

ŷ′ after the predicted
labels for i ∈ {i ∈ U|f[C∗](xi) = 0} are flipped as
in (10). This process is repeated until the newly com-
puted conditionally optimal solution f∗

ŷ′ is in the strict
interior of the convex polytope pol(ŷ′). In that case,
the algorithm exits from the DJ-step, and enters the
CP-step again.

By this procedure we can eventually find a local opti-
mal solution at the C∗ because the objective function
J(ŷ, f) is bounded below. Computational complexity
of S3VMpath algorithm is discussed in the supplemen-
tary.

Algorithm 1 Entire procedure of S3VMpath

1: Input: {(xi, yi)}i∈L, {xi}i∈U , K and C;
2: Output: f[0,C];
3: f[0] ← Train a SVM with {(xi, yi)}i∈L;
4: ŷ[0]i ← sgn(f[0](xi)), i ∈ U ;
5: C∗ ← 0;
6: while C∗ ≤ C do
7: C∗

0 ← C∗;
8: {C∗

1 , f[C∗
0 ,C∗

1 ]} ← CP-step(f[C∗
0 ], ŷ[C∗

0 ], C
∗
0 );

9: C∗ ← C∗
1 ;

10: S ← {i ∈ U|f[C∗](xi) = 0};
11: {f[C∗], ŷ[C∗]} ← DJ-step(C∗, ŷ[C∗],S);
12: end while

CP Step (Algorithm 2): The CP-step is imple-
mented with a convex parametric programming tech-
nique. Since the optimization problem (5) for com-
puting conditionally optimal solutions is a convex
quadratic program, we can use piecewise-linear para-
metric programming (Best, 1996) in the same way as
the famous SVM regularization path algorithm (Hastie
et al., 2004).

In piecewise-linear parametric programming, we com-
pute the sensitivity of the optimal solutions to the pa-
rameter C∗ based on the KKT optimality conditions.
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Here, we consider the following four index sets:

O := {i ∈ L ∪ U|yif(xi) > 1 or ŷif(xi) > 1},
M := {i ∈ L ∪ U|yif(xi) = 1 or ŷif(xi) = 1},
I` := {i ∈ L|yif(xi) < 1},
Iu := {i ∈ U|ŷif(xi) < 1}.

If we know that the members of these four index sets
are unchanged in a short range of C∗, then we can
easily observe that the optimal solutions (i.e., the set
of Lagrange multipliers {αi}i∈L∪U ) are linear in C∗.
It suggests that the entire path of the conditionally
optimal solutions is a piecewise-linear function of C∗

because whenever one of the members in the above
four index sets changes, the linearity (slope) of the
solution path also changes. See Hastie et al. (2004) for
the detail of piecewise-linear parametric programming
in the context of SVMs.

The algorithm exits from the CP-step when the
piecewise-linear path of f∗

ŷ s reaches a boundary of the
convex polytope pol(ŷ), i.e., any one of the unlabeled
instances satisfies f(xi) = 0, i ∈ U . This moment can
be exactly and easily identified by exploiting the piece-
wise linearity of the solution path, and it does not sig-
nificantly increase the computational cost of piecewise-
linear parametric programming.

Algorithm 2 CP-step
1: Input: C∗

0 , f, ŷ;
2: Output: C∗

1 , f[C∗
0 ,C∗

1 ];
3: f∗

ŷ ← f ;
4: C∗ ← C∗

0

5: while ŷif(xi) > 0 ∀i ∈ U and C∗ ≤ C do
6: Compute the path of f∗

ŷ s with increasing C∗;
7: end while
8: C∗

1 ← C∗;

DJ Step (Algorithm 3): If the path reaches a
boundary of a convex polytope at a certain C∗, the
algorithm exits the CP-step and enters the DJ-step.
In the DJ-step, the parameter C∗ is fixed until a local
optimal solution at that C∗ is found. In this step, we
exploit Theorem 5. If the predicted labels ŷ are flipped
to ŷ′ as in (10), then the conditionally optimal solution
defined in the new convex polytope pol(ŷ′) is strictly
better than the previous solution. By this strict im-
provement property and the fact that the number of
possible ŷ ∈ {−1, 1}|L| is finite, we can always find
a local optimal solution at that C∗ by repeating this
process.

Although any convex optimization solver can be used
in this step, we note that this step can be carried out

very efficiently: The two conditionally optimal solu-
tions f∗

ŷ and f∗
ŷ′ should not be much different (the

difference is only in a few constraints corresponding
to i ∈ {i ∈ U|f∗

ŷ (xi) = 0}). If we use the former
solution as the initial starting point of the latter opti-
mization problem, it should be solved very efficiently.
For the experiments in the next section, we have devel-
oped an active set method-type solver for the DJ-step.
In our experience, new conditionally optimal solutions
are usually obtained within tens of iterations.

Algorithm 3 DJ-step
1: Input: C∗, ŷ,S;
2: Output: f, ŷ;
3: while S is not empty do
4: ŷ′

i ← ŷi, i ∈ S;
5: Compute f∗

ŷ ;
6: S ← {i ∈ U|f∗

ŷ′(xi) = 0};
7: ŷ ← ŷ′;
8: end while
9: f ← f∗

ŷ ;

6. Experiments

In this section, we report experimental results.

Setup: The proposed S3VMpath is compared with
the supervised SVM (Vapnik, 1996) and two exist-
ing S3VM algorithms in terms of generalization per-
formance, optimization performance, and computation
time: S3VMlight (Joachims, 1999) which is also an an-
nealing algorithm that computes a sequence of solu-
tions with increasing C∗, and an algorithm (Collobert
et al., 2006) based on a general non-convex solver
called the convex-concave procedure (CCCP) (Yuille
& Rangarajan, 2002).

We use the 10 benchmark datasets listed in Table 1.
In each data set, a half of the instances are used for
training. We set the number of labeled instances at
|L| = min{30, 10% of the training set size}, and the
rest of the training instances are used as unlabeled
instances. From the remaining half of the data set, we
choose validation instances of size equal to |L|, which
are used only for tuning hyper-parameters. The rest
of instances are used for evaluating the generalization
performance.

Generalization Performance: First, we compare
the generalization performance for (i) unlabeled in-
stances used for training (i.e., the transduction error),
and (ii) test instances which are not used for train-
ing (i.e., the generalization error). We use the Gaus-
sian kernel: K(xi, xj) = exp(−γ‖xi − xj‖). Model
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Table 1. List of datasets. n denotes the number of in-
stances and d denotes the input dimensionality

Data Set ID n d
Breast Cancer D1 569 30

Digit1 D2 1500 241
DNA D3 2000 180

Four Class D4 862 2
Ionosphere D5 351 33
Segment D6 2310 19
USPS D7 9298 256
Splice D8 1000 60

SVM Guide D9 300 10
Vehicle D10 864 18
Vowel D11 528 10

selection is carried out by finding the best parameter
combination that minimizes the validation error from
C = {1, 10, 100, 1000} and γ = { 1

4d , 1
2d , 1

d , 2
d , 4

d} where
d is the input dimensionality. The best C∗ is also se-
lected based on the validation performance. In CCCP,
C∗ was chosen from {C

8 , C
4 , C

2 , C}. For S3VMlight and
S3VMpath, C∗ was selected from those computed in
the annealing steps: In S3VMlight, C∗ was selected
from {2−9C, 2−8C, . . . , C} following the suggestion in
Chapelle et al. (2008); in S3VMpath, C∗ that exactly
minimizes the validation error in the entire range of
[0, C] was selected. Note that this is possible be-
cause S3VMpath performs annealing with an infinites-
imal resolution.

The results reported in Table 2 are the average and the
standard deviation for 10 different random data splits.
The table shows that the proposed S3VMpath gives the
smallest generalization errors in many cases. This gain
may be brought by the infinitesimal annealing effect.

Optimization Performance: Next, we compare
the optimization performance of the three S3VM algo-
rithms. Since S3VM involves a non-convex optimiza-
tion problem, it is interesting to see how good local
optimal solutions can be found by each algorithm. In-
deed, as pointed out in Chapelle et al. (2008), finding
good local optimal solutions of the problem (1) or (4)
leads to good S3VM generalization performances.

The optimization performance of each algorithm is
compared in terms of the objective function value
J(f, ŷ) defined in (1). After we obtained predicted la-
bels ŷ from each of the three algorithms, we computed
the conditionally optimal solution f∗

ŷ , and J(f∗
ŷ , ŷ).

Figure 5 plots the experimental results, where γ = 1
d

and C = C∗ = {1, 10, 100, 1000}. The results show
that the proposed S3VM almost consistently outper-
forms S3VMlight and CCCP. We can also observe posi-
tive correlation between objective function values and
generalization errors. We conjecture that S3VMpath

Table 2. Mean generalization error over 10 runs. In each
data set, the upper row shows the error on unlabeled in-
stances and the lower row shows the error on test instances.
Smaller generalization error is better. Numbers in bold face
indicate the best method in terms of the mean generaliza-
tion error for each setup.

Data SVM S3VMlight CCCP S3VMpath

D1
8.13(1.35) 10.08(1.29) 6.41(0.44) 6.09(0.75)
7.62(0.79) 7.12(0.69) 5.95(0.70) 5.90(0.42)

D2
12.44(0.39) 13.68(0.63) 13.35(1.13) 12.31(0.48)
12.58(0.50) 13.06(0.58) 12.83(1.23) 11.44(0.41)

D3
20.20(1.21) 11.41(0.62) 11.46(0.84) 10.85(1.11)
20.74(1.22) 10.30(0.75) 10.93(0.67) 12.19(1.15)

D4
34.81(0.50) 22.12(2.21) 32.82(0.53) 32.54(0.66)
35.16(0.27) 29.48(1.18) 35.36(1.83) 33.42(0.44)

D5
21.33(2.60) 15.76(2.17) 15.32(1.94) 12.53(1.34)
19.81(2.40) 13.96(1.69) 12.26(2.21) 10.14(1.35)

D6
4.87(0.35) 7.10(1.11) 5.61(0.88) 3.75(0.30)
4.97(0.29) 4.83(0.45) 5.81(0.98) 4.44(0.45)

D7
15.72(1.42) 12.75(1.25) 12.07(1.46) 10.29(0.81)
15.92(1.42) 12.48(1.23) 12.22(1.43) 11.53(1.52)

D8
35.85(2.08) 28.51(1.10) 29.11(1.08) 29.00(0.98)
36.55(2.07) 28.09(0.90) 28.28(1.01) 25.34(1.16)

D9
48.52(1.68) 48.07(1.23) 48.81(1.02) 49.93(1.01)
47.26(1.91) 46.67(1.49) 47.93(1.13) 41.78(2.91)

D10
32.44(1.72) 31.58(0.83) 36.34(2.43) 32.93(1.48)
30.97(1.93) 29.92(1.14) 34.58(2.40) 25.74(1.77)

yields better generalization performances in Table 2
partly because it finds better local optimal solutions.

Computation Time: Finally, we compare the com-
putation time of each algorithm. Figure 6 plots the
entire computation time for training S3VM, where the
horizontal axis indicates the number of annealing steps
in S3VMlight, and the number of candidates of C∗s in
CCCP. The results show that the computation time
grows as the number of annealing steps and the num-
ber of C∗-candidates increase. Although more anneal-
ing steps and more C∗-candidates are preferable for
better generalization performance, Figure 6 indicates
that increasing the numbers of annealing steps and C∗-
candidates is possible only at the expense of increasing
the computational costs in S3VMlight and CCCP.

We can interpret the proposed S3VMpath as comput-
ing solutions with infinitely many C∗-candidates by
infinitesimal-step annealing. However, as Figure 6
shows, its computation time is usually much smaller
than CCCP, and it is comparable to S3VMlight that
has a much smaller number of annealing steps. This
means that S3VMpath can go beyond the trade-off be-
tween the resolution of annealing steps and the com-
putation cost.

Overall, our proposed method, S3VMpath, is shown to
be a promising alternative to existing S3VM training
algorithms.
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Figure 5. Objective function values J(f, ŷ) on labeled and
unlabeled training instances at C∗ = C for S3VMpath,
S3VMlight, and CCCP. Smaller values means that better
local optimal solutions are found.

7. Conclusions

In this paper, we proposed a novel training algo-
rithm for S3VM based on infinitesimal annealing. Our
method efficiently tracks a path of local optimal solu-
tions when the effect of unlabeled data is gradually
increased. A notable difference from existing solu-
tion path algorithms is that our solution path includes
jumps, due to non-convexity and non-smoothness of
the loss function for unlabeled instances. Through ex-
periments, we demonstrated that our algorithm, called
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Figure 6. Total computation time for computing a se-
quence of solutions for different C∗s. The horizontal axis
indicates the number of annealing steps in S3VMlight and
the number of candidates of C∗ in CCCP. Note that the
total computation time of S3VMpath does not depend on
the number of C∗s because it computes the entire path of
solutions with an infinitesimal resolution.

S3VMpath, is promising in generalization performance,
optimization performance, and computation time.
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A. Proof of Lemma 3 and Theorem 5

First, the KKT optimality conditions of a condition-
ally optimal solution is written as follows:

Lemma 6 For a given ŷ ∈ {−1, 1}|U|, the necessary
and sufficient conditions for a f to be the optimal so-
lution of the convex problem (5) is (8) and

ŷiαi ≥ C∗ for i ∈ {i ∈ U|ŷif(xi) = 0}. (13)

We omit the proof of this lemma because they are
straightforwardly derived by using Lagrange multiplier
theory (Boyd & Vandenberghe, 2004). Here, we just
note that the derivation is almost same as the standard
SVM case because the predicted labels ŷ are fixed here.

Based on Lemma 6, we first prove Theorem 5.

Proof of Theorem 5 Let f∗
ŷ and f∗

ŷ′ be two condi-
tionally optimal solutions defined in pol(ŷ) and pol(ŷ′),
respectively, and consider a situation that the former
f∗

ŷ is at a boundary of pol(ŷ). To prove the theorem,
we suppose for the moment that it is also conditionally
optimal in the next polytope pol(ŷ′), i.e., f∗

ŷ = f∗
ŷ′ .

Since f∗
ŷ and f∗

ŷ′ are conditionally optimal, they satisfy
the optimality condition (13):

ŷiαi ≥ C∗ for i ∈ {i ∈ U|ŷif
∗
ŷ (xi) = 0}, (14)

and

ŷ′
iαi ≥ C∗ for i ∈ {i ∈ U|ŷ′

if
∗
ŷ′(xi) = 0}, (15)

respectively. From our current assumption that f∗
ŷ =

f∗
ŷ′ and the fact that

y′
i = −yi, i ∈ {i ∈ U|yif

∗
ŷ (xi) = 0}, (16)

(14) is rewritten as

ŷ′
iαi ≤ −C∗ for i ∈ {i ∈ U|ŷ′

if
∗
ŷ′(xi) = 0}. (17)

Now, it is clear that the two conditions (15) and (17)
cannot be satisfied at the same time, and it disprove
our assumption that f∗

ŷ = f∗
ŷ′ .

Noting that f∗
ŷ ∈ pol(ŷ′) and that it is not the con-

ditionally optimal solution in pol(ŷ′), we immediately
arrive at the conclusion that f∗

ŷ′ is a better S3VM so-
lutions than f∗

ŷ . Q.E.D.

Next, we prove Lemma 3, which is immediately ob-
tained from Lemma 6 and Theorem 5.

Proof of Lemma 3 First, if the conditionally opti-
mal solution f∗

ŷ is in the strict interior of the convex

polytope pol(ŷ), it is clear that there is no better solu-
tion in the arbitrary neighborhood of f∗

ŷ . It suggests
that f∗

ŷ is a local optimal solution of S3VM is it is in
the strict interior of pol(ŷ). On the other hand, from
Theorem 5, f∗

ŷ is not a local optimal solution of S3VM
because there exists a strictly better solution in the
adjacent convex polytope pol(ŷ′). Combining the fact
that f is conditionally optimal if and only if (8) and
(13) are satisfied, it is clear that (8) and (9) are the
necessary and sufficient conditions of a local optimal
solution. Q.E.D.

B. Computational Complexity of S3VM
Algorithm

The computational cost of the entire algorithm (from
C∗ = 0 to C) depends on the number of so-called
breakpoints in the CP-step and the number of move-
ments to adjacent polytopes in the DJ-step. It has
been reported in many empirical studies (Efron & Tib-
shirani, 2004; Hastie et al., 2004) that the number of
breakpoints is O(n), where n is the training set size.
We also observed in our experiments that the total
number of breakpoints in all CP steps scales almost
linearly with respect to O(|L|+ |U|).

The main computational cost in each breakpoint is the
same as that in the SVM regularization path (Hastie
et al., 2004). That is, at each breakpoint, we need to
solve a rank-one update problem of a linear system of
equations of size O(|M|), which costs O(|M|2). On
the other hand, the number of movements between
two polytopes depends on the number of unlabeled
instances. In our experience, this number also scales
linearly with respect to O(|U|). Note that, if we use
a warm-start strategy from the previous conditionally
optimal solution, the computational cost of the DJ-
step is negligibly small compared with the CP-step.
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