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Abstract

Approximating a divergence between two probability distributions from their sam-
ples is a fundamental challenge in statistics, information theory, and machine learn-
ing. A divergence approximator can be used for various purposes such as two-sample
homogeneity testing, change-point detection, and class-balance estimation. Further-
more, an approximator of a divergence between the joint distribution and the prod-
uct of marginals can be used for independence testing, which has a wide range of
applications including feature selection and extraction, clustering, object matching,
independent component analysis, and causal direction estimation. In this paper, we
review recent advances in divergence approximation. Our emphasis is that directly
approximating the divergence without estimating probability distributions is more
sensible than a naive two-step approach of first estimating probability distributions
and then approximating the divergence. Furthermore, despite the overwhelming
popularity of the Kullback-Leibler divergence as a divergence measure, we argue
that alternatives such as the Pearson divergence, the relative Pearson divergence,
and the L2-distance are more useful in practice because of their computationally
efficient approximability, high numerical stability, and superior robustness against
outliers.

Keywords

Machine learning, probability distributions, Kullback-Leibler divergence, Pearson
divergence, L2-distance.

1 Introduction

Let us consider the problem of approximating a divergence D between two probability
distributions P and P ′ on Rd from two sets of independent and identically distributed
samples X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 following P and P ′.
A divergence approximator can be used for various purposes such as two-sample testing

[1, 2], change detection in time-series [3], class-prior estimation under class-balance change
[4], salient object detection in images [5], and event detection from movies [6] and Twitter
[7]. Furthermore, an approximator of the divergence between the joint distribution and
the product of marginal distributions can be used for solving a wide range of machine
learning problems [8], including independence testing [9], feature selection [10, 11], feature
extraction [12, 13], canonical dependency analysis [14], object matching [15], independent
component analysis [16], clustering [17, 18], and causal direction learning [19]. For this
reason, accurately approximating a divergence between two probability distributions from
their samples has been one of the challenging research topics in the statistics, information
theory, and machine learning communities.

A naive way to approximate the divergence from P to P ′, denoted by D(P∥P ′), is to

first obtain estimators P̂X and P̂ ′
X ′ of the distributions P and P ′ separately from their

samples X and X ′, and then compute a plug-in approximator D(P̂X∥P̂ ′
X ′). However, this

naive two-step approach violates Vapnik’s principle [20]:
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If you possess a restricted amount of information for solving some problem,
try to solve the problem directly and never solve a more general problem as
an intermediate step. It is possible that the available information is sufficient
for a direct solution but is insufficient for solving a more general intermediate
problem.

More specifically, if we know the distributions P and P ′, we can immediately know their
divergence D(P∥P ′). However, knowing the divergence D(P∥P ′) does not necessarily
imply knowing the distributions P and P ′, because different pairs of distributions can
yield the same divergence value. Thus, estimating the distributions P and P ′ is more
general than estimating the divergence D(P∥P ′). Following Vapnik’s principle, direct

divergence approximators D̂(X ,X ′) that do not involve the estimation of distributions P
and P ′ have been developed recently [21, 22, 23, 24, 25].

The purpose of this article is to give an overview of the development of such di-
rect divergence approximators. In Section 2, we review the definitions of the Kullback-
Leibler divergence, the Pearson divergence, the relative Pearson divergence, and the L2-
distance, and discuss their pros and cons. Then, in Section 3, we review direct approx-
imators of these divergences that do not involve the estimation of probability distribu-
tions. In Section 4, we show practical usage of divergence approximators in unsupervised
change-detection in time-series, semi-supervised class-prior estimation under class-balance
change, salient object detection in an image, and evaluation of statistical independence
between random variables. Finally, we conclude in Section 5.

2 Divergence Measures

A function d(·, ·) is called a distance if and only if the following four conditions are
satisfied:

• Non-negativity: ∀x, y, d(x, y) ≥ 0

• Non-degeneracy: d(x, y) = 0 ⇐⇒ x = y

• Symmetry: ∀x, y, d(x, y) = d(y, x)

• Triangle inequality: ∀x, y, z d(x, z) ≤ d(x, y) + d(y, z)

A divergence is a pseudo-distance that still acts like a distance, but it may violate some
of the above conditions. In this section, we introduce useful divergence and distance
measures between probability distributions.
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2.1 Kullback-Leibler (KL) Divergence

The most popular divergence measure in statistics and machine learning is the KL diver-
gence [26] defined as

KL(p∥p′) :=
∫

p(x) log
p(x)

p′(x)
dx,

where p(x) and p′(x) are probability density functions of P and P ′, respectively.
Advantages of the KL divergence are that it is compatible with maximum likelihood

estimation, it is invariant under input metric change, its Riemannian geometric structure
is well studied [27], and it can be approximated accurately via direct density-ratio estima-
tion [21, 22, 28]. However, it is not symmetric, it does not satisfy the triangle inequality,
its approximation is computationally expensive due to the log function, and it is sensitive
to outliers and numerically unstable because of the strong non-linearity of the log function
and possible unboundedness of the density-ratio function p/p′ [29, 24].

2.2 Pearson (PE) Divergence

The PE divergence [30] is a squared-loss variant of the KL divergence defined as

PE(p∥p′) :=
∫

p′(x)

(
p(x)

p′(x)
− 1

)2

dx. (1)

Because both the PE and KL divergences belong to the class of Ali-Silvey-Csiszár di-
vergences (which is also known as f -divergences) [31, 32], they share similar theoretical
properties such as the invariance under input metric change.

The PE divergence can also be accurately approximated via direct density-ratio esti-
mation in the same way as the KL divergence [23, 28]. However, its approximator can
be obtained analytically in a computationally much more efficient manner than the KL
divergence, because the quadratic function the PE divergence adopts is compatible with
least-squares estimation. Furthermore, the PE divergence tends to be more robust against
outliers than the KL divergence [33]. However, other weaknesses of the KL divergence
such as asymmetry, violation of the triangle inequality, and possible unboundedness of
the density-ratio function p/p′ remain unsolved in the PE divergence.

2.3 Relative Pearson (rPE) Divergence

To overcome the possible unboundedness of the density-ratio function p/p′, the rPE di-
vergence was recently introduced [24]. The rPE divergence is defined as

rPE(p∥p′) := PE(p∥qα)

=

∫
qα(x)

(
p(x)

qα(x)
− 1

)2

dx, (2)
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where, for 0 ≤ α < 1, qα is defined as the α-mixture of p and p′:

qα = αp+ (1− α)p′.

When α = 0, the rPE divergence is reduced to the plain PE divergence. The quantity
p/qα is called the relative density ratio, which is always upper-bounded by 1/α for α > 0
because

p(x)

qα(x)
=

1

α + (1− α)p
′(x)
p(x)

<
1

α
.

Thus, it can overcome the unboundedness problem of the PE divergence, while the in-
variance under input metric change is still maintained.

The rPE divergence is still compatible with least-squares estimation, and it can be
approximated in almost the same way as the PE divergence via direct relative density-ratio
estimation [24]. Indeed, an rPE-divergence approximator can still be obtained analytically
in an accurate and computationally efficient manner. However, it still violates symmetry
and the triangle inequality in the same way as the KL and PE divergence. Furthermore,
the choice of α may not be straightforward in some applications.

2.4 L2-Distance

The L2-distance is another standard distance measure between probability distributions
defined as

L2(p, p′) :=

∫ (
p(x)− p′(x)

)2
dx.

The L2-distance is a proper distance measure, and thus it is symmetric and satisfies the
triangle inequality. Furthermore, the density difference p(x)− p′(x) is always bounded as
long as each density is bounded. Therefore, the L2-distance is stable, without the need
of tuning any control parameter such as α in the rPE divergence.

The L2-distance is also compatible with least-squares estimation, and it can be accu-
rately and analytically approximated in a computationally efficient and numerically stable
manner via direct density-difference estimation [25]. However, the L2-distance is not in-
variant under input metric change, which is a unique property inherent to ratio-based
divergences.

3 Direct Divergence Approximation

In this section, we review recent advances in direct divergence approximation.
Suppose that we are given two sets of independent and identically distributed samples

X := {xi}ni=1 and X ′ := {x′
i′}n

′

i′=1 from probability distributions on Rd with densities p(x)
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and p′(x), respectively:

X := {xi}ni=1
i.i.d.∼ p(x),

X ′ := {x′
i′}n

′

i′=1
i.i.d.∼ p′(x).

Our goal is to approximate a divergence between from p to p′ from samples X and X ′.

3.1 KL Divergence Approximation

The key idea of direct KL divergence approximation is to estimate the density ratio p/p′

without estimating the densities p and p′ [21]. More specifically, a density-ratio estimator
is obtained by minimizing the KL divergence from p to r ·p′ with respect to a density-ratio
model r, under the constraints that the density-ratio function is non-negative and r · p′ is
integrated to one:

min
r

KL(p∥r · p′)

subject to r ≥ 0 and

∫
r(x)p′(x)dx = 1.

Its empirical optimization problem, where an irrelevant constant is ignored and the ex-
pectations are approximated by the sample averages, is given by

max
r

1

n

n∑
i=1

log r(xi)

subject to r ≥ 0 and
1

n′

n′∑
i′=1

r(x′
i′) = 1.

Let us consider the following Gaussian density-ratio model:

r(x) =
n∑

ℓ=1

θℓ exp

(
−∥x− xℓ∥2

2σ2

)
, (3)

where ∥ · ∥ denotes the ℓ2-norm. We define the vector of parameters {θℓ}nℓ=1 as

θ = (θ1, . . . , θn)
⊤,

where ⊤ denotes the transpose. In this model, the Gaussian kernels are located on nu-
merator samples {xi}ni=1 because the density ratio p/p′ tends to take large values in the
regions where the numerator samples {xi}ni=1 exist. Alternatively, Gaussian kernels may
be located on both numerator and denominator samples, but this seems not to further
improve the accuracy [21]. When n is very large, a (random) subset of numerator samples
{xi}ni=1 may be chosen as Gaussian centers, which can reduce the computational cost.
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For the Gaussian density-ratio model (3), the above optimization problem is expressed
as

max
θ

1

n

n∑
i=1

log

(
n∑

ℓ=1

θℓ exp

(
−∥xi − xℓ∥2

2σ2

))
subject to θ1, . . . , θn ≥ 0

and
1

n′

n′∑
i′=1

n∑
ℓ=1

θℓ exp

(
−∥x′

i′ − xℓ∥2

2σ2

)
= 1.

This is a convex optimization problem and thus the global optimal solution can be ob-
tained easily, e.g., by gradient-projection iterations. Furthermore, the global optimal
solution tends to be sparse (i.e., many parameter values become exactly zero), which can
be utilized for reducing the computational cost.

The Gaussian width σ is a tuning parameter in this algorithm, and it can be system-
atically optimized by cross-validation with respect to the objective function. More specif-
ically, the numerator samples X := {xi}ni=1 are divided into T disjoint subsets {Xt}Tt=1

of (approximately) the same size. Then a density-ratio estimator r̂t(x) is obtained using
X\Xt and X ′ := {x′

i′}n
′

i′=1 (i.e., all numerator samples without Xt and all denominator
samples), and its objective value for the hold-out numerator samples Xt is computed:

1

|Xt|
∑
x∈Xt

log r̂t(x),

where |Xt| denotes the number of elements in the set Xt. This procedure is repeated for
t = 1, . . . , T , and the σ value that maximizes the average of the above hold-out objective
values is chosen as the best one.

Given a density-ratio estimator r̂, a KL-divergence approximator K̂L(X∥X ′) can be
constructed as

K̂L(X∥X ′) :=
1

n

n∑
i=1

log r̂(xi).

A MATLAB R⃝ implementation of the above KL divergence approximator (called the KL
importance estimation procedure; KLIEP) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/”.

Variations of this procedure for other density-ratio models have been developed, in-
cluding the log-linear model [34], the Gaussian mixture model [35], and the mixture of
probabilistic principal component analyzers [36]. Also, an unconstrained variant, which
corresponds to approximately maximizing the Legendre-Fenchel lower bound of the KL
divergence [37], was proposed [22]:

K̃L(X∥X ′) := max
r

[
1

n

n∑
i=1

log r(xi)−
1

n′

n′∑
i′=1

r(x′
i′) + 1

]
.
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3.2 PE Divergence Approximation

The PE divergence can also be directly approximated without estimating the densities p
and p′ via direct estimation of the density ratio p/p′ [23]. More specifically, a density-
ratio estimator is obtained by minimizing the p′-weighted squared difference between a
density-ratio model r and the true density-ratio function p/p′:

min
r

∫
p′(x)

(
r(x)− p(x)

p′(x)

)2

dx.

Its empirical criterion where an irrelevant constant is ignored and the expectations are
approximated by the sample averages is given by

min
r

[
1

n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

For the Gaussian density-ratio model (3) together with the ℓ2-regularizer, the above
optimization problem is expressed as

min
θ

[
θ⊤Ĝ′θ − 2θ⊤ĥ+ λ∥θ∥2

]
, (4)

where λ ≥ 0 denotes the regularization parameter, Ĝ′ is the n×nmatrix with the (ℓ, ℓ′)-th
element defined by

Ĝ′
ℓ,ℓ′:=

1

n′

n′∑
i′=1

exp

(
−∥x′

i′ − xℓ∥2

2σ2

)
exp

(
−∥x′

i′ − xℓ′∥2

2σ2

)
,

and ĥ is the n-dimensional vector with the ℓ-th element defined by

ĥℓ :=
1

n

n∑
i=1

exp

(
−∥xi − xℓ∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(Ĝ′ + λI)−1ĥ,

where I denotes the identity matrix.
The Gaussian width σ and the regularization parameter λ are the tuning parameters

in this algorithm, and they can be systematically optimized by cross-validation with
respect to the objective function as follows: First, the numerator and denominator samples
X = {xi}ni=1 and X ′ = {x′

i′}n
′

i′=1 are divided into T disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1,

respectively. Then a density-ratio estimator r̂t(x) is obtained using X\Xt and X ′\X ′
t (i.e.,
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all samples without Xt and X ′
t ), and its objective value for the hold-out samples Xt and

X ′
t is computed:

1

|X ′
t |
∑
x′∈X ′

t

r̂t(x
′)2 − 2

|Xt|
∑
x∈Xt

r̂t(x). (5)

This procedure is repeated for t = 1, . . . , T , and the σ and λ values that maximize the
average of the above hold-out objective values are chosen as the best ones.

By expanding the squared term
(

p(x)
p′(x)

− 1
)2

in Eq.(1), the PE divergence can be

expressed as

PE =

∫
p(x)

p(x)

p′(x)
dx− 1 (6)

=−
∫

p′(x)

(
p(x)

p′(x)

)2

dx+2

∫
p(x)

p(x)

p′(x)
dx− 1. (7)

Note that Eq.(7) can also be obtained via Legendre-Fenchel convex duality of the di-
vergence functional [38]. Based on these expressions, PE divergence approximators are
obtained using a density-ratio estimator r̂ as

P̂E(X∥X ′) :=
1

n

n∑
i=1

r̂(xi)− 1, (8)

P̃E(X∥X ′) :=− 1

n′

n′∑
i′=1

r̂(x′
i′)

2+
2

n

n∑
i=1

r̂(xi)−1. (9)

Eq.(8) is suitable for algorithmic development because this would be the simplest ex-
pression, while Eq.(9) is suitable for theoretical analysis because this corresponds to the
negative of the objective function in Eq.(4).

A MATLAB R⃝ implementation of the above method (called unconstrained least-squares
importance fitting ; uLSIF) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/”.

If the ℓ2-regularizer

∥θ∥2 :=
n∑

ℓ=1

θ2ℓ

in Eq.(4) is replaced with the ℓ1-regularizer

∥θ∥1 :=
n∑

ℓ=1

|θℓ|,

the solution tends to be sparse [39]. Then the solution can be obtained in a computa-
tionally more efficient way [40], and furthermore a regularization path tracking algorithm
[41] is available for efficiently computing solutions with different regularization parameter
values.
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3.3 rPE Divergence Approximation

The rPE divergence can be directly estimated in the same way as the PE divergence [24]:

min
r

∫
qα(x

′)

(
r(x)− p(x)

qα(x)

)2

dx.

Its empirical criterion where an irrelevant constant is ignored and the expectations are
approximated by sample averages is given by

min
r

[
α

n

n∑
i=1

r2(xi)+
1− α

n′

n′∑
i′=1

r2(x′
i′)−

2

n

n∑
i=1

r(xi)

]
.

For the Gaussian density-ratio model (3) together with the ℓ2-regularizer, the above
optimization problem is expressed as

min
θ

[
θ⊤(αĜ+ (1− α)Ĝ′)θ − 2θ⊤ĥ+ λ∥θ∥2

]
,

where Ĝ is the n× n matrix with the (ℓ, ℓ′)-th element defined by

Ĝℓ,ℓ′ :=
1

n

n∑
i=1

exp

(
−∥xi − xℓ∥2

2σ2

)
exp

(
−∥xi − xℓ′∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(αĜ+ (1− α)Ĝ′ + λI)−1ĥ.

Cross-validation for tuning the Gaussian width σ and the regularization parameter λ can
be carried out in the same way as the PE-divergence case, with Eq.(5) replaced by

α

|Xt|
∑
x∈Xt

r̂t(x)
2+

1− α

|X ′
t |
∑
x′∈X ′

t

r̂t(x
′)2− 2

|Xt|
∑
x∈Xt

r̂t(x).

By expanding the squared term
(

p(x)
qα(x)

− 1
)2

in Eq.(2), the rPE divergence can be

expressed as

rPE =

∫
p(x)

p(x)

qα(x)
dx− 1 (10)

=−
∫

qα(x)

(
p(x)

qα(x)

)2

dx+2

∫
p(x)

p(x)

qα(x)
dx− 1. (11)
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Based on these expressions, rPE divergence approximators are given using the relative
density-ratio estimator r̂α as

r̂PEα(X∥X ′) :=
1

n

n∑
i=1

r̂α(xi)− 1, (12)

r̃PEα(X∥X ′) := −α

n

n∑
i=1

r̂α(xi)
2− (1− α)

n′

n′∑
i′=1

r̂α(x
′
i′)

2 +
2

n

n∑
i=1

r̂α(xi)− 1. (13)

A MATLAB R⃝ implementation of this algorithm (called relative uLSIF ; RuLSIF) is
available from

“http://sugiyama-www.cs.titech.ac.jp/~yamada/RuLSIF.html”.

3.4 L2-Distance Approximation

The key idea is to directly estimate the density difference p− p′ without estimating each
density [25]. More specifically, a density-difference estimator is obtained by minimizing
the squared difference between a density-difference model f and the true density-difference
function p− p′:

min
f

∫ (
f(x)−

(
p(x)− p′(x)

))2
dx.

Its empirical criterion where an irrelevant constant is ignored and the expectation is
approximated by the sample average is given by

min
f

[∫
f(x)2dx−

(
2

n

n∑
i=1

f(xi)−
2

n′

n′∑
i′=1

f(x′
i′)

)]
.

Let us consider the following Gaussian density-difference model:

f(x) =
n+n′∑
ℓ=1

ξℓ exp

(
−∥x− cℓ∥2

2σ2

)
, (14)

where

(c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′)

are Gaussian centers. Then the above optimization problem is expressed as

min
ξ=(ξ1,...,ξn+n′ )⊤

[
ξ⊤Uξ − 2ξ⊤v̂ + λ∥ξ∥2

]
,
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where the ℓ2-regularizer λ∥ξ∥2 is included, U is the (n + n′) × (n + n′) matrix with the
(ℓ, ℓ′)-th element defined by

Uℓ,ℓ′ :=

∫
exp

(
−∥x− cℓ∥2

2σ2

)
exp

(
−∥x− cℓ′∥2

2σ2

)
dx

= (πσ2)d/2 exp

(
−∥cℓ − cℓ′∥2

4σ2

)
,

d denotes the dimensionality of x, and v̂ is the (n+ n′)-dimensional vector with the ℓ-th
element defined by

v̂ℓ :=
1

n

n∑
i=1

exp

(
−∥xi − cℓ∥2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−∥x′

i′ − cℓ∥2

2σ2

)
.

This is a convex optimization problem, and the global optimal solution can be computed
analytically as

(U + λI)−1v̂.

The above optimization problem is essentially the same form as least-squares density-
ratio approximation for the PE divergence, and therefore least-squares density-difference
approximation can enjoy all the computational properties of least-squares density-ratio
approximation.

Cross-validation for tuning the Gaussian width σ and the regularization parameter λ
can be carried as follows: First, the numerator and denominator samples X = {xi}ni=1

and X ′ = {x′
i′}n

′

i′=1 are divided into T disjoint subsets {Xt}Tt=1 and {X ′
t}Tt=1, respectively.

Then a density-difference estimator f̂t(x) is obtained using X\Xt and X ′\X ′
t (i.e., all

samples without Xt and X ′
t ), and its objective value for the hold-out samples Xt and X ′

t

is computed: ∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |
∑
x′∈X ′

t

f̂t(x
′).

Note that the first term can be computed analytically for the Gaussian density-difference
model (14): ∫

f̂t(x)
2dx = ξ̂⊤t Uξ̂t,

where ξ̂t is the parameter vector learned from X\Xt and X ′\X ′
t .

For an equivalent expression of the L2-distance,

L2(p, p′) =

∫
f(x)p(x)dx−

∫
f(x′)p′(x′)dx′,
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if f is replaced with a density-difference estimator f̂ and approximate the expectations
by empirical averages, the following L2-distance approximator can be obtained:

v̂⊤ξ̂. (15)

Similarly, for another expression

L2(p, p′) =

∫
f(x)2dx,

replacing f with a density-difference estimator f̂ gives another L2-distance approximator:

ξ̂⊤Uξ̂. (16)

Eq.(15) and Eq.(16) themselves give valid approximations to L2(p, p′), but their linear
combination

L̂2(X ,X ′) := 2v̂⊤ξ̂ − ξ̂⊤Uξ̂,

was shown to have a smaller bias than than Eq.(15) and Eq.(16).
A MATLAB R⃝ implementation of the above algorithm (called least-squares density

difference; LSDD) is available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSDD/”.

4 Usage of Divergence Approximators in Machine

Learning

In this section, we show applications of divergence approximators in machine learning.

4.1 Class-Prior Estimation under Class-Balance Change

In real-world pattern recognition tasks, changes in class balance are often observed be-
tween the training and test phases. In such cases, naive classifier training produces signif-
icant estimation bias because the class balance in the training dataset does not properly
reflect that in the test dataset. Here, let us consider a binary pattern recognition task
of classifying pattern x to class y ∈ {+1,−1}. The goal is to learn the class balance in
a test dataset under a semi-supervised learning setup where unlabeled test samples are
provided in addition to labeled training samples [42].

The class balance in the test set can be estimated by matching a π-mixture of class-wise
training input densities,

πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),
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x

ptrain(x|y = +1)|
ptrain(x|y = −1)

train |
ptest(x)

Figure 1: Schematic of class-prior estimation under class-balance change.

to the test input density ptest(x) under some divergence measure [4]. Here, π ∈ [0, 1] is a
mixing coefficient to be learned to minimize the divergence (see Figure 1).

We use four UCI benchmark datasets1 for numerical experiments, where we randomly
choose 10 labeled training samples from each class and 50 unlabeled test samples following
true class-prior

π∗ = 0.1, 0.2, . . . , 0.9.

The graphs on the left-hand side of Figure 2 plot the mean and standard error of the
squared difference between true and estimated class-balances π. These graphs show that
LSDD tends to provide better class-balance estimates than the two-step procedure of first
estimating probability densities by kernel density estimation (KDE) and then learning π.

The graphs on the right-hand side of Figure 2 plot the test misclassification error
obtained by a weighted ℓ2-regularized kernel least-squares classifier [43] with weighted
cross-validation [44]. The results show the LSDD-based method provides lower classifica-
tion errors, which would be brought by good estimates of test class-balances.

4.2 Change-Detection in Time-Series

The goal is to discover abrupt property changes behind time-series data. Let y(t) ∈ Rm

be an m-dimensional time-series sample at time t, and let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ Rkm

be a subsequence of time series at time t with length k. Instead of a single point y(t), the
subsequence Y (t) is treated as a sample here, because time-dependent information can
be naturally incorporated by this trick [3]. Let

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ r − 1)}

be a set of r retrospective subsequence samples starting at time t. Then a divergence
between the probability distributions of Y(t) and Y(t+ r) may be used as the plausibility
of change points (see Figure 3).

1http://archive.ics.uci.edu/ml/
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Figure 2: Left: Squared error of class-prior estimation. Right: Misclassification error by
a weighted ℓ2-regularized kernel least-squares classifier with weighted cross-validation.
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Figure 3: Schematic of change-point detection in time-series.

In Figure 4, we illustrate results of unsupervised change detection for the IPSJ SIG-
SLP Corpora and Environments for Noisy Speech Recognition (CENSREC) dataset2 that
records human voice in noisy environments such as a restaurant, and the Human Activ-
ity Sensing Consortium (HASC) challenge 2011 dataset3 that provides human activity
information collected by portable three-axis accelerometers. These graphs show that the
KL-based method is excessively sensitive to noise and thus change points are not clearly
detected. On the other hand, the L2-based method more clearly indicates the existence
of change points.

It was also demonstrated that divergence-based change-detection methods are useful
in event detection from movies [6] and Twitter [7].

4.3 Salient Object Detection in an Image

The goal is to find salient objects in an image. This can be achieved by computing a diver-
gence between the probability distributions of image features (such as brightness, edges,
and colors) in the center window and its surroundings [5]. This divergence computation
is swept over the entire image with changing scales (Figure 5).

The object detection results on the MSRA salient object database [45] by the rPE
divergence with α = 0.1 are described in Figure 6, where pixels in gray-scale saliency
maps take brighter color if the estimated divergence value is large. The results show that
visually salient objects can be successfully detected by the divergence-based approach.

4.4 Measuring Statistical Independence

The goal is to measure how strongly two random variables U and V are statistically
dependent, from paired samples {(ui,vi)}ni=1 drawn independently from the joint distri-
bution with density pU,V(u,v). Let us consider a divergence between the joint density
pU,V and the product of marginal densities pU · pV. This actually serves as a measure of
statistical independence, because U and V are independent if and only if the divergence

2http://research.nii.ac.jp/src/en/CENSREC-1-C.html
3http://hasc.jp/hc2011/
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Figure 4: Results of change-point detection. Original time-series data is plotted in the
top graphs, and change scores obtained by KLIEP (Section 3.1) and LSDD (Section 3.4)
are plotted in the bottom graphs.
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Figure 5: Schematic of salient object detection in an image.

is zero (i.e., pU,V = pU · pV), and the dependence between U and V is stronger if the
divergence is larger.

Such a dependence measure can be approximated in the same way as ordinary diver-
gences by using the two datasets formed as X = {(ui,vi)}ni=1 and X ′ = {(ui,vj)}ni,j=1.
The dependence measure based on the KL divergence is called mutual information (MI)
[46]:

MI :=

∫∫
pU,V(u,v) log

pU,V(u,v)

pU(u)pV(v)
dudv.

MI plays a central role in information theory [47].
On the other hand, its PE-divergence variant is called the squared-loss mutual infor-

mation (SMI):

SMI :=

∫∫
pU(u)pV(v)

(
pU,V(u,v)

pU(u)pV(v)
− 1

)2

dudv.

SMI is useful for solving various machine learning tasks [8], including independence testing
[9], feature selection [10, 11], feature extraction [12, 13], canonical dependency analysis
[14], object matching [15], independent component analysis [16], clustering [17, 18], and
causal direction estimation [19].

An L2-distance variant of the dependence measure is called quadratic mutual infor-
mation (QMI) [48]:

QMI :=

∫∫ (
pU,V(u,v)− pU(u)pV(v)

)2
dudv.

QMI is also a useful dependence measure in practice [49].

5 Conclusions

In this article, we reviewed recent advances in direct divergence approximation. Direct
divergence approximators theoretically achieve optimal convergence rates both in para-
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Figure 6: Results of salient object detection in an image. Upper: Original images. Lower:
Obtained saliency maps (brighter color means more salient).
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metric and non-parametric cases and experimentally compare favorably with the naive
density-estimation counterparts [22, 21, 23, 24, 25].

However, direct divergence approximators still suffer from the curse of dimensional-
ity. A possible cure for this problem is to combine them with dimensionality reduction,
based on the hope that two probability distributions share some commonality [50, 51, 52].
Further investigating this line would be a promising future direction.
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