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Abstract

The objective of change-point detection is to discover abrupt property changes ly-
ing behind time-series data. In this paper, we present a novel statistical change-
point detection algorithm based on non-parametric divergence estimation between
time-series samples from two retrospective segments. Our method uses the rela-
tive Pearson divergence as a divergence measure, and it is accurately and efficiently
estimated by a method of direct density-ratio estimation. Through experiments
on artificial and real-world datasets including human-activity sensing, speech, and
Twitter messages, we demonstrate the usefulness of the proposed method.
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1 Introduction

Detecting abrupt changes in time-series data, called change-point detection, has attracted
researchers in the statistics and data mining communities for decades (Basseville and
Nikiforov, 1993; Gustafsson, 2000; Brodsky and Darkhovsky, 1993). Depending on the
delay of detection, change-point detection methods can be classified into two categories:
Real-time detection (Adams and MacKay, 2007; Garnett et al., 2009; Paquet, 2007) and
retrospective detection (Basseville and Nikiforov, 1993; Takeuchi and Yamanishi, 2006;
Moskvina and Zhigljavsky, 2003a).

Real-time change-point detection targets applications that require immediate re-
sponses such as robot control. On the other hand, although retrospective change-point
detection requires longer reaction periods, it tends to give more robust and accurate de-
tection. Retrospective change-point detection accommodates various applications that
allow certain delays, for example, climate change detection (Reeves et al., 2007), genetic
time-series analysis (Wang et al., 2011), signal segmentation (Basseville and Nikiforov,
1993), and intrusion detection in computer networks (Yamanishi et al., 2000). In this
paper, we focus on the retrospective change-point detection scenario and propose a novel
non-parametric method.

Having been studied for decades, some pioneer works demonstrated good change-point
detection performance by comparing the probability distributions of time-series samples
over past and present intervals (Basseville and Nikiforov, 1993). As both the intervals
move forward, a typical strategy is to issue an alarm for a change point when the two
distributions are becoming significantly different. Various change-point detection methods
follow this strategy, for example, the cumulative sum (Basseville and Nikiforov, 1993), the
generalized likelihood-ratio method (Gustafsson, 1996), and the change finder (Takeuchi
and Yamanishi, 2006). Such a strategy has also been employed in novelty detection
(Guralnik and Srivastava, 1999) and outlier detection (Hido et al., 2011).

Another group of methods that have attracted high popularity in recent years is the
subspace methods (Moskvina and Zhigljavsky, 2003a,b; Ide and Tsuda, 2007; Kawahara
et al., 2007). By using a pre-designed time-series model, a subspace is discovered by
principal component analysis from trajectories in past and present intervals, and their
dissimilarity is measured by the distance between the subspaces. One of the major ap-
proaches is called subspace identification, which compares the subspaces spanned by the
columns of an extended observability matrix generated by a state-space model with sys-
tem noise (Kawahara et al., 2007). Recent efforts along this line of research have led to
a computationally efficient algorithm based on Krylov subspace learning (Ide and Tsuda,
2007) and a successful application of detecting climate change in south Kenya (Itoh and
Kurths, 2010).

The methods explained above rely on pre-designed parametric models, such as under-
lying probability distributions (Basseville and Nikiforov, 1993; Gustafsson, 1996), auto-
regressive models (Takeuchi and Yamanishi, 2006), and state-space models (Moskvina
and Zhigljavsky, 2003a,b; Ide and Tsuda, 2007; Kawahara et al., 2007), for tracking
specific statistics such as the mean, the variance, and the spectrum. As alternatives,
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Figure 1: Rationale of direct density-ratio estimation.

non-parametric methods such as kernel density estimation (Csörgö and Horváth, 1988;
Brodsky and Darkhovsky, 1993) are designed with no particular parametric assumption.
However, they tend to be less accurate in high-dimensional problems because of the so-
called curse of dimensionality (Bellman, 1961; Vapnik, 1998).

To overcome this difficulty, a new strategy was introduced recently, which estimates the
ratio of probability densities directly without going through density estimation (Sugiyama
et al., 2012b). The rationale of this density-ratio estimation idea is that knowing the two
densities implies knowing the density ratio, but not vice versa; knowing the ratio does
not necessarily imply knowing the two densities because such decomposition is not unique
(Figure 1). Thus, direct density-ratio estimation is substantially easier than density esti-
mation (Sugiyama et al., 2012b). Following this idea, methods of direct density-ratio esti-
mation have been developed (Sugiyama et al., 2012a), e.g., kernel mean matching (Gretton
et al., 2009), the logistic-regression method (Bickel et al., 2007), and the Kullback-Leibler
importance estimation procedure (KLIEP) (Sugiyama et al., 2008). In the context of
change-point detection, KLIEP was reported to outperform other approaches (Kawahara
and Sugiyama, 2012) such as the one-class support vector machine (Schölkopf et al., 2001;
Desobry et al., 2005) and singular-spectrum analysis (Moskvina and Zhigljavsky, 2003b).
Thus, change-point detection based on direct density-ratio estimation is promising.

The goal of this paper is to further advance this line of research. More specifically, our
contributions in this paper are two folds. The first contribution is to apply a recently-
proposed density-ratio estimation method called the unconstrained least-squares impor-
tance fitting (uLSIF) (Kanamori et al., 2009) to change-point detection. The basic idea of
uLSIF is to directly learn the density-ratio function in the least-squares fitting framework.
Notable advantages of uLSIF are that its solution can be computed analytically (Kanamori
et al., 2009), it achieves the optimal non-parametric convergence rate (Kanamori et al.,
2012b), it has the optimal numerical stability (Kanamori et al., 2013), and it has higher
robustness than KLIEP (Sugiyama et al., 2012a). Through experiments on a range of
datasets, we demonstrate the superior detection accuracy of the uLSIF-based change-
point detection method.

The second contribution of this paper is to further improve the uLSIF-based change-
point detection method by employing a state-of-the-art extension of uLSIF called relative
uLSIF (RuLSIF) (Yamada et al., 2013). A potential weakness of the density-ratio based
approach is that density ratios can be unbounded (i.e., they can be infinity) if the denom-
inator density is not well-defined. The basic idea of RuLSIF is to consider relative density
ratios, which are smoother and always bounded from above. Theoretically, it was proved
that RuLSIF possesses a superior non-parametric convergence property than plain uLSIF
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y(t): d-dimensional time-series sample at time t

Y (t): subsequence of k time-series samples at time t

Y(t): set of n retrospective subsequences:
Y(t) := fY (t);Y (t+ 1); : : : ;Y (t+ n¡ 1)g

Figure 2: An illustrative example of notations on one-dimensional time-series data.

(Yamada et al., 2013), implying that RuLSIF gives an even better estimate from a small
number of samples. We experimentally demonstrate that our RuLSIF-based change-point
detection method compares favorably with other approaches.

The rest of this paper is structured as follows: In Section 2, we formulate our change-
point detection problem. In Section 3, we describe our proposed change-point detection
algorithms based on uLSIF and RuLSIF, together with the review of the KLIEP-based
method. In Section 4, we report experimental results on various artificial and real-world
datasets including human-activity sensing, speech, and Twitter messages from February
2010 to October 2010. Finally, in Section 5, conclusions together with future perspectives
are stated.

2 Problem Formulation

In this section, we formulate our change-point detection problem.
Let y(t) ∈ Rd be a d-dimensional time-series sample at time t. Let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ Rdk

be a “subsequence”1 of time series at time t with length k, where ⊤ represents the trans-
pose. Following the previous work (Kawahara and Sugiyama, 2012), we treat the subse-
quence Y (t) as a sample, instead of a single d-dimensional time-series sample y(t), by
which time-dependent information can be incorporated naturally (see Figure 2). Let Y(t)
be a set of n retrospective subsequence samples starting at time t:

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ n− 1)}.

Note that [Y (t),Y (t+ 1), . . . ,Y (t+ n− 1)] ∈ Rdk×n forms a Hankel matrix and plays a
key role in change-point detection based on subspace learning (Moskvina and Zhigljavsky,
2003a; Kawahara et al., 2007).

For change-point detection, let us consider two consecutive segments Y(t) and Y(t+n).
Our strategy is to compute a certain dissimilarity measure between Y(t) and Y(t+n), and

1In fact, only in the case of one-dimensional time-series, Y (t) is a subsequence. For higher-dimensional
time-series, Y (t) concatenates the subsequences of all dimensions into a one-dimensional vector.
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use it as the plausibility of change points. More specifically, the higher the dissimilarity
measure is, the more likely the point is a change point2.

Now the problems that need to be addressed are what kind of dissimilarity measure
we should use and how we estimate it from data. We will discuss these issues in the next
section.

3 Change-Point Detection via Density-Ratio Estima-

tion

In this section, we first define our dissimilarity measure, and then show methods for
estimating the dissimilarity measure.

3.1 Divergence-Based Dissimilarity Measure and Density-Ratio
Estimation

In this paper, we use a dissimilarity measure of the following form:

D(Pt∥Pt+n) +D(Pt+n∥Pt), (1)

where Pt and Pt+n are probability distributions of samples in Y(t) and Y(t+ n), respec-
tively. D(P∥P ′) denotes the f -divergence (Ali and Silvey, 1966; Csiszár, 1967):

D(P∥P ′) :=

∫
p′(Y )f

(
p(Y )

p′(Y )

)
dY , (2)

where f is a convex function such that f(1) = 0, and p(Y ) and p′(Y ) are probability
density functions of P and P ′, respectively. We assume that p(Y ) and p′(Y ) are strictly
positive. Since the f -divergence is asymmetric (i.e.,D(P∥P ′) ̸= D(P ′∥P )), we symmetrize
it in our dissimilarity measure (1) for all divergence-based methods3.

The f -divergence includes various popular divergences such as the Kullback-Leibler
(KL) divergence by f(t) = t log t (Kullback and Leibler, 1951) and the Pearson (PE)

2Another possible formulation is to compare distributions of samples in Y(t) and Y(t + n) in the
framework of hypothesis testing (Henkel, 1976). Although this gives a useful threshold to determine
whether a point is a change point, computing the p-value is often time consuming, particularly in a non-
parametric setup (Efron and Tibshirani, 1993). For this reason, we do not take the hypothesis testing
approach in this paper, although it is methodologically straightforward to extend the proposed approach
to the hypothesis testing framework.

3In the previous work (Kawahara and Sugiyama, 2012), the asymmetric dissimilarity measure
D(Pt||Pt+n) was used. As we numerically illustrate in Section 4, the use of the symmetrized divergence
contributes highly to improving the performance. For this reason, we decided to use the symmetrized
dissimilarity measure (1).
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divergence by f(t) = 1
2
(t− 1)2 (Pearson, 1900):

KL(P∥P ′) :=

∫
p(Y ) log

(
p(Y )

p′(Y )

)
dY , (3)

PE(P∥P ′) :=
1

2

∫
p′(Y )

(
p(Y )

p′(Y )
− 1

)2

dY . (4)

Since the probability densities p(Y ) and p′(Y ) are unknown in practice, we cannot
directly compute the f -divergence (and thus the dissimilarity measure). A naive way to
cope with this problem is to perform density estimation and plug the estimated densities
p̂(Y ) and p̂′(Y ) in the definition of the f -divergence. However, density estimation is
known to be a hard problem (Vapnik, 1998), and thus such a plug-in approach is not
reliable in practice.

Recently, a novel method of divergence approximation based on direct density-ratio
estimation was explored (Sugiyama et al., 2008; Nguyen et al., 2010; Kanamori et al.,
2009). The basic idea of direct density-ratio estimation is to learn the density-ratio

function p(Y )
p′(Y )

without going through separate density estimation of p(Y ) and p′(Y ). An

intuitive rationale of direct density-ratio estimation is that knowing the two densities p(Y )

and p′(Y ) means knowing their ratio, but not vice versa; knowing the ratio p(Y )
p′(Y )

does not

necessarily mean knowing the two densities p(Y ) and p′(Y ) because such decomposition
is not unique (see Figure 1). This implies that estimating the density ratio is substantially
easier than estimating the densities, and thus directly estimating the density ratio would
be more promising4 (Sugiyama et al., 2012b).

In the rest of this section, we review three methods of directly estimating the density
ratio p(Y )

p′(Y )
from samples {Y i}ni=1 and {Y ′

j}nj=1 drawn from p(Y ) and p′(Y ): The KL

importance estimation procedure (KLIEP) (Sugiyama et al., 2008) in Section 3.2, uncon-
strained least-squares importance fitting (uLSIF) (Kanamori et al., 2009) in Section 3.3,
and relative uLSIF (RuLSIF) (Yamada et al., 2013) in Section 3.4.

3.2 KLIEP

KLIEP (Sugiyama et al., 2008) is a direct density-ratio estimation algorithm that is
suitable for estimating the KL divergence.

4Vladimir Vapnik advocated in his seminal book (Vapnik, 1998) that one should avoid solving a more
difficult problem as an intermediate step. The support vector machine (Cortes and Vapnik, 1995) is a
representative example that demonstrates the usefulness of this principle: It avoids solving a more general
problem of estimating data generating probability distributions, and only learns a decision boundary
that is sufficient for pattern recognition. The idea of direct density-ratio estimation also follows Vapnik’s
principle.
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3.2.1 Density-Ratio Model

Let us model the density ratio p(Y )
p′(Y )

by the following kernel model:

g(Y ;θ) :=
n∑

ℓ=1

θℓK(Y ,Y ℓ), (5)

where θ := (θ1, . . . , θn)
⊤ are parameters to be learned from data samples, and K(Y ,Y ′)

is a kernel basis function. In practice, we use the Gaussian kernel:

K(Y ,Y ′) = exp

(
−∥Y − Y ′∥2

2σ2

)
,

where σ (> 0) is the kernel width. In all our experiments, the kernel width σ is determined
based on cross-validation.

3.2.2 Learning Algorithm

The parameters θ in the model g(Y ;θ) are determined so that the KL divergence from
p(Y ) to g(Y ;θ)p′(Y ) is minimized:

KL =

∫
p(Y ) log

(
p(Y )

p′(Y )g(Y ;θ)

)
dY

=

∫
p(Y ) log

(
p(Y )

p′(Y )

)
dY −

∫
p(Y ) log (g(Y ;θ)) dY

After ignoring the first term which is irrelevant to g(Y ;θ) and approximating the second
term with the empirical estimates, the KLIEP optimization problem is given as follows:

max
θ

1

n

n∑
i=1

log

(
n∑

ℓ=1

θℓK(Y i,Y ℓ)

)
,

s.t.
1

n

n∑
j=1

n∑
ℓ=1

θℓK(Y ′
j,Y ℓ) = 1 and θ1, . . . , θn ≥ 0.

The equality constraint is for the normalization purpose because g(Y ;θ)p′(Y ) should be
a probability density function. The inequality constraint comes from the non-negativity
of the density-ratio function. Since this is a convex optimization problem, the unique
global optimal solution θ̂ can be simply obtained, for example, by a gradient-projection
iteration. Finally, a density-ratio estimator is given as

ĝ(Y ) =
n∑

ℓ=1

θ̂ℓK(Y ,Y ℓ).

KLIEP was shown to achieve the optimal non-parametric convergence rate (Sugiyama
et al., 2008; Nguyen et al., 2010).
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3.2.3 Change-Point Detection by KLIEP

Given a density-ratio estimator ĝ(Y ), an approximator of the KL divergence is given as

K̂L :=
1

n

n∑
i=1

log ĝ(Y i).

In the previous work (Kawahara and Sugiyama, 2012), this KLIEP-based KL-
divergence estimator was applied to change-point detection and demonstrated to be
promising in experiments.

3.3 uLSIF

Recently, another direct density-ratio estimator called uLSIF was proposed (Kanamori
et al., 2009, 2012b), which is suitable for estimating the PE divergence.

3.3.1 Learning Algorithm

In uLSIF, the same density-ratio model as KLIEP is used (see Section 3.2.1). However,
its training criterion is different; the density-ratio model is fitted to the true density-
ratio under the squared loss. More specifically, the parameter θ in the model g(Y ;θ) is
determined so that the following squared loss J(Y ) is minimized:

J(Y ) =
1

2

∫ (
p(Y )

p′(Y )
− g(Y ;θ)

)2

p′(Y ) dY

=
1

2

∫ (
p(Y )

p′(Y )

)2

p′(Y ) dY −
∫

p(Y )g(Y ;θ) dY +
1

2

∫
g(Y ;θ)2p′(Y ) dY .

Since the first term is a constant, we focus on the last two terms. By substituting g(Y ;θ)
with our model stated in (5) and approximating the integrals by the empirical averages,
the uLSIF optimization problem is given as follows:

min
θ∈Rn

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

λ

2
θ⊤θ

]
, (6)

where the penalty term λ
2
θ⊤θ is included for a regularization purpose. λ (≥ 0) denotes

the regularization parameter, which is chosen by cross-validation (Sugiyama et al., 2008).

Ĥ is the n× n matrix with the (ℓ, ℓ′)-th element given by

Ĥℓ,ℓ′ :=
1

n

n∑
j=1

K(Y ′
j,Y ℓ)K(Y ′

j,Y ℓ′). (7)
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ĥ is the n-dimensional vector with the ℓ-th element given by

ĥℓ :=
1

n

n∑
i=1

K(Y i,Y ℓ).

It is easy to confirm that the solution θ̂ of (6) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ, (8)

where In denotes the n-dimensional identity matrix. Finally, a density-ratio estimator is
given as

ĝ(Y ) =
n∑

ℓ=1

θ̂ℓK(Y ,Y ℓ).

3.3.2 Change-Point Detection by uLSIF

Given a density-ratio estimator ĝ(Y ), an approximator of the PE divergence can be
constructed as

P̂E := − 1

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

This approximator is derived from the following expression of the PE divergence
(Sugiyama et al., 2010, 2011b):

PE(P∥P ′) = −1

2

∫ (
p(Y )

p′(Y )

)2

p′(Y )dY +

∫ (
p(Y )

p′(Y )

)
p(Y )dY − 1

2
. (9)

The first two terms of (9) are actually the negative uLSIF optimization objective
without regularization. This expression can also be obtained based on the fact that the
f -divergence D(P∥P ′) is lower-bounded via the Legendre-Fenchel convex duality (Rock-
afellar, 1970) as follows (Keziou, 2003; Nguyen et al., 2007):

D(P ||P ′) = sup
h

(∫
p(Y )h(Y ) dY −

∫
p′(Y )f ∗(h(Y )) dY

)
, (10)

where f ∗ is the convex conjugate of convex function f defined at (2). The PE divergence

corresponds to f(t) = 1
2
(t− 1)2, for which convex conjugate is given by f ∗(t∗) = (t∗)2

2
+ t∗.

For f(t) = 1
2
(t− 1)2, the supremum can be achieved when p(Y )

p′(Y )
= h(Y )+1. Substituting

h(Y ) = p(Y )
p′(Y )

− 1 into (10), we can obtain (9).
uLSIF has some notable advantages: Its solution can be computed analytically

(Kanamori et al., 2009) and it possesses the optimal non-parametric convergence rate
(Kanamori et al., 2012b). Moreover, it has the optimal numerical stability (Kanamori
et al., 2013), and it is more robust than KLIEP (Sugiyama et al., 2012a). In Section 4,
we will experimentally demonstrate that uLSIF-based change-point detection compares
favorably with the KLIEP-based method.
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3.4 RuLSIF

Depending on the condition of the denominator density p′(Y ), the density-ratio value
p(Y )
p′(Y )

can be unbounded (i.e., they can be infinity). This is actually problematic because
the non-parametric convergence rate of uLSIF is governed by the “sup”-norm of the
true density-ratio function: maxY

p(Y )
p′(Y )

. To overcome this problem, relative density-ratio

estimation was introduced (Yamada et al., 2013).

3.4.1 Relative PE Divergence

Let us consider the α-relative PE-divergence for 0 ≤ α < 1:

PEα(P∥P ′) := PE(P∥αP + (1− α)P ′)

=

∫
p′α(Y )

(
p(Y )

p′α(Y )
− 1

)2

dY ,

where p′α(Y ) = αp(Y ) + (1− α)p′(Y ) is the α-mixture density. We refer to

rα(Y ) =
p(Y )

αp(Y ) + (1− α)p′(Y )

as the α-relative density-ratio. The α-relative density-ratio is reduced to the plain density-
ratio if α = 0, and it tends to be “smoother” as α gets larger. Indeed, one can confirm
that the α-relative density-ratio is bounded above by 1/α for α > 0, even when the

plain density-ratio p(Y )
p′(Y )

is unbounded. This was proved to contribute to improving the

estimation accuracy (Yamada et al., 2013).
As explained in Section 3.1, we use symmetrized divergence

PEα(P∥P ′) + PEα(P
′∥P )

as a change-point score, where each term is estimated separately.

3.4.2 Learning Algorithm

For approximating the α-relative density ratio rα(Y ), we still use the same kernel model
g(Y ;θ) given by (5). In the same way as the uLSIF method, the parameter θ is learned
by minimizing the squared loss between true and estimated relative ratios:

J(Y ) =
1

2

∫
p′α(Y )

(
rα(Y )− g(Y ;θ)

)2
dY

=
1

2

∫
p′α(Y )r2α(Y ) dY −

∫
p(Y )rα(Y )g(Y ;θ) dY

+
α

2

∫
p(Y )g(Y ;θ)2 dY +

1− α

2

∫
p′(Y )g(Y ;θ)2 dY .
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Again, by ignoring the constant and approximating the expectations by sample aver-
ages, the α-relative density-ratio can be learned in the same way as the plain density-ratio.
Indeed, the optimization problem of a relative variant of uLSIF, called RuLSIF, is given
as the same form as uLSIF; the only difference is the definition of the matrix Ĥ :

Ĥℓ,ℓ′ :=
α

n

n∑
i=1

K(Y i,Y ℓ)K(Y i,Y ℓ′) +
(1− α)

n

n∑
j=1

K(Y ′
j,Y ℓ)K(Y ′

j,Y ℓ′).

Thus, the advantages of uLSIF regarding the analytic solution, numerical stability, and
robustness are still maintained in RuLSIF. Furthermore, RuLSIF possesses an even better
non-parametric convergence property than uLSIF (Yamada et al., 2013).

3.4.3 Change-Point Detection by RuLSIF

By using an estimator ĝ(Y ) of the α-relative density-ratio, the α-relative PE divergence
can be approximated as

P̂Eα := − α

2n

n∑
i=1

ĝ(Y i)
2 − 1− α

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

In Section 4, we will experimentally demonstrate that the RuLSIF-based change-point
detection performs even better than the plain uLSIF-based method.

4 Experiments

In this section, we experimentally investigate the performance of the proposed and existing
change-point detection methods on artificial and real-world datasets including human-
activity sensing, speech, and Twitter messages. The MATLAB implementation of the
proposed method is available at

“http://sugiyama-www.cs.titech.ac.jp/~song/change_detection/”.

For all experiments, we fix the parameters at n = 50 and k = 10. α in the RuLSIF-
based method is fixed to 0.1. Sensitivity to different parameter choices and more issues
regarding algorithm-specific parameter tuning will be discussed below.

4.1 Artificial Datasets

As mentioned in Section 3.1, we use the symmetrized divergence for change-point detec-
tion. We first illustrate how symmetrization of the PE divergence affects the change-point
detection performance.

The top graph in Figure 3 shows an artificial time-series signal that consists of three
segments with equal length of 200. The samples are drawn from N (0, 22), N (0, 12), and
N (0, 22), respectively, where N (µ, σ2) denotes the normal distribution with mean µ and
variance σ2. Thus, the variances change at time 200 and 400. In this experiment, we
consider three types of divergence measures:
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tively. (Bottom) Symmetric (red) and asymmetric (black and green) PEα divergences.

• PEα(Symmetric) : PEα(Pt||Pt+n) + PEα(Pt+n||Pt),

• PEα(Forward) : PEα(Pt||Pt+n),

• PEα(Backward) : PEα(Pt+n||Pt).

Three divergences are compared in the bottom graph of Figure 3.
As we can see from the graphs, PEα(Forward) detects the first change point success-

fully, but not the second one. On the other hand, PEα(Backward) behaves oppositely.
This implies that combining forward and backward divergences can improve the overall
change-point detection performance. For this reason, we only use PEα(Symmetric) as the
change-point score of the proposed method from here on.

Next, we illustrate the behavior of our proposed RuLSIF-based method, and then
compare its performance with the uLSIF-based and KLIEP-based methods. In our im-
plementation, two sets of candidate parameters,

• σ = 0.6dmed, 0.8dmed, dmed, 1.2dmed, and 1.4dmed,

• λ = 10−3, 10−2, 10−1, 100, and 101,
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are provided to the cross-validation procedure, where dmed denotes the median distance
between samples. The best combination of these parameters is chosen by grid search via
cross-validation. We use 5-fold cross-validation for all experiments.

We use the following 4 artificial time-series datasets that contain manually inserted
change-points:

• Dataset 1 (Jumping mean): The following 1-dimensional auto-regressive model
borrowed from Takeuchi and Yamanishi (2006) is used to generate 5000 samples
(i.e., t = 1, . . . , 5000):

y(t) = 0.6y(t− 1)− 0.5y(t− 2) + ϵt,

where ϵt is a Gaussian noise with mean µ and standard deviation 1.5. The initial
values are set as y(1) = y(2) = 0. A change point is inserted at every 100 time steps
by setting the noise mean µ at time t as

µN =

{
0 N = 1,

µN−1 +
N
16

N = 2, . . . , 49,

where N is a natural number such that 100(N − 1) + 1 ≤ t ≤ 100N .

• Dataset 2 (Scaling variance): The same auto-regressive model as Dataset 1 is
used, but a change point is inserted at every 100 time steps by setting the noise
standard deviation σ at time t as

σ =

{
1 N = 1, 3, . . . , 49,

ln(e+ N
4
) N = 2, 4, . . . , 48.

• Dataset 3 (Switching covariance): 2-dimensional samples of size 5000 are drawn
from the origin-centered normal distribution, and a change point is inserted at every
100 time steps by setting the covariance matrix Σ at time t as

Σ =



(
1 −4

5
− N−2

500

−4
5
− N−2

500
1

)
N = 1, 3, . . . , 49,

(
1 4

5
+ N−2

500
4
5
+ N−2

500
1

)
N = 2, 4, . . . , 48.

• Dataset 4 (Changing frequency): 1-dimensional samples of size 5000 are gen-
erated as

y(t) = sin(ωx) + ϵt,

where ϵt is a origin-centered Gaussian noise with standard deviation 0.8. A change
point is inserted at every 100 points by changing the frequency ω at time t as

ωN =

{
1 N = 1,

ωN−1 ln(e+
N
2
) N = 2, . . . , 49.
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Note that, to explore the ability of detecting change points with different significance,
we purposely made latter change-points more significant than earlier ones in the above
datasets.

Figure 4 shows examples of these datasets for the last 10 change points and corre-
sponding change-point score obtained by the proposed RuLSIF-based method. Although
the last 10 change points are the most significant, we can see from the graphs that, for
Dataset 3 and Dataset 4, these change points can be even hardly identified by human.
Nevertheless, the change-point score obtained by the proposed RuLSIF-based method
increases rapidly after changes occur.

Next, we compare the performance of RuLSIF-based, uLSIF-based, and KLIEP-based
methods in terms of the receiver operating characteristic (ROC) curves and the area under
the ROC curve (AUC) values. We define the true positive rate and false positive rate in
the following way (Kawahara and Sugiyama, 2012):

• True positive rate (TPR): ncr/ncp,

• False positive rate (FPR): (nal − ncr)/nal,

where ncr denotes the number of times change points are correctly detected, ncp denotes
the number of all change points, and nal is the number of all detection alarms.

Following the strategy of the previous researches (Desobry et al., 2005; Harchaoui et al.,
2009), peaks of a change-point score are regarded as detection alarms. More specifically,
a detection alarm at step t is regarded as correct if there exists a true alarm at step t∗

such that t ∈ [t∗ − 10, t∗ + 10]. To avoid duplication, we remove the kth alarm at step tk
if tk − tk−1 < 20.

We set up a threshold η for filtering out all alarms whose change-point scores are lower
than or equal to η. Initially, we set η to be equal to the score of the highest peak. Then,
by lowering η gradually, both TPR and FPR become non-decreasing. For each η, we plot
TPR and FPR on the graph, and thus a monotone curve can be drawn.

Figure 5 illustrates ROC curves averaged over 50 runs with different random seeds for
each dataset. Table 1 describes the mean and standard deviation of the AUC values over
50 runs. The best and comparable methods by the t-test with significance level 5% are
described in boldface. The experimental results show that the uLSIF-based method tends
to outperform the KLIEP-based method, and the RuLSIF-based method even performs
better than the uLSIF-based method.

Finally, we investigate the sensitivity of the performance on different choices of n and
k in terms of AUC values. In Figure 6, the AUC values of RuLSIF (α = 0.1 and 0.2),
uLSIF (which corresponds to RuLSIF with α = 0), and KLIEP were plotted for k = 5,
10, and 15 under a specific choice of n in each graph. We generate such graphs for all 4
datasets with n = 25, 50, and 75. The result shows that the proposed method consistently
performs better than the other methods, and the order of the methods according to the
performance is kept unchanged over various choices of n and k. Moreover, the RuLSIF
methods with α = 0.1 and 0.2 perform rather similarly. For this reason, we keep using the
medium parameter values among the candidates in the following experiments: n = 50,
k = 10, and α = 0.1.
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Figure 4: Illustrative time-series samples (upper) and
the change-point score obtained by the RuLSIF-based
method (lower). The true change-points are marked
by black vertical lines in the upper graphs.
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Figure 5: Average ROC curves of
RuLSIF-based, uLSIF-based, and
KLIEP-based methods.
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(c) Dataset 1 (n = 75)

4 6 8 10 12 14 16
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

k

A
U

C

 

 

RuLSIF (α = .1)
RuLSIF (α = .2)
uLSIF
KLIEP

(d) Dataset 2 (n = 25)
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(e) Dataset 2 (n = 50)
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(g) Dataset 3 (n = 25)
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(i) Dataset 3 (n = 75)
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(j) Dataset 4 (n = 25)
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Figure 6: AUC plots for n = 25, 50, 75 and k = 5, 10, 15. The horizontal axes denote k,
while the vertical axes denote AUC values.
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Table 1: The AUC values of RuLSIF-based, uLSIF-based, and KLIEP-based methods.
The best and comparable methods by the t-test with significance level 5% are described
in boldface.

RuLSIF uLSIF KLIEP
Dataset 1 .848(.023) .763(.023) .713(.036)
Dataset 2 .846(.031) .806(.035) .623(.040)
Dataset 3 .972(.012) .943(.015) .904(.017)
Dataset 4 .844(.031) .801(.024) .602(.036)

4.2 Real-World Datasets

Next, we evaluate the performance of the density-ratio estimation based methods and
other existing change-point detection methods using two real-world datasets: Human-
activity sensing and speech.

We include the following methods in our comparison.

• Singular spectrum transformation (SST) (Moskvina and Zhigljavsky,
2003a; Ide and Tsuda, 2007; Itoh and Kurths, 2010): Change-point scores
are evaluated on two consecutive trajectory matrices using the distance-based sin-
gular spectrum analysis. This corresponds to a state-space model with no system
noise. For this method, we use the first 4 eigenvectors to compare the difference
between two subspaces, which was confirmed to be reasonable choice in our prelim-
inary experiments.

• Subspace identification (SI) (Kawahara et al., 2007): SI identifies a sub-
space in which time-series data is constrained, and evaluates the distance of target
sequences from the subspace. The subspace spanned by the columns of an observ-
ability matrix is used for estimating the distance from the subspace spanned by
subsequences of time-series data. For this method, we use the top 4 significant
singular values according to our preliminary experiment results.

• Auto regressive (AR) (Takeuchi and Yamanishi, 2006): AR first fits an AR
model to time-series data, and then auxiliary time-series is generated from the AR
model. With an extra AR model-fitting, the change-point score is given by the log-
likelihood. The order of the AR model is chosen by Schwarz’s Bayesian information
criterion (Schwarz, 1978).

• One-class support vector machine (OSVM) (Desobry et al., 2005):
Change-point scores are calculated by OSVM using two sets of descriptors of sig-
nals. The kernel width σ is set to the median value of the distances between samples,
which is a popular heuristic in kernel methods (Schölkopf and Smola, 2002). An-
other parameter ν is set to 0.2, which indicates the proportion of outliers.
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First, we use a human activity dataset. This is a subset of the Human Activity Sens-
ing Consortium (HASC) challenge 2011 5, which provides human activity information
collected by portable three-axis accelerometers. The task of change-point detection is to
segment the time-series data according to the 6 behaviors: “stay”, “walk”, “jog”, “skip”,
“stair up”, and “stair down”. The starting time of each behavior is arbitrarily decided
by each user. Because the orientation of accelerometers is not necessarily fixed, we take
the ℓ2-norm of the 3-dimensional (i.e., x-, y-, and z-axes) data.

In Figure 7(a), examples of original time-series, true change points, and change-point
scores obtained by the RuLSIF-based method are plotted. This shows that the change-
point score clearly captures trends of changing behaviors, except the changes around time
1200 and 1500. However, because these changes are difficult to be recognized even by
human, we do not regard them as critical flaws. Figure 7(b) illustrates ROC curves aver-
aged over 10 datasets, and Figure 7(c) describes AUC values for each of the 10 datasets.
The experimental results show that the proposed RuLSIF-based method tends to perform
better than other methods.

Next, we use the IPSJ SIG-SLP Corpora and Environments for Noisy Speech Recog-
nition (CENSREC) dataset provided by National Institute of Informatics (NII)6, which
records human voice in a noisy environment. The task is to extract speech sections from
recorded signals. This dataset offers several voice recordings with different background
noises (e.g., noise of highway and restaurant). Segmentation of the beginning and ending
of human voice is manually annotated. Note that we only use the annotations as the
ground truth for the final performance evaluation, not for change-point detection (i.e.,
this experiment is still completely unsupervised).

Figure 8(a) illustrates an example of the original signals, true change-points, and
change-point scores obtained by the proposed RuLSIF-based method. This shows that
the proposed method still gives clear indications for speech segments. Figure 8(b) and
Figure 8(c) show average ROC curves over 10 datasets and AUC values for each of the
10 datasets. The results show that the proposed method significantly outperforms other
methods.

4.3 Twitter Dataset

Finally, we apply the proposed change-point detection method to the CMU Twitter
dataset7, which is an archive of Twitter messages collected from February 2010 to October
2010 via the Twitter application programming interface.

Here we track the degree of popularity of a given topic by monitoring the frequency of
selected keywords. More specifically, we focus on events related to “Deepwater Horizon oil
spill in the Gulf of Mexico” which occurred on April 20, 20108, and was widely broadcast
among the Twitter community. We use the frequencies of 10 keywords: “gulf ”, “spill”,

5http://hasc.jp/hc2011/
6http://research.nii.ac.jp/src/eng/list/index.html
7http://www.ark.cs.cmu.edu/tweets/
8http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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(b) Average ROC curves

ID RuLSIF uLSIF KLIEP AR SI SST OSVM

1001 .974 .853 .838 .899 .958 .903 .900
1002 .996 .963 .909 .872 .969 .880 .905
1003 .989 .854 .929 .869 .895 .851 .937
1004 .996 .868 .890 .881 .941 .886 .891
1005 .938 .952 .972 .849 .972 .915 .943
1006 .933 .918 .889 .778 .890 .925 .842
1007 .972 .857 .834 .850 .941 .817 .891
1008 .995 .922 .930 .892 .981 .860 .907
1009 .987 .880 .907 .833 .979 .842 .951
1010 .991 .952 .889 .821 .915 .867 .903

Ave. .977 .902 .900 .854 .944 .875 .907
Std. .024 .044 .042 .037 .034 .034 .032

(c) AUC values. The best and comparable methods by the t-test
with significance level 5% are described in boldface.

Figure 7: HASC human-activity dataset.
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(b) Average ROC curves

ID RuLSIF uLSIF KLIEP AR SI SST OSVM

01 1.00 .902 .650 .860 .690 .806 .800
02 .911 .845 .712 .733 .800 .745 .725
03 .963 .931 .708 .910 .899 .807 .932
04 .903 .813 .587 .816 .735 .685 .751
05 .927 .907 .565 .831 .823 .809 .840
06 .857 .913 .676 .868 .740 .736 .838
07 .987 .797 .657 .807 .759 .797 .829
08 .962 .757 .581 .629 .704 .682 .800
09 .924 .913 .693 .738 .744 .781 .790
10 .966 .856 .554 .796 .725 .790 .850

Ave. .940 .863 .638 .798 .762 .764 .815
Std. .044 .059 .061 .081 .063 .049 .057

(c) AUC values. The best and comparable methods by the t-test
with significance level 5% are described in boldface.

Figure 8: CENSREC speech dataset.
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Figure 9: Twitter dataset.

“bp”, “oil”, “hayward”, “mexico”, “coast”, “transocean”, “halliburton”, and “obama”
(see Figure 9(a)). We perform change-point detection directly on the 10-dimensional
data, with the hope that we can capture correlation changes between multiple keywords,
in addition to changes in the frequency of each keyword.

For quantitative evaluation, we referred to the Wikipedia entry “Timeline of the Deep-
water Horizon oil spill”9 as a real-world event source. The change-point score obtained
by the proposed RuLSIF-based method is plotted in Figure 9(b), where four occurrences
of important real-world events show the development of this news story.

As we can see from Figure 9(b), the change-point score increases immediately after the
initial explosion of the deepwater horizon oil platform and soon reaches the first peak when
oil was found on the sea shore of Louisiana on April 30. Shortly after BP announced its
preliminary estimation on the amount of leaking oil, the change-point score rises quickly
again and reaches its second peak at the end of May, at which time President Obama
visited Louisiana to assure local residents of the federal government’s support. On June
25, the BP stock was at its one year’s lowest price, while the change-point score spikes at
the third time. Finally, BP cut off the spill on July 15, as the score reaches its last peak.

9http://en.wikipedia.org/wiki/Timeline_of_the_Deepwater_Horizon_oil_spill
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5 Conclusion and Future Perspectives

In this paper, we first formulated the problem of retrospective change-point detection as
the problem of comparing two probability distributions over two consecutive time seg-
ments. We then provided a comprehensive review of state-of-the-art density-ratio and
divergence estimation methods, which are key building blocks of our change-point detec-
tion methods. Our contributions in this paper were to extend the existing KLIEP-based
change-point detection method (Kawahara and Sugiyama, 2012), and to propose to use
uLSIF as a building block. uLSIF has various theoretical and practical advantages, for
example, the uLSIF solution can be computed analytically, it possesses the optimal non-
parametric convergence rate, it has the optimal numerical stability, and it has higher ro-
bustness than KLIEP. We further proposed to use RuLSIF, a novel divergence estimation
paradigm emerged in the machine learning community recently. RuLSIF inherits good
properties of uLSIF, and moreover it possesses an even better non-parametric convergence
property. Through extensive experiments on artificial datasets and real-world datasets
including human-activity sensing, speech, and Twitter messages, we demonstrated that
the proposed RuLSIF-based change-point detection method is promising.

Though we estimated a density ratio between two consecutive segments, some earlier
researches (Basseville and Nikiforov, 1993; Gustafsson, 1996, 2000) introduced a hyper-
parameter that controls the size of a margin between two segments. In our preliminary
experiments, however, we did not observe significant improvement by changing the margin.
For this reason, we decided to use a straightforward model that two segments have no
margin in between.

Through the experiment illustrated in Figure 6 in Section 4.1, we can see that the
performance of the proposed method is affected by the choice of hyper-parameters n and
k. However, discovering optimal values for these parameters remains a challenge, which
will be investigated in our future work.

RuLSIF was shown to possess a better convergence property than uLSIF (Yamada
et al., 2013) in terms of density ratio estimation. However, how this theoretical advantage
in density ratio estimation can be translated into practical performance improvement in
change detection is still not clear, beyond the intuition that a better divergence estimator
gives a better change score. We will address this issue more formally in the future work.

Although the proposed RuLSIF-based change-point detection was shown to work well
even for multi-dimensional time-series data, its accuracy may be further improved by
incorporating dimensionality reduction. Recently, several attempts were made to com-
bine dimensionality reduction with direct density-ratio estimation (Sugiyama et al., 2010,
2011b; Yamada and Sugiyama, 2011). Our future work will apply these techniques to
change-point detection and evaluate their practical usefulness.

Compared with other approaches, methods based on density ratio estimation tend to
be computationally more expensive because of the cross-validation procedure for model
selection. However, thanks to the analytic solution, the RuLSIF- and uLSIF-based meth-
ods are computationally more efficient than the KLIEP-based method that requires an
iterative optimization procedure (see Figure 9 in Kanamori et al. (2009) for the detailed
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time comparison between uLSIF and KLIEP). Our important future work is to further
improve the computational efficiency of the RuLSIF-based method.

In this paper, we focused on computing the change-point score that represents the
plausibility of change points. Another possible formulation is hypothesis testing, which
provides a useful threshold to determine whether a point is a change point. Method-
ologically, it is straightforward to extend the proposed method to produce the p-values,
following the recent literatures (Sugiyama et al., 2011a; Kanamori et al., 2012a). However,
computing the p-value is often time consuming, particularly in a non-parametric setup.
Thus, overcoming the computational bottleneck is an important future work for making
this approach more practical.

Recent reports pointed out that Twitter messages can be indicative of real-world events
(Petrović et al., 2010; Sakaki et al., 2010). Following this line, we showed in Section 4.3
that our change-detection method can be used as a novel tool for analyzing Twitter
messages. An important future challenge along this line includes automatic keyword
selection for topics of interests.
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