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Abstract

Oriental ink painting, called Sumi-e, is one of the most distinctive painting styles
and has attracted artists around the world. Major challenges in Sumi-e simulation
are to abstract complex scene information and reproduce smooth and natural brush
strokes. To automatically generate such strokes, we propose to model the brush as a
reinforcement learning agent, and let the agent learn the desired brush-trajectories
by maximizing the sum of rewards in the policy search framework. To achieve
better performance, we provide elaborate design of actions, states, and rewards
specifically tailored for a Sumi-e agent. The effectiveness of our proposed approach
is demonstrated through experiments on Sumi-e simulation.
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1 Introduction

Among various techniques of non-photorealistic rendering [7], stroke-based painterly ren-
dering synthesizes an image from a source image in a desired painting style by placing
discrete strokes [10]. Such an algorithm simulates the common practice of human painters
who create paintings with brush strokes. In this paper, we focus on automatic stroke gen-
eration in oriental ink painting.
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Unlike western painting styles such as water-color, pastel, and oil painting, all of which
overlap strokes into multiple layers [9, 17], oriental ink painting uses a few expressive
strokes produced by soft brush tufts to convey significant information about a target
scene. The appearance of the stroke is therefore determined by the shape of the object to
paint, the path and posture of the brush, and the distribution of pigments in the brush.

Drawing smooth and natural strokes in arbitrary shapes is challenging since an opti-
mal brush trajectory and the posture of a brush footprint1 are different for each shape.
Existing methods can efficiently map brush texture by deformation onto a user-given tra-
jectory line or the shape of a target stroke [2, 8, 9, 14]. However, the geometrical process
of morphing the entire texture of a brush stroke into the target shape leads to undesirable
effects such as the undesirable folding and creased appearance at corners or curves.

To overcome this critical weakness, a more systematic approach was introduced re-
cently [22]. In that paper, the problem of drawing brush strokes was formulated as a multi-
step decision making process to minimize an accumulated energy of moving the brush.
The dynamic programming (DP) method was used to obtain optimal brush strokes. It was
demonstrated that smooth and natural brush strokes could be obtained by minimizing
the accumulated energy.

However, DP is a model-based method and thus a stroke optimized by DP for a specific
shape cannot be applied to other shapes even when the difference is small. Thus, the DP-
based approach is not efficient if the target object is composed of many basic shapes, e.g.,
a Chinese character, since the optimal brush stroke for each shape has to be obtained.
Furthermore, ordinary DP cannot directly handle continuous actions and states. Thus,
the smoothness of brush strokes is highly dependent on the discretization of spaces.

The objective of this paper is to overcome the above weakness of the DP method.
More specifically, we model a soft-tuft brush as an intelligent agent. Given any closed
contour that represents the shape of a desired single stroke without overlap, the goal
of our agent is to be able to draw a stroke by moving the brush on the canvas to fill
in the given shape once from a start point to an end point on the contour with stable
poses along a smooth continuous movement trajectory. MDP is a standard mathematical
formalization of sequential decision making that has been successfully employed in many
applications [13]. In this MDP framework, we let our brush agent learn which direction
to move and how to keep the stable posture while sweeping over an arbitrary stroke shape
(see Figure 1).

Reinforcement learning (RL) helps build an intelligent agent in an unknown envi-
ronment [20]. This advantage motivates us to develop a method to optimize the brush
agent’s behavior of stroke drawing in the RL framework: First, we let the agent learn
a desired drawing policy by maximizing the sum of rewards from a number of typical
training shapes. Then, the agent applies the trained policy to drawing strokes for various
new shapes.

The main challenges in this paper are two folds:

(i) The design of the brush agent. Our key idea is to design the state space of the brush

1We use a footprint to denote the region of a canvas which a brush stamps on.
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Figure 1: Illustration of our brush agent and its path. (a) In our model, a stroke is gener-
ated by moving the brush with the following 3 actions: Action 1 is regulating the direction
of the brush movement, Action 2 is pushing down/lifting up the brush, and Action 3 is
rotating the brush handle. In our system, only Action 1 is determined by reinforcement
learning, and Actions 2 and 3 are automatically determined based on Action 1. (b) The
top symbol illustrates our brush agent, which consists of a tip Q and a circle with center C
and radius r. Others illustrate footprints of a real brush with different ink quantities. (c)
There are 6 basic stroke styles: full ink, dry ink, first-half hollow, hollow, middle hollow,
and both-end hollow. Small footprints on the top of each stroke show the interpolation
order.

agent to be relative to its surrounding shape [19], e.g., boundaries and the medial
axis. This allows the agent to learn a general drawing policy that is independent of
the overall shape.

(ii) The design of a training strategy for the brush agent. We use the RL method called
the policy gradient method [21] for agent training. An advantage of the policy
gradient method over other RL methods is that it can naturally handle continuous
states and actions, which are particularly important in the current paper to obtain
smooth and natural brush strokes. To further improve the generalization ability
of the agent to new shapes, we train the agent with partial shapes, by which the
number and variation of training samples can be significantly increased. Another
merit of using partial shapes is that even when the entire profile of a new shape
is quite different from those of training data, the new shape may contain similar
partial shapes and thus better generalization ability can be expected.

The rest of this paper is structured as follows. Section 2 gives a brief review of existing
methods for generating brush drawings. Section 3 formulates the problem of automatic
stroke generation as reinforcement learning and reviews the policy gradient method. Sec-
tion 4 gives our specific design of states, actions, and rewards for automatic stroke gener-
ation, as well as the design of the training session. Section 5 shows experimental results
and Section 6 concludes.
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2 Related Works

In this section, we briefly review existing methods for generating brush drawings, which
can be categorized into two approaches: Physics-based painting and stroke-based render-
ing.

2.1 Physics-Based Painting

Physics-based painting aims at simulating a real painting process and giving users intuitive
and natural feeling when holding a mouse or a pen-like device. Several previous works
modeled the brush shapes, its dynamics, and its interaction with the paper, as well as
simulated the ink dispersion and absorption by a paper, e.g, the hairy brushes [18] and
the physics-based models [16, 5, 4].

For interactive use, these virtual brushes are convenient to draw various styles of
strokes. Although there exists extensive research literature along this line, automatically
controlling a virtual brush with six degrees of freedom—three for the Cartesian coordinates
and three for their angular orientation (pitch, roll, and yaw)—in addition to the dynamics
of the tufts is highly complex and existing physics-based models are in fact simplifications
of the real process.

Another major problem of the physics-based method is that the computational cost
is usually very high for achieving satisfactory visual effects to human eyes. Some of them
use graphics processing units for speedup [4]. However, due to over-simplification, none
of these methods has been able to simulate certain special brush strokes such as impasto
created with paint knives.

2.2 Stroke-Based Rendering

If a user has no painting expertise and is interested only in painting results rather than the
painting process itself, stroke-based rendering is practically more desirable than physics-
based painting.

The skeleton stroke method [11] generates brush strokes from two-dimensional paths
given either through user interaction or by automatic extraction from real images. How-
ever, specifying and varying the width and texture of a stroke along a given path is prac-
tically very difficult. One of the solutions to this problem is to specify a stroke backbone
[8] manually by a user. However, its limitation is that appropriately tuning parameters
for each control point is difficult and time-consuming.

3 Reinforcement Learning Approach to Automatic

Stroke Generation

In this section, we formulate the problem of automatic stroke generation as a Markov
decision process and review the policy gradient method.
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Figure 2: The flow of interaction between the agent and the environment.

3.1 Overview

A boundary map of an image can provide valuable information for various image analysis
and interpretation tasks such as segmentation and object description [12]. In our stroke
generation task, the boundary map represents all segments of expected strokes. Here, we
treat the boundary map as an input to our brush agent for drawing strokes inside the
boundaries.

We use the following terms in our formulation (see Figure 2):

• A controller is a decision-making algorithm of a brush agent.

• An environment consists of a visualized two-dimensional brush model, a paper can-
vas, and an input boundary map.

• An action allows the controller to change the environment so as to influence the
process of stroke generation.

• A state characterizes the environment. At each time step, the controller receives a
state measurement and outputs an action. This causes a transition to a new state.

• A reward represents the quality of state transition. The reward provides the con-
troller feedback on its immediate performance.

The controller receives a new state measurement, and the whole cycle is repeated until
the task is accomplished. The intelligence of the agent, how to choose optimal actions,
is the core issue in this procedure. The behavior of the brush agent is described by its
policy, which outputs an action given a state. The goal of this optimal control problem
is to find an optimal policy that maximizes the expected return, which is the expected
cumulative reward over the course of interaction with the environment.
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The process dynamics and the reward function, together with the sets of possible states
and actions, constitute a Markov decision process. This is mathematically formalized
below.

3.2 Markov Decision Process

Let us formulate the procedure of drawing a stroke as a Markov decision process (MDP).
An MDP consists of a tuple

(S,A, pI, pT, R), (1)

where

• S is a set of continuous states,

• A is a set of continuous actions,

• pI is the probability density of the initial state,

• pT(s′|s, a) is the transition probability density from current state s ∈ S to next
state s′ ∈ S when taking action a ∈ A,

• R(s, a, s′) is an immediate reward function for the transition from s to s′ by taking
action a.

Let π(a|s;θ) be a stochastic policy with parameter θ. This represents the conditional
probability of taking action a given state s. Let

h = (s1, a1, . . . , sT , aT , sT+1) (2)

be a trajectory of length T . The return (i.e., the discounted sum of future rewards) along
h is defined as

R(h) =
T∑
t=1

γt−1R(st, at, st+1), (3)

where γ ∈ [0, 1) is the discount factor for the future reward. The expected return for
parameter θ is defined by

J(θ) =

∫
p(h|θ)R(h)dh, (4)

where

p(h|θ) = p(s1)
T∏
t=1

p(st+1|st, at)π(at|st,θ). (5)

The goal of reinforcement learning (RL) is to find the optimal policy parameter θ∗ that
maximizes the expected return J(θ):

θ∗ ≡ argmax
θ

J(θ). (6)



Artist Agent 7

3.3 Policy Gradient Method

We use a policy gradient algorithm [21] to solve the above RL problem. Here we briefly
review the policy gradient method.

The policy parameter θ is updated via gradient ascent as

θ ←− θ + ε∇θJ(θ), (7)

where ε is a learning rate. The gradient ∇θJ(θ) is given by

∇θJ(θ) =

∫
∇θp(h|θ)R(h)dh

=

∫
p(h|θ)∇θlog p(h|θ)R(h)dh

=

∫
p(h|θ)

T∑
t=1

∇θlog π(at|st,θ)R(h)dh, (8)

where we used the so-called log trick :

∇θp(h|θ) = p(h|θ)∇θlog p(h|θ). (9)

Since p(h|θ) is unknown, the expectation is approximated by the empirical average:

∇θĴ(θ) =
1

N

N∑
n=1

T∑
t=1

∇θlog π(a
(n)
t |s

(n)
t ,θ)R(h(n)), (10)

where {h(n)}Nn=1 are N episodic samples with T steps and

h(n) = (s
(n)
1 , a

(n)
1 , . . . , s

(n)
T , a

(n)
T , s

(n)
T+1). (11)

Let us employ the Gaussian policy function with parameter θ = (µ⊤, σ)⊤, where µ is
the mean vector and σ is the standard deviation:

π(a|s;θ) = 1

σ
√
2π

exp

(
−(a− µ⊤s)2

2σ2

)
. (12)

Then the derivatives of the expected return J(θ) with respect to the parameter θ are
given as

∇µlogπ(a|s;θ) =
a− µ⊤s

σ2
s, (13)

∇σlogπ(a|s;θ) =
(a− µ⊤s)2 − σ2

σ3
. (14)
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Consequently, the policy gradients ∇θĴ(θ) are given as

∇µJ(θ) =
1

N

N∑
n=1

(R(h(n))− b)
T∑
t=1

(a
(n)
t − µ⊤s

(n)
t )s

(n)
t

σ2
, (15)

∇σJ(θ) =
1

N

N∑
n=1

(R(h(n))−b)
T∑
t=1

(
a
(n)
t −µ⊤s

(n)
t

)2
− σ2

σ3
, (16)

where b is a baseline for reducing the variance of gradient estimates. The optimal baseline
that minimizes the variance of the gradient estimate is given as follows [15]:

b∗ = argmin
b

Var[∇θĴ(θ)]

≃
1
N

∑N
n=1R(h

(n))
∥∥∥∑T

t=1∇θ log π(a
(n)
t |s

(n)
t ;θ)

∥∥∥2
1
N

∑N
n=1

∥∥∥∑T
t=1∇θ log π(a

(n)
t |s

(n)
t ;θ)

∥∥∥2 . (17)

Finally, the policy parameter θ = (µ⊤, σ)⊤ is updated as

µ←− µ+ ε∇µJ(θ), (18)

σ ←− σ + ε∇σJ(θ). (19)

4 Tailoring RL to Automatic Stroke Generation

In this section, we introduce Sumi-e brush styles and give a specific design of states,
actions, and rewards tailored for our Sumi-e agent, as well as the design of the training
session.

4.1 Brushing Styles

In oriental ink painting, there are several different brushing styles that characterize the
paintings. In our system, we implement the upright brush style and the oblique brush style
(see Figure 3).

In the upright brush style, the tip of the brush agent should be located on the medial
axis of the shape of the expected stroke, and the bottom of the agent should be tangent to
both sides of the boundary of the expected stroke shape. On the other hand, in the oblique
brush stroke style, the tip of the agent should touch one side of the boundary; meanwhile,
the bottom of the agent should be tangent to the other side of the boundary. In both
styles, if the next footprint does not meet the above requirement, the next footprint will
remain the same posture as the current one, but it merely makes transition to a new
position by Action 1.

The choice of the upright brush style and the oblique brush style is exclusive and we
ask a user to choose one of the styles in advance.
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Figure 3: Brushing Styles. Left: Upright brush style. Right: Oblique brush style.

4.2 Design of States

As a state, we use the global measurement (the pose configuration of a footprint under the
global Cartesian coordinate) and the relative measurement (the pose and the locomotion
information of the brush agent relative to the surrounding environment). Here, our idea
is to only use the relative measurement for calculating a reward and a policy, by which the
agent can learn a drawing policy that is generalizable to new shapes. Below, we refer to
the relative measurement as state s; the global measurement is dealt with only implicitly.

Our relative state-space design consists of two parts: A current surrounding shape
and an upcoming shape. More specifically, our state vector consists of the following six
features:

s = (ω, ϕ, d, κ1, κ2, l)
⊤. (20)

Each feature is defined as follows (see Figures 4):

• ω ∈ (−π, π]: The angle of the velocity vector of the brush agent relative to the
medial axis (see Figure 4(a)).

• ϕ ∈ (−π, π]: The heading direction of the brush agent relative to the medial axis
(see Figure 4(a)).
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Figure 4: Illustration of the design of states: (a) Brush agent and its path. The brush
agent consists of a tip Q and a circle with center C and radius r. (b) The ratio d of
the offset distance δ over the radius r. Footprint ft−1 is inside the drawing area. The
circle with center Ct−1 and the tip Qt−1 touch the boundary on each side. In this case,
δt−1 ≤ rt−1 and dt−1 ∈ [0, 1]. On the other hand, ft goes over the boundary, and δt > rt
and dt > 1. In our implementation, we restrict d to be in [−2, 2]. P is the nearest point
on medial axisM to C.

• d ∈ [−2, 2]: The ratio of offset distance δ (see Figure 4(b)) from the center C of
the brush agent to the nearest point P on the medial axisM over the radius r of
the brush agent (|d| = δ/r). d takes positive/negative values when the center of the
brush agent is on the left-/right-hand side of the medial axis:

– d takes the value 0 when the center of the brush agent is on the medial axis.

– d takes a value in [−1, 1] when the brush agent is inside the boundaries (for
example, dt−1 in Figure 4(b))

– The value of d is in [−2,−1) or in (1, 2] when the brush agent goes over the
boundary of one side (for example, dt in Figure 4(b)).

In our system, the center of the agent is restricted within the shape. Therefore, the
extreme value of d is ±2 when the center of the agent is on the boundary.

• κ1, κ2 ∈ (−1, 1): κ1 provides the current surrounding information on the point Pt,
whereas κ2 provides the upcoming shape information on point Pt+1, as illustrated
in Figure 4(b). The values are calculated as

κi =
2

π
arctan

(
0.05√
r′i

)
, (21)

where r′i is the radius of the curve. More specifically, the value takes
0/negative/positive when the shape is straight/left-curved/right-curved, and the
larger its absolute value is, the tighter the curve is.
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• l ∈ {0, 1}: A binary label that indicates whether the agent moves to a region covered
by the previous footprints or not. l = 0 means that the agent moves to a region
covered by the previous footprint. Otherwise, l = 1 means that it moves to an
uncovered region.

4.3 Design of Actions

To generate elegant brush strokes, the brush agent should move inside given boundaries
properly. Here, we define a 3-dimensional action to control the brush:

• Action 1: Movement of the brush on the canvas paper.

• Action 2: Scaling up/down of the footprint.

• Action 3: Rotation of the heading direction of the brush (see Figure 1(a)).

Since properly covering the whole desired region is the most important in terms of the
visual quality, we regard the movement of the brush as the primary action (Action 1).
More specifically, Action 1 takes a value in (−π,−π] that indicates the offset turning angle
of the motion direction relative to the medial axis of the shape of an expected stroke. In
practical applications, the agent should be able to deal with arbitrary strokes in various
scales. To achieve stable performance in different scales, we adaptively change the velocity
as r/3, where r is the radius of the current footprint.

In our implementation, only Action 1 is determined by the Gaussian policy function in
the MDP. The other actions (Actions 2 and 3) are automatically optimized to satisfy the
assumption of the strokes. More specifically, depending on the style of the brush stroke,
Actions 2 and 3 are chosen as follows (see also Section 4.1).

• Oblique brush stroke style: The tip of the agent is set to touch one side of the
boundary, and the bottom of the agent is set to tangent with the other side of the
boundary. If this is not possible by adjusting Actions 2 and 3, the new footprint
will take the same posture as the previous one, but just transit to a new position
by Action 1.

• Upright brush stroke style: The tip of the agent is chosen to travel along the medial
axis of the shape.

This simplification allows us to reduce uncertainty in the calculation of the multi-
dimensional actions using the policy function.

4.4 Design of Rewards

The reward function measures the quality of the brush agent’s movement after taking an
action at each time step. We design the reward to reflect the following two aspects:
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• The distance between the center of the brush agent and the nearest point on the
medial axis of the shape at the current time step. This detects whether the agent
moves out of the region or travels backward from the correct direction.

• A change of the local configuration of the brush agent after executing an action.
This detects whether the agent moves smoothly.

We formalize the above idea by defining the reward function as follows:

R(st, at, st+1) =


0 if ft = ft+1 or lt+1 = 0,

2 + |κ1(t)|+ |κ2(t)|
E

(t)
location + E

(t)
posture

otherwise,
(22)

where ft and ft+1 are footprints at time steps t and t+1, respectively. This reward design
means that the immediate reward is zero when the brush is blocked by a boundary as
ft = ft+1 or the brush is going backward to a region that has already been covered by
previous footprints fi (i < t+1). |κ1(t)|+ |κ2(t)| adaptively increases immediate rewards
depending on the difficulty of the current shape measured by the curvatures κ1(t) and
κ2(t) of the medial axis.

E
(t)
location measures the quality of the location of the brush agent with respect to the

medial axis, defined by

E
(t)
location =

{
τ1 |ωt|+τ2(|dt|+5) dt ∈ [−2,−1)∪(1, 2],
τ1 |ωt|+τ2 |dt| dt ∈ [−1, 1],

(23)

where dt is the value of d at time t. τ1 and τ2 are weight parameters, which are chosen
depending on the brush style. Our choice of τ1 and τ2 will be explained in Section 4.1.
Since dt contains information whether the agent goes over the boundary or not, as illus-
trated in Figure 4(b), the penalty +5 is added to Elocation when the agent goes over the
boundary of the shape.

E
(t)
posture measures the quality of the posture of the brush agent based on neighboring

footprints, defined by
E

(t)
posture = ∆ωt/3 + ∆ϕt/3 + ∆dt/3, (24)

where ∆ωt, ∆ϕt, and ∆dt are changes in angles ω of the velocity vector, heading direc-
tions ϕ, and ratios d of the offset distance, respectively. The notation ∆xt denotes the
normalized squared changes between xt−1 and xt defined by

∆xt =

1 if xt = xt−1 = 0,
(xt − xt−1)

2

(|xt|+ |xt−1|)2
otherwise.

(25)

For each style, we individually specify the reward function: τ1 = τ2 = 0.5 for the
upright brush style and τ1 = 0.1 and τ2 = 0.9 for the oblique brush style.



Artist Agent 13

#
1
 e

p
is

o
d
e

#2 e
piso

de

(a) (b) (c)

Figure 5: Policy training scheme. (a) Shape combination. Each shape (Ui ∪ Ω ∪ Lj, i =
1, 2, ..., I and j = 1, 2, ..., J) is combined with one of the upper regions Ui, the common
region Ω, and the lower regions Lj. (b) Setup of policy training. (c) The brush library of
single strokes in typical shapes. Only 8 out of 80 are shown here.

4.5 Design of Training Session

We propose to train the agent based on partial shapes, not the entire shapes. An advan-
tage of using partial shapes is that various partial shapes can be generated from a single
entire shape, which significantly increases the number and variation of training samples.
Another merit is that the generalization ability to new shapes can be enhanced, because
even when the entire profile of a new shape is quite different from that of training data,
the new shape may contain similar partial shapes, as illustrated in Figure 5(a).

We provide a wide variety of partial shapes of strokes to the agent as training data.
We invited Sumi-e experts to draw strokes in order to prepare an in-house stroke library.
This library contains 80 digitized real single brush strokes that are commonly used in
oriental ink painting. See Figure 5(c) for some examples. We extracted boundaries as the
shape information and arranged them in a queue for training (see Figure 5(b)).

In the training scheme, the initial position of the first episode is chosen to be the start
point S of the medial axis [3], and the direction to move is chosen to be the goal point
G, as illustrated in Figure 5(b). In the first episode, the initial footprint is set around the
start point of the shape. In the following episodes, the initial footprint is set as either the
last footprint in the previous episode or the footprint around the start point. It depends
on whether the agent moved well or was blocked by the boundary in the previous episode.

For each policy, we repeat N episodes to collect data

H = [h(1), h(2), . . . , h(N)], (26)

where
h(n) = [s

(n)
1 , a

(n)
1 , . . . , s

(n)
T , a

(n)
T , s

(n)
T+1]. (27)

We then use the data H to calculate the gradient of the return, ∇θJ(θ), and update the
policy parameter M times to optimize the policy (see Section 3 again).

A full description of our policy training procedure is given in Algorithm 1.
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Algorithm 1 Policy training.

Input B: Set of training shapes
Input R(st−1, st): Reward function
Input DB: Database of typical strokes shapes
Output π: Policy
Initialize policy π1
for m = 1 to M do
// M denotes the number of policy iterations
for all b ∈ B do
// Query the boundary, Ωb, to process.
Ωb = doQuery(b,DB)
for n = 1 to N do
// N denotes the number of repetitions
Initialize the agent’s state s1 and action a1
for t = 1 to T do
// T denotes the length of a trajectory
// Observe the agent’s state st+1.
st+1 = exploreState(st, at,Ωb)
// Observe the agent’s immediate reward rt.
rt = R(st, st+1)
// Determine the agent’s action at+1.
at+1 = πm(a|st)
// Update the trajectory h(n).
h(n) = h(n)

∪
(st, at, st+1)

end for
end for
H = (h(1), h(2), . . . , h(N))

end for
// Update the policy.
πm+1 = updatePolicy(πm, H)

end for
π = πM+1
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Algorithm 2 Applying a learned policy to new shapes.

Input π: Learned policy
Input Ω: Given boundary
Input F : Brush style
InputM: Medial axis of Ω
Input R(x, y, l, ϕ): Placement of the current footprint with the reference center point
at C(x, y), the scale length l from C to tip Q, and rotation over angle ϕ.
Output ψ: Trajectory
Initialize start footprint R, state s, and end point G
while dist(R,G) > ϵ do
// Select a new action by the optimal policy π.
a(1) = π(a|s)
(a(2), a(3)) = estimateActions(Ω,M,F ,R(x, y, l, ϕ))
// Observe the agent state s′.
s′ = exploreNextState(s, a,Ω)
// Observe the agent configuration R′.
R′ = getNextFootprint(R, a,Ω)
if isInRegion(R′,Ω) then
// Update the trajectory.
ψ = ψ

∪
R′

// Update the agent’s current state s.
s = s′

// Update the agent’s current configuration R.
R = R′

end if
end while

4.6 Applying Learned Policy to New Shapes

After learning a drawing policy, the brush agent applies the policy to covering given
boundaries with strokes.

The location of the agent is initialized at the start point of a new shape. The agent
then sequentially selects actions based on the learned policy and makes transitions until
it reaches the goal point. See Algorithm 2 for details.

5 Experiments

In this section, we report experimental results.
We separately train policies for the upright brush style and the oblique brush style

based on 80 single strokes in our library (see Figure 5(c)). The parameter of the initial
policy is set as

θ = (µ⊤, σ)⊤ = (0, 0, 0, 0, 0, 0, 2)⊤, (28)
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(a) Upright brush style (b) Oblique brush style

Figure 6: Average and standard deviation of returns obtained by the RL method over 10
trials and the upper limit of the return value.

where the first six elements correspond to the Gaussian mean and the last element is
the Gaussian standard deviation. The agent collects N = 300 episodic samples with
trajectory length T = 32. The discounted factor is set at γ = 0.99. The learning rate ε
(see Section 3.3) is set at 0.1/∥∇θJθ∥.

In this experiment, to evaluate the performance of the trained policy, we investigate an
obtained return which is a discounted cumulative aggregation of rewards along a trajectory
starting from the initial starting point. We investigate the average return over 10 trials
as functions of policy-update iterations. The return at each trial is computed over 300
training episodic samples. The average returns along the policy iteration are shown in
Figure 6. The graphs show that the average returns sharply increase in an early stage
and then they keep stable. We also plot the upper bounds of returns, which are the ideal
maxima of the returns (i.e., receiving r = 1 for all steps).

In Table 1, we describe experimental results obtained by the DP method [22] with
different numbers of footprint candidates in each step of the DP search. As the table
shows, the execution time of the DP method increases significantly with the growth of
the number of candidates. In the DP method, the best return value is 26.27 when the
number of candidates is set to 180. This is comparable to the return obtained by the RL
method (26.44). However, RL is around 50 times faster than the DP method. Figure 7
shows some exemplary examples of strokes generated by RL and DP. In the top two rows
of Figure 7, the agent trained by RL is able to draw nice strokes with stable poses until
the policy converges after the 30th policy-update iteration (see also Figure 6). However,
in the DP method, the parameter of sampling discrete candidates at each step should be
manually adjusted for each specific input shape. As illustrated in Figure 7, the results in
first three columns (DP#5, #60 and #100) at the bottom two rows are not acceptable
because neither the movement trajectories nor the poses of the neighbor footprints are
stable.

We further apply our trained policy to more realistic shapes illustrated in Figure 8,
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Table 1: Comparison of average returns and execution time between RL and DP for esti-
mating a drawing trajectory on new shapes. Intel Core i7 2.70GHz is used for measuring
the execution time.

Method # Candidates Return Time [sec.]
5 −0.60 3.95× 101

10 −0.10 1.01× 102

20 6.54 2.10× 102

30 12.17 3.25× 102

40 20.03 4.49× 102

50 20.66 5.73× 102

60 22.35 6.27× 102

70 22.33 7.48× 102

80 24.42 8.58× 102

90 25.48 9.74× 102

DP 100 25.08 1.08× 103

110 25.80 1.19× 103

120 25.22 1.30× 103

130 25.43 1.40× 103

140 26.01 1.47× 103

150 24.50 1.68× 103

160 25.49 1.90× 103

170 25.89 2.03× 103

180 26.27 2.08× 103

190 26.04 2.30× 103

200 24.11 2.30× 103

RL ∅ 26.44 4.00× 101

which are not included in the training samples. We can observe that the policy obtained
by the RL method can produce smooth and natural brush strokes in various unlearned
shapes.

Finally, we employ our brush agent for photo conversion into an oriental ink painting
style. This is carried out by manually specifying boundaries of single stroke segments on
an original photo, as illustrated in the top-left graph of Figure 9, and feeding the obtained
boundaries to the artist agent to generate strokes. The execution time for converting a
photo to Sumi-e is proportional to the number of the strokes, and each single stroke can be
independently processed within 1 minute. The conversion results are depicted in Figure 9,
showing that the proposed approach is promising.
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(RL#1) (RL#10) (RL#20) (RL#30) (RL#40)

(DP#5) (DP#60) (DP#100) (DP#140) (DP#180)

Figure 7: Examples of strokes generated by RL and DP. The top two rows show RL results
over policy update iterations, while the bottom two rows show DP results for different
numbers of footprint candidates. The red line denotes the link between the center and
the tip of a footprint. The bottom circle of the footprint is marked in green.

6 Conclusions

In this paper, we applied reinforcement learning to oriental ink painting. This enabled
automatic generation of smooth and natural strokes in arbitrary shapes.

Our contributions include careful designs of actions, states, immediate rewards, and
training sessions. One of the key ideas was to design the state space of the brush agent to
be relative to its surrounding shape. This allows a brush agent to learn a general drawing
policy that is independent from a specific entire shape. This is a strong advantage over
the existing dynamic programming approach. Another important idea of the proposed
method was to train the brush agent with partial shapes. This contributed highly to
enhancing the generalization ability to new shapes, because even when a new shape is
quite different from training data as a whole, it often contains similar partial shapes.
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(a) (b)

(c) (d)

Figure 8: Results on new shapes. (a) Real photo. (b) User input boundaries. (c)
Trajectories estimated by an RL-trained policy. (d) Rendering results for the RL-trained
policy.
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Figure 9: Results of photo conversion into an oriental ink style.
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The experimental results demonstrated that our proposed method gives better per-
formance than the dynamic programming approach with much less computation time.
Furthermore, the agent trained by our reinforcement learning method can successfully
draw unlearned new shapes with smooth and natural brush strokes. Also, applying photo
conversion to an oriental style was demonstrated to be promising.

Our future work includes automatic design of reward functions. The use of inverse
reinforcement learning [1] would be a promising approach for this purpose. In particular,
such data-driven design of reward functions will allow us to automatically learn the style
of a particular artist from his/her drawings.

Although the use of a simple Gaussian policy was demonstrated to work well in ex-
periments, there is still room for further improvement in better designing a policy model.
Another important future work is to automate the photo conversion procedure. For ex-
ample the use of a saliency map [6] for extracting meaningful boundaries is a possible
direction to be explored.
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