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Abstract

A density ratio is defined by the ratio of two probability densities. We study the
inference problem of density ratios and apply a semi-parametric density-ratio es-
timator to the two-sample homogeneity test. In the proposed test procedure, the
f-divergence between two probability densities is estimated using a density-ratio
estimator. The f-divergence estimator is then exploited for the two-sample ho-
mogeneity test. We derive an optimal estimator of f-divergence in the sense of
the asymptotic variance in a semiparametric setting, and provide a statistic for
two-sample homogeneity test based on the optimal estimator. We prove that the
proposed test dominates the existing empirical likelihood score test. Through nu-
merical studies, we illustrate the adequacy of the asymptotic theory for finite-sample
inference.
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1 Introduction

In this paper, we study the two-sample homogeneity test under semiparametric density-
ratio models. An estimator of density ratios is exploited to obtain a test statistic. For
two probability densities p,(z) and pq(x) over a probability space X, the density ratio
r(x) is defined as the ratio of these densities, that is,

T(%) — ﬂ’
pa(z)
in which p, (p4) denotes the “numerator” (“denominator”) of the density ratio. For
statistical examples and motivations of the density ratio model, see [20, 5, 11] and the
references therein. Qin [20] has studied the inference problem of density ratios under
retrospective sampling plans, and proved that in the sense of Godambe [8], the estimat-
ing function obtained from the prospective likelihood is optimal in a class of unbiased
estimating functions for semiparametric density ratio models. As a similar approach, a
semiparametric density ratio estimator based on logistic regression is studied in [4].
The density ratio is closely related to the inference of divergences. A divergence
is a discrepancy measure between pairs of multivariate probability densities, and the f-
divergence [1, 6] is a class of divergences based on the ratio of two probability densities. For
a strictly convex function f satisfying f(1) = 0, the f-divergence between two probability
densities pq(x) and p,(x) is defined by

Dy(pa; pu) = /

X

i)t (25 ) o 1)

pa()

Since f is strictly convex, the f-divergence is non-negative and takes zero if and only
if p, = pq holds. Popular divergences such as the Kullback-Leibler (KL) divergence
[16], the Hellinger distance, and the Pearson divergence are included in the f-divergence
class. In statistics, machine learning, and information theory, the f-divergence is often
exploited as a metric between probability distributions, even though the divergence does
not necessarily satisfy the definition of the metric.

A central topic in this line of research is to estimate the divergence based on sam-
ples from each probability distribution. A typical approach is to exploit non-parametric
estimators of probability densities for the estimation of divergence [25, 26].

The conjugate expression of f can be exploited for the estimation of the f-divergence
in the context of one-sample problems [3, 12] and two-sample problems [14, 15]. A kernel-
based estimator of the f-divergence has been developed by using a non-parametric density-
ratio model [19].

Once the divergence between two probability densities is estimated, the homogeneity
test can be conducted. In the homogeneity test, the null hypothesis is represented as Hy :
Pn = pa against the complementary alternative Hy : p, # pq. If an estimate of Dy (pq, pn) is
beyond some positive value, the null hypothesis is rejected and the alternative is accepted.
Keziou [13] and Keziou and Leoni-Aubin [14, 15] have studied the homogeneity test using
a f-divergence estimator for semiparametric density-ratio models. On the other hand,
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Fokianos et al. [7] adopted a more direct approach. They have proposed the Wald-type
score test derived from the empirical likelihood estimator of density ratios. In our paper,
we consider the optimality of f-divergence estimators, and investigate the relation between
the test statistic using the f-divergence estimator and the Wald-type score test derived
from the empirical likelihood estimator.

The rest of this paper is organized as follows: In Section 2 we introduce a class of
estimators of density ratios for semiparametric density-ratio models. In Section 3, we
consider the asymptotic property of the f-divergence estimator. The main results of
this paper are presented in Section 4 and Section 5. Among a class of estimators, we
present the optimal estimator of the f-divergence, which is then exploited for two-sample
homogeneity test. In one-sample problems, Broniatowski and Keziou [3] proposed the
estimator using the conjugate expression of the f-divergence, while they argued neither
its optimality nor its efficiency. A main contribution of this paper is to present the optimal
estimator of the f-divergence in the sense of asymptotic variance under the semiparametric
density-ratio models. Then, we propose a test statistic based on the optimal f-divergence
estimator, and investigate its power function. Numerical studies are provided in Section 6,
illustrating the adequacy of our asymptotic theory for finite-sample inference. Section 7
is devoted to concluding remarks. Some calculations are deferred to Appendix.

We summarize some notations to be used throughout the paper. For a vector (ma-
trix) a, |la| is the Euclidean (Frobenius) norm of a, and a? denotes the transposition
of a. The first and the second derivative of f : R — R are denoted as f’ and f”,
respectively. The gradient column vector of the function g(0) with respect to the pa-

rameter 6 is represented as Vg, ie., Vg = (g—(i, ceey aa—(i)T. For a vector valued func-
tion g(0) = (g1(0),...,9a4(f)), Vg denotes the Jacobian matrix (Vg);; = %f,;. For a

vector-valued function n(x;0) = (ny(x;0),...,n4(x;0))", let L[n(z;0)] be the linear space
Ln(z;0)] = { S agm(x; 6) | a1,...,as € R}. Let Ny(p1, %) be the d-dimensional
normal distribution with the mean vector p and the variance-covariance matrix Y. The
dimension d may be dropped if there is no confusion. For a sequence of random variables

Xn, X, 45 X and X, 25 X denote the convergence in law to X and the convergence
in probability to X, respectively. We also use the probabilistic orders, O,(-) and o,(-),
which are defined in [24].

2 Estimation of Density Ratios

We introduce the method of estimating density ratios according to Qin [20]. Suppose that
two sets of samples are independently generated from each probability:

(n) n (d) d
Ty 'y ,ngn,)l ~ii.d. Pn; L1y ,rﬂﬁnﬂ ~id.d. Pd-

The model for the density ratio is defined by 7(x;6) with the parameter § € © C R4, We
assume that the true density ratio is represented as

_pn<x) — (0
r(x)_Pd(x) = (@)
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with some 6* € ©. The model for the density ratio r(z; ) is regarded as a semiparametric
model for probability densities. That is, even if r(z;6*) = p,(x)/pa(x) is specified, there
are yet infinite degrees of freedom for the probability densities p, and pq.

The moment matching estimator for the density ratio has been proposed by Qin [20].
Let n(z;0) € R? be a vector-valued function from X x © to R?, and the estimation
function @), is defined as

1 mq 1 Mn R
Qn(0) = = > (@50 0) = = 3 (a0
i=1 moj=1

Since py(x) = r(x;0%)pa(z) holds, the expectation of @,(f) over the observed samples
vanishes at § = 6*. In addition, the estimation function @), (¢) converges to its expectation
in the large sample limit. Thus, the estimator 0 defined as a solution of the estimating
equation,

Q,(0) =0,

has the statistical consistency under some mild assumption, see [20] for details. Below,
we show a sufficient condition for the consistency and the asymptotic normality of 0.

The moment matching estimation of the density ratio contains a wide range of estima-
tors. Several authors have proposed various density-ratio estimators [13, 14, 15, 19, 23, 10].
These estimators with a finite-dimensional model r(x; ) can all be represented as a mo-
ment matching estimator. These existing methods, however, are intended to be applied
with kernel methods which have been developed in machine learning [22]. The kernel den-
sity estimators for probability densities are also exploited as another approach to density
ratio estimation [17, 9, 2].

Before presenting the asymptotic results, we prepare some notations. E,[-] and V,[-]
denote the expectation and the variance (or the variance-covariance matrix for multi-
dimensional random variables) under the probability p,, and Eq4[-] and V4[] are defined
in the same way for the probability pq. The expectation and the variance by the joint
probability of all samples, xgn) (t=1,...,my), xg.d) (j =1,...,mgq) are denoted as E|-]
and V[ -], respectively. The covariance matrix between two random variables by the joint
probability of all samples is also denoted as Cov]|-, -|.

We introduce the asymptotic theory of density ratio estimation. Let p and m be
p=my/mg, m= (= + m%i)_l = -2 and let U, be the d by d matrix defined by

Mn mp+mgq’
Uy(60) = Euln(x; 0)V log r(z;6)"],

where 7(z;6) is a d-dimensional vector-valued function. Suppose that U,(6) is non-
degenerate in the vicinity of # = 6*. Below, the notation p is also used as the large
sample limit of m,/mq, and we assume that 0 < p < oo holds even in the limit.

We introduce the asymptotic property of the density ratio estimator. Assumptions for
asymptotic expansion are explicitly presented below. Since the details are shown in [24,
Section 5], we skip the proof of the consistency and the asymptotic normality of density
ratio estimators. A similar assumption is studied in [3] for one-sample problems.
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Assumption 1 (consistency of 6)
1. The estimator § € © such that Qn(g) =0 ewists.

2. Both

1 N
sup ||m—n;77($§ 10) — B.[n(x;0)]||, and,

LSS, @, (@, N

converge in probability to zero in the large sample limat.
3. infg,g-g+ e || En[n(z;0)] — Ealn(x; 0)r(z;6)]|| > 0 holds for any e > 0.

Note that 2) in Assumption 1 and the triangle inequality lead to the uniform convergence,

sup [[|Qy(0)1] = [EIQ,(O)][I] = 0.
0cO

Along the argument in [24, Section 5], we can prove the asymptotic consistency, o -2y o

in the large sample limit.
For the asymptotic normality, we assume the following conditions.

Assumption 2 (asymptotic normality of 5)

-~

1. The estimator of the density ratio, 0, exists and is consistent.

2. The expectations, E,[||n(z;0)|%], Eull|Vn(z;0)|], Eallln(x;0%)r(x;0%)]]?] and
Eql|IV(n(x; 0% )r(x;0%))||]] are finite. In the vicinity of 6%, each element of the sec-
ond deriwvatives of n(x;0) and n(x;0)r(x;0) with respect to 0 are dominated by a
pn-integrable function and a pg-integrable function, respectively.

3. The matriz U,(0) is non-singular in the vicinity of 6 = 6*.

Under Assumption 2, the asymptotic expansion of the estimating equation @, (¢) =0
around 6 = 6* yields the following convergence in law,

Vil — 0%) = —/mU;Qy + 0,(1)

] + Vol s
Ay, 2)

v
N Nd(O, U

where functions are evaluated at § = *. The asymptotic variance above is derived from

the equalities,

V V.
E[Q,) =0 and m-E[Q,Q!] =" d[rg]jl U
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Qin [20] has shown that the prospective likelihood minimizes the asymptotic variance in
the class of moment matching estimators. More precisely, for the density ratio model
r(z;0) = exp{a+¢(x; 8)}, 0 = (a, 3) € R x R¥™! the vector-valued function 7, defined
by

1

Nopt (25 0) = mv log r(x; 0) (3)

minimizes the asymptotic variance (2).

3 Estimation of f-divergence

We consider the estimation of the f-divergence. As shown in (1), the f-divergence is
represented as the expectation f(r(z)), i.e.,

Dytpan) = [t (250 do = [ putors ()

where r(x) = py(z)/pa(x).

The conjugate representation of the function f is available for the f-divergence esti-
mation [3, 12, 13, 14, 15, 19]. For a convex function f, the conjugate function of f is
defined as

f[r(w) = Sup {rw — f(r)},
and satisfies
f(r) =sup{rw — f*(w)} =7rf'(r) = f(f'(r)) (4)

weR

under a mild assumption on f [21]. Substituting the above expression into the f-
divergence, we have

Dytpa ) =swp{ [ pataotonte ~ [ pato) tuto)ds |, 5)

where the supremum is taken over all measurable functions and the supremum is attained
at w(z) = f'(r(x)). Based on (5), one can consider the f-divergence estimator Dy by
replacing the true distributions with their empirical versions:

Br=sup{ LS o)~ LS5 (o ) 6)

0cO

The above estimator has been considered in some works [3, 19]. Suppose that the maxi-
mum value of (6) is attained in the interior of ©. Then, the extremal condition

=D V) = S (@ 0V (f(r(”;0)) =0,



f-Divergence Estimation and Two-Sample Homogeneity Test 7

holds at the optimal solution, where the identity (f*)(f'(r)) = r is used. This is the
moment matching estimator of the density ratio with

n(z;0) = V(f'(r(x;0))) = f"(r(x;0))Vr(x; 0). (7)

We consider an extension of the f-divergence estimator. In the above estima-
tor, the density ratio is estimated by the moment matching estimator with n(x;0) =
f"(r(z;0))Vr(x;0). Then, the estimated density ratio r(z; é\) is substituted into the ex-
pression of the f-divergence derived from the decomposition f(r) = rf'(r) — f*(f'(r)).
As an extension, we consider arbitrary moment matching estimators using n(z; ), and
any decomposition of the function f such that

f(r) =rfu(r) + fa(r). (8)
The decomposition (4) corresponds to
folr) = f'(r),  fa(r) ==f(F'(r)). (9)

Then, the f-divergence is represented as

[ @) (@) de = [ puhlrie)ds + [ patersatria)s (10)

since r(x) = pu(x)/pa(x) holds. The empirical version of (10) provides an estimate of the
f-divergence,

By = =3 L@ 0) + - S el D)), (1)

where the parameter 0 is estimated by the estimation function @),. In the next section,
we study the optimal choice of 17 and the decomposition f,, fq.

We may consider a wider class of f-divergence estimators than the estimator of the
form (11). For example, one may exploit non-parametric estimators of probability den-
sities with semi-parametric density ratio models to estimate the f-divergence. The esti-
mator (11), however, has the advantage of being simple to analyze statistical properties,
since they are the plug-in type estimator. Hence, in this paper, we focus on the estimator
(11).

Using the estimator D 7, we can conduct the homogeneity test with hypotheses

Hy : py = pa, Hy @ py # pa. (12)

When the null hypothesis is true, the f-divergence D¢(pq, pn) is equal to zero and otherwise

D¢(pa, pn) takes a positive real value. Thus, the null hypothesis is rejected when ﬁf >t
holds, where t is a positive constant determined from the significance level of the test.
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4 Optimal Estimator of f-divergence

In a semiparametric setting, we consider the optimal estimator of the f-divergence. The
asymptotic variance is used as the criterion for the comparison of estimators [8]. For the
model r(z;0) and the function f(r), we assume the following conditions.

Assumption 3
1. The model r(x;0) includes the constant function 1.
2. For any 0 € ©, 1 € L[V 1ogr(x;0)] holds.

3. f is third-order differentiable, and a strictly convex function satisfying f(1) =
f1)=0

Standard models of density ratios satisfy 1) and 2) of Assumption 3. Later, we show some
examples.

In addition, we assume the following conditions to justify the asymptotic expansion
of the estimator Dy.

Assumption 4 (asymptotic expansion of ZA)f)

1. For the estimator «/9\, \/m(é\— 0*) converges in distribution to a centered multivariate
normal distribution.

2. For the decomposition f(r) = fa(r) + rf.(r), suppose that E,|fa(r(z;0%))?],
E[IV fa(r(z; )], Eullfo(r(z;0°)%], and E,[||V fu(r(z;0%)||] are finite. In the
vicinity of 6%, the second derivatives of fu(r(x;0)) and fa(r(x;0)) with respect to 0
are dominated by a p,-integrable function and a pq-integrable function, respectively.

3. Eu[(f'(r;0%) — fu(r(z;6%))V logr(z; 6%)] exists.

Under Assumption 4, the delta method is available. See [24, Section 3] for details.

We compare the asymptotic variance of two estimators for the f-divergence; one is
the estimator Dy derived from the moment matching estimator using n(z;6#) and the
decomposition f(r) = fa(r) + rfu(r), and the other is the estimator D; defined by the
density ratio estimator using 7(z;6) and the decomposition f(r) = fq(r) + rfu(r). In
order to compare the variances of these estimators, we consider the following formula,

0 < V[D; — Dy] = V[Dy] = V[D] = 2Cov[ D; — Dy, Dy].

Suppose that the third term vanishes for any D ¢, then we have the inequality V[Dy] <
V[Dy] for any D;. This implies that the estimator D; is the asymptotically optimal
estimator for the f-divergence.
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We compute the covariance Cov[ﬁf — Dy, Dy]. Let the column vectors c(f) and
¢(0) € R be

c(0)
()

Eu[{f(r(;0)) = falr(2;6))}V logr(z;0)],
Eu[{f'(r(z;0)) = fu(r(z;0))}Viogr(z; 0)].

Then, under Assumption 3 and Assumption 4, some calculation of the covariance gives
the equality

m(l+p")- Cov[ﬁf — Dy, Dyl =E,[{fu(r) — fu(r) + ETUﬁ_lﬁ - cTUn_ln}
A0 = 4+ p7 ) (Falr) + U Y] +0(1), - (13)
in which r denotes the density ratio r(z) = r(x; *), and the functions in (13) are evaluated

at @ = 0*. See Appendix A for the computation of (13). Then, we study the sufficient
condition that the above covariance vanishes.

Theorem 1 Suppose Assumption 3 and Assumption 4 for the decomposition of f, and
suppose that fq(r(x;0)), fu(r(z;0)) and n(x;0) satisfy

Fr(@;0)) = (r(@:0) + p7") (fulr(2:0)) + " Uy j(2:0)) € LIV Iogr(w; )] (14)

for all @ € ©. Then the estimator Dy using 7j(x;0) and the decomposition f(r) = fa(r) +
rfu(r) satisfies

lim mV[D;] < lim mV[lA?f],

m— 00 m—00

that is, D; uniformly attains the minimum asymptotic variance in terms of the f-
divergence estimation.

Proof. Remember that U; = E,[j(z;0)Vlogr(z;0)T]. For any p, and pq such that
pu(z)/palz) = r(z;0), we have
E, [{fn(r) — falr) + ETUﬁ_lﬁ - cTUn_ln}Vlog r(w; Q)T}

= Eu[{fu(r(;0)) — fulr(;0))}V1ogr(z;0)"| + " US'U, — "U,'U,

= Eu[{fu(r(2:0)) — fulr(2;0))}Viogr(x;0)"] + " — "

= 0.
Hence, when (14) holds, we have

m(1+p~") - Cov[ Dy — Dy, Dy] = o(1)

for any D I3

Intuitively, the meaning of Eq. (14) is related to the inference of probability distribu-
tions. As shown in [24, Section 5], for the probabilistic model p(x;#), the Z-estimator
using 7(x;0) is available to estimate the parameter 6, i.e., the estimator is given by
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zero of the empirical mean of n(x;#). In this case, the minimum asymptotic variance
of the parameter estimation is achieved when n(z;0) € L[V log p(x; )] holds. Note that
in the exponential family, V logp(x;#) leads to the sufficient statistics. In other words,
V log p(z;0) implies the most informative direction for the parameter estimation. In the
density ratio estimation, V logr(z; 6) corresponds to the score function V log p(x; ). The
equality

Fr) = (r 4 p Y (falr) + U 0) = {fa(r) — reU; 7} — pH{fulr) + cU; i}

implies that an estimator of D; is asymptotically given as ﬁf = Ede[ fa(r) —reUy 7] +
Enu[ fu(r) — €U 7], where Eqe (resp. Ede) is the empirical expectation over the samples
xgd), . ,xﬁfiﬂ (a;§“>, o ,x%)l. Similarly to the estimation of probabilities, the minimum
asymptotic variance of D 7 is achieved when the estimation function is parallel to the most
informative direction L[V logr(x;0)].

In the following corollaries, we present some sufficient conditions for (14).

Corollary 1 Under Assumption 3 and Assumption 4, suppose that, for r = r(z;0),

f(r) = (r+p~) fulr) € L[V logr] (15)

holds for all 8 € ©. Then, the function 7 = nop defined in (3) and the decomposition
f(r) = falr) 4+ rfu(r) satisfy the condition (14).

Proof. We see that the condition (15) and the equality (r + p~!)nep = p~ 'V 1ogr assure
the condition (14).
Based on Corollary 1 we see that the estimator defined from

RN R
] —i—p?"’ fn(T) - m» 77(557 9) = UOpt(ﬂf, 9) (16)

fa(r)

leads to an optimal estimator of the f-divergence. In the optimal estimator, the function
f is decomposed according to the ratio of the logistic model, 1/(1 + pr) and pr/(1+ pr).
We show another sufficient condition.

Corollary 2 Under Assumption 3 and Assumption 4, suppose that for r = r(x;0) and
i =1(z;0),
flr) = (r+p~ ) f'(r) € LIV logr]

and

F'(r) = fu(r) € L[7]

hold for all § € ©. Then, the decomposition f(r) = fa(r) + rfu(r) and the vector-valued
function 7(x;0) satisfy (14).

!The equality m(1+p~!)- Cov(ﬁf — Dy, Enulgnu] + Edel[gae]) = —FEu[Z - (gdae — p~ ' guu)] holds for any
Jde and gn,. We omit the definition of the random variable Z.
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Table 1: Mean square errors of KL-divergence estimators are shown. p, (pq) is the
probability density of N(0,1) (resp. N(u,1)).
mean square error: mE[(lA)f — D¢)?] (mq = my, = 50)
" 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
optimal estimator 0.038 0.143 0.299 0.685 1.119 1.808 2.502 3.642 5.276 8.354
conjugate representation 0.040 0.171 0.381 0.893 1.480 2.723 4.125 6.329 9.553 16.830

Proof. When f'(r(x;0)) — fu(r(x;0)) € L[7(z;0)] holds, there exists a vector b € R such
that f'(r(zx; 9)) f( (2;0)) = bT7(x;0). Remember that ¢(0) = E,[{f'(r)— fu(r)}Vlogr]
and Uz(0) = E,[7V1ogrT]. Thus, U, " = E,[b"7(Viegr) |E.[7(V1ogr)T]t = bT
holds. Hence, we have ¢ U, 7j(x; 9) = bTﬁ(x, 0) = f'(r(x;0)) — fu(r(x;0)), and we can
confirm that (14) holds under the assumption.

We consider the decomposition derived from the conjugate representation, f(r) =
—f*(f'(r)) +rf'(r), that is, fa(r) = —f*(f'(r)) and f,(r) = f'(r), where f* is the conju-
gate function of f. For the conjugate representation, the second condition in Corollary 2
is always satisfied, since f'(r) — fu(r) = 0 holds. Then, the decomposition based on the
conjugate representation leads to an optimal estimator when the model r = r(z;6) and
the function f satisfy

fr) = (r+p")f'(r) € L[VIogr]. (17)

Later, we show some examples.

We compare the decomposition (16) and that defined from the conjugate representa-
tion (9). As shown above, the conjugate representation leads to an optimal estimator if
(17) holds. However, there exists a pair of function f and model r(z;6) which does not
meet (17) as shown in Example 1 below. In this case, the optimality of the estimator
based on the conjugate representation is not guaranteed. On the other hand, the decom-
position (16) always leads to an optimal estimator without specific conditions on f(r) and
r(z;0), as long as the argument on the asymptotic expansion is valid.

We show some examples in which Corollary 1 or Corollary 2 is applicable to construct
the optimal estimator.

Example 1 Let the model be r(z;0) = exp{6Té(x)},0 € R with ¢(x) =
(61(x), ..., 04(x))T and ¢1(x) = 1. Then L[V logr(z;0)] is spanned by 1, po(z), . .., da(x).
The f-divergence with f(r) = —logr 4+ r — 1 leads to the KL-divergence. Let fq(r) =
—logr —1 and f,(r) =1, then we can confirm that (15) is satisfied. Hence, the function
N = Nopt and the decomposition fq(r) = —logr — 1 and fu(r) = 1 lead to an optimal
estimator of the KL-divergence. We see that there is redundancy for the decomposition
of f. Indeed, for any constants co,c; € R, the function co + c1logr(x;0) is included in
L[V logr(xz;0)]. Hence the decomposition

r 4+ c1logr + ¢
r+pt

fu(r) = , fa(r) =r—logr —1—rfu(r)
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with 1 = Nopt also leads to an optimal estimator. The decomposition in (16) is realized
by setting co = —1, c; = —1. Neat, we consider the conjugate expression of the KL-
divergence. For f(r) = —logr +r — 1 and r(z;0) = exp{0T¢(z)}, we have f(r(x;0)) —
(r(x;0) + p~ ) f'(r(x;0)) = —0T¢(x) — p~t + p~Lexp{—0Td(x)}. In general, the function
exp{—0T¢(z)} is not represented by the linear combination of ¢1(z), ..., pa(x), and thus,
the condition in Corollary 2 will not hold. Therefore, the conjugate expression of the
KL-divergence is not optimal in general.

Table 1 shows numerical results of the estimation of the KL-divergence between N (u, 1)
and N(0,1). Under the model r(z;0) = exp{a + Bz}, 8 = (o, ) € R?, we compare the
optimal estimator using (16) and the estimator defined from the conjugate representation
of the KL-divergence. The sample size is set to mq = m, = 50, and the averaged values
of the square error m(D; — Dy)? over 1000 runs are presented for several . We see that
the optimal estimator outperforms the estimator using the conjugate representation.

Example 2 Let the model be r(z;0) = exp{0To(x)}, 0 € R with ¢(x) =
(d1(2),...,04(x))T and ¢1(x) = 1. Then, the linear space L[V logr(x;0)] is spanned
by {61(x),...,¢0a(x)} and thus L[V logr(z;0)] includes the function of the form co +
ci1logr(x;0) for co,c1 € R. Let the convex function f(r) be

1 1+p Py r(1+ p)

r) = 0 r 0
/) 1+p g1+pr 1+p & L+ pr

(18)

for p > 0. Then the corresponding f-divergence is reduced to mutual information:

/pd(a:)f (iggg) dx = / Z p(x,y)log %daz,

y=n,d
wn which y is the binary random variable taking “n” or “d”; the joint probability of x and y
is defined as p(x,n) = pn(:c)f_%p and p(z,d) = pd(a:)#p. The equality pq = py implies that

the conditional probability p(x|y) is independent of y. Thus, mutual information becomes
zero if and only if pq = pn holds. For any moment matching estimator, we can confirm
that the following decomposition satisfies the condition in Corollary 2:

1 1+p
= 0g 5
1+p 1+ pr

() p r(1+p)

fa(r) T 14 Bt

(19)
Note that the above decomposition with the model r(x;0) = exp{0T¢(x)} also satisfies the
condition in Corollary 1. As pointed out in [14, 15], the decomposition above is derived
from the conjugate expression of (18). In this example, we present another characteriza-
tion, that is, an optimal estimator for mutual information.

Example 3 Let r(z;0) = 1 + 07¢(x) and ¢1(z) = 1. The subspace L[V logr(z;0)]
is spanned by {¢1/r,...,¢a/r}, and thus L[Vlogr(x;0)] includes the function of
the form cy + c1/r(x;0) for co,c1 € R. Let the convex function f be f(r) =
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p+1 (7" -1+ (14 pr) log — o ) for p > 0. Then the corresponding f-divergence is ex-

pressed as

1+p

oo () o=v(252).

where KL 1s the Kullback-Leibler dwergence Corollary 1 assures that the decomposition

fa(r) = p+1 <1r;plr + log T%;’:; ) fulr) = p+1 <1+pr + log t;f;) and the moment matching

estimator using 1 = Nopy lead to an optimal estimator for the above f-divergence. On the
other hand, due to Corollary 2, we can confirm that the decomposition derived from the

conjugate expression, fq(r) = 1+p log Tt;ﬁf;), fu(r) = f'(r) = m ( — 1+ prlog 1;1%)
leads to another optimal estimator.

5 Homogeneity Test Exploiting f-divergence Estima-
tors

For the homogeneity test of p, and pq, we need to know the asymptotic distribution
of Dy under the null hypothesis, Hy : p, = pa in (12). In this section, we assume

% = r(z;0*) = 1. We consider the optimal estimator lA?f defined from (16). The

asymptotic distribution of the optimal estimator is given by the following theorem.

Theorem 2 Let p,(x)/pa(z) = r(z;60%) = 1. Suppose that Assumption 3 and Assump-
tion 4 hold, and that in the vicinity of 0, the third-order derivatives of fu(r(x;0)) and
fa(r(z;0)) with respect to 0 are dominated by a pq-integrable function. We assume that

the d by d symmetric matriz U, = Ey[n(Vlogr)T] with n = nop, = 1+pTV10g7’ is mon-

degenerate in the vicinity of 0 = 6*. Let ﬁf be the estimator deﬁned from (16). Then, in

terms of the asymptotic distribution of Df, we obtain
chi-square distribution with k degrees of freedom.

f,,( )Df —> Xd 1, where Xk 1s the

The proof is deferred to Appendix B. For the homogeneity test of p, and pq, the null
hypothesis p, = pq is rejected if

f//(l)

S0 (1 - a) (20)

D; >

is satisfied, where x2 (1 — «) is the chi-square 100(1 — «/) percent point function with
d — 1 degrees of freedom. The homogeneity test based on (20) with the optimal choice
(16) is referred to as ﬁf—based test.

We consider the power function of the homogeneity test, and compare the proposed
method to the other method. A standard approach for the homogeneity test is exploiting
the asymptotic distribution of the empirical likelihood estimator #. Under the model

r(@:0) = expla+ ¢(as )}, 6= (0, 8) € R x R, (21)
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Fokianos et al. [7] pointed out that the asymptotic distribution of the empirical likelihood
estimator § = (@, 8) € R x R?! under the null hypothesis p, = pq is given as

V(B =8 ~5 Nyt (0,Va[Vae] ™),

where 0* = (o*, 8*) and V¢ is the d — 1 dimensional gradient vector of ¢(z; ) at f = B*
with respect to the parameter 5. Then the null hypothesis is rejected if the Wald-type
test statistic

=m(B — ") ValVse] (B — 8 (22)

is larger than x2 ,(1 — «), where VH[V5¢] is a consistent estimator of V,[Vz¢]. In this
paper, the homogeneity test based on the statistic S is referred to as the empirical likeli-
hood score test. Fokianos et al. [7] studied statistical properties of the empirical likelihood
score test through numerical experiments, and reported that the power of the empirical
likelihood score test is comparable to the standard t-test and F-test which are available
under parametric models.

Alternative test statistic is given by the empirical likelihood ratio test. Let £(0) be

Zlog d —i—Zlog pr(n)
Jj=1 ;0

Then, the empirical likelihood ratio test uses the statistic,

" 0)
)+ 1

R=2 réleaé({f(ﬁ) —0(0")}. (23)

It is shown that under the null hypothesis r(z) = 1, the statistic, R, converges in dis-
tribution to the chi-square distribution with d — 1 degrees of freedom [15]. The empir-
ical likelihood ratio test is closely related to the mutual information shown in Example
2. Indeed, the estimator of the mutual information derived from (6) and (18) satisfies
R = 2(my + ma)D;. This formula has been pointed out in [15]. Our argument in Ex-
ample 2 guarantees that this estimator attains the minimum asymptotic variance for the
estimation of mutual information.

We show that the power of the Ds-based test is not less than that of the empirical
likelihood score test under the setup of local alternative, where the distributions p, and
pq vary according to the sample size. To compute the power of the test, we assume the
following conditions.

Assumption 5

1. f is third-order differentiable, and a strictly convexr function satisfying f(1) =
f() =

2. The density ratio model r(x; ) is represented as (21), and suppose the true density
ratio is giwen as r(x;0*) = 1. Note that for any 0 € ©, 1 € L[V logr(x;0)] holds.
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3. In the vicinity of 0%, the third-order derivatives of fu(r(x;0)) and fa(r(x;0)) with
respect to 0 are dominated by a pg-integrable function.

4. For a fixed probability density p(z), we assume pq(z) = p(x). The probability density
pEZ”) is represented as plgm)(x) = pa(z)r(x;0,,), where the parameter 0,, is defined as

O, = 0° + hpp//m for h,, € RY satisfying lim,, oo hy = h € RY,
5. The matriz-valued functions M(0) and U(0) are defined as
M (0) = Eg[V logr(z;0)V log r(z; 0)7],

U(6) = Eq[——

1 . 1 . T.
T (el g o O)V ogr(z;0)Vlogr(z;6)"]

We assume that M(6) and U(0) are continuous and non-degenerate in the vicinity
of 0*.

6. Let V[Vr| be the variance-covariance matriz of Vlogr(z;6*) = Vr(x;0*) under
pa(x)(=p(x)). We assume

— Zv L0Vl 0T 2 M(67), (24)
d 1
VU (6,) (0 — 6,,) = N (0, mvwr]), (25)

when m tends to infinity.

Note that (25) is reduced to (2) with 7 = nopt, when h,, = 0 € R? holds. See [24, Sec-
tion 14] and [18, Section 11.4.2] for details of the asymptotic theory when the probability
distribution depends on the sample size.

In the above, one can make the assumption weaker such that the probability pq also
varies according to the sample size. We adopt the simplified assumption to avoid technical
difficulties.

Theorem 3 Under Assumption 5, the power function of the Bf-ba,sed test with signifi-
cance level o is asymptotically given as Pr {Y > X2 (1 — 04)}, where Y s the random
variable whose distribution function is the non-central chi-square distribution with d — 1
degrees of freedom and non-centrality parameter hT M(0*)h. Moreover, the asymptotic
power function of the empirical likelihood score test (22) is the same.

The proof is given in Appendix C. Theorem 3 implies that, under the local alternative,
the power function of the Ds-based test does not depend on choice of the f-divergence,
and that the empirical likelihood score test has the same power as the D s-based test.

Next, we consider the power function under the misspecification case.
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Theorem 4 We assume that the density ratio pr(lm) /pa is not realized by the model r(x;0),

(m) sm(®)t+em

and that p™ is represented as p (x) = pa(x) (r(:v; Om) + T), where s, () satis-
fies Eq[sm(x)] = 0. Suppose that lim,, o £y = € holds. Suppose Assumption 5 except the
definition ofpr(lm)(:v). Then, under the setup of the local alternative, the power function of
the D ¢-based test is larger than or equal to that of the empirical likelihood score test.

The proof is given in Appendix D. Even in the misspecification case, the assumptions
(24) and (25) is valid, since eventually the limit of p™ /pa is realized by the model
r(z;0%) = 1. In [18, Section 11.4.2], detailed explanation on the asymptotic theory under
local alternative is presented. Theorem 3 and Theorem 4 indicate that the D s-based test
is more powerful than the empirical likelihood score test regardless of whether the model
r(x;0) is correct or slightly misspecified.

6 Numerical Studies

In this section, we report numerical results for illustrating the adequacy of the asymptotic
theory for finite-sample inference.

We examine two f-divergences for the homogeneity test. One is the KL-divergence
defined by f(r) = r — 1 —log(r) as shown in Example 1, and the test statistic is derived
from (16). This is referred to as the KL-based test. The other is mutual information
defined by (18), and the estimator lA)f is derived from the optimal decomposition (16)
and the moment matching estimator 1 = 7. This is referred to as the MI-based test.
The empirical likelihood ratio test (23) is also applied. As we mentioned, the statistic of
the empirical likelihood ratio test is equivalent to the estimator of mutual information
using the conjugate representation (19) and the moment matching estimator 17 = 7gpt.
This fact has been investigated by Keziou and Leoni-Aubin [14, 15]. The MI-based test
and empirical likelihood ratio test share the same moment matching estimator using 7,ps,
and the difference comes from the way of decomposing the function f. In the following, we
observe that the MI-based test and empirical likelihood ratio test provide almost the same
results. We compare these methods to the empirical likelihood score test (22) proposed
in [7], and the Hotelling T-test. The null hypothesis of the test is Hy : p, = pq and the
alternative is Hy : py # pq. The type-I error and the power function of these tests are
computed.

First we assume that the null hypothesis p, = pq is correct, and we compute the type-I
error. We consider three cases: in the first case, the distributions of p, and pq are given
as the one-dimensional exponential distribution with rate parameter A = 0.1,1 or 5; in
the second case, the distributions of p, and pq are given as the 10-dimensional normal
distribution N¢(0, I10); and in the third case, each element of the 10-dimensional vector
x € R is independent and identically distributed from the ¢-distribution with 10 or 5
degrees of freedom. For the k-dimensional vector x = (z1,...,xx), the semiparametric
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model for density ratio is defined as

k k
r(z;0) = exp {a + Z Bix; + Z Bretj :17]2} (26)
i=1 j=1

with the (2k + 1)-dimensional parameter § = (o, 81, ..., fox). The sample size is set to
my, = mq and varies from 10 to 100 for one-dimensional random variables and from 100
to 1000 for 10-dimensional random variables. The significance level of the test is set to
0.05, and the type-I errors are averaged over 1000 runs. For each case, the averaged type-I
errors of the KL-based test, MI-based test, empirical likelihood ratio test, and empirical
likelihood score test are shown in Table 2. In the exponential distribution, the type-I
error of empirical likelihood score test is larger than the significance level even with large
sample size. On the other hand, the type-I errors of the KL-based test, MI-based test and
empirical likelihood ratio test are close to the significance level for large sample size. In
addition, the type-I error comes closer to the significance level when the rate parameter
A becomes bigger. This is because large A corresponds to small variance, and hence, the
estimation accuracy of the f-divergence is high for large X. In the normal case, all of
the type-I errors converge to the significance level with modest sample size. In the case
of the t-distribution, the type-I error of the empirical likelihood score test is larger than
the significance level even with large sample size. On the other hand, the type-I errors of
the other tests are close to the significance level with moderate sample size even for the
t-distribution.

Next, we compute the power function of the KL-based test, MI-based test, empirical
likelihood ratio test, empirical likelihood score test, and Hotelling T>%-test. In the nu-
merical simulations, p,(z) is fixed and pq(z) is varied by changing the parameters in the
distribution such as the rate parameter, the mean parameter or the scale parameter. We
consider the following three setups:

1. pu(x) is given as the one-dimensional exponential distribution with rate parameter
A = 0.1,1 or 5, and pg(x) is also the one-dimensional exponential distribution
with rate parameter A\g.. The parameter \q. varies from 0.6- A\, to 1.4- \,,. We use
two density ratio models: one is given as r(z;0) = exp{a + iz}, 0 = (o, f1) € R,
and the other is given as r(z;0) = exp{a + fiz + S22}, 0 = (o, B1, B2) € R®. The
sample size is set to m, = mq = 100.

2. pn(x) is defined as the 10-dimensional standard normal distribution, or the 10-
dimensional ¢-distribution with 10 or 5 degrees of freedom. The sample (9 =

(xgd), . ,x%)) from pq is computed such that
2V =g+, 0=1,...,10, (27)
where x = (z1,...,210) ~ pn, that is, the mean parameter y € R is added to

each element of x. Hence, p, = pq holds for y = 0. The sample size is set to
my = mqg = 500 or 1000, and the density ratio models (26) with k£ = 10 is used.
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3. pu(7) is given as the same distribution as the second setup, and the sample 2@ =

(xgd), e ,x%)) from pq is computed such that
xéd)zaxxg, (=1,...,10, (28)
where © = (z1,...,210) ~ pn, that is, the scale parameter ¢ > 0 is multiplied to

each element of z € R, Hence, the null hypothesis p, = pq corresponds to o = 1.
The sample size is set to m, = mqg = 500 or 1000, and the density ratio models (26)
with k£ = 10 is used.

In the first setup for the exponential distribution, both of the two density ratio models
include the true density ratio. In the second and the third setups, when both p, and pq
are the 10-dimensional normal distribution, the density ratio model (26) includes the true
density ratio. For the t-distribution, however, the true ratio r(z) resides outside of the
model (26). In all simulations, the significance level is 0.05, and the power functions are
averaged over 1000 runs.

Table 3 shows the averaged power functions for the first setup. Under the model
r(z;0) = exp{a + B1x}, the power functions of all tests behave in a similar way, and are
almost independent of the value of A,,. Under the larger model r(z;0) = exp{a + Sz +
B2x%}, however, except the Hotelling T?-test, the power is slightly smaller than that under
the smaller density ratio model.

Table 4 shows the averaged power functions for the setup (27). The mean parameter
u varies from —0.1 to 0.1. When both p, and p4q are the normal distribution, the power
functions of the KL-based test, MI-based test, empirical likelihood ratio test, and empirical
likelihood score test almost coincide with each other. The power of the Hotelling T2-test
is slightly larger than the others. This result is obvious, since the Hotelling T*-test works
well under the normal distribution. Under the t-distribution with 5 degree of freedom, the
power of empirical likelihood score test around g = 0 is much larger than the significance
level, 0.05. That is, the empirical likelihood score test is not conservative, and will lead
false positive with high probability. In the MI-based test and empirical likelihood ratio
test, the power around i = 0 is close to the significance level and the power is comparable
to the Hotelling T?-test outside of the vicinity of u = 0.

Table 5 shows the averaged power functions when the scale parameter ¢ in (28) varies
from 0.9 to 1.1. In this case, the means of p, and pq are the same, and hence the Hotelling
T?-test fails to detect the difference between p, and pq. In addition, we see that the power
function of the empirical likelihood score test is biased, that is, the power function takes
the minimum value at o less than 1. This is because the estimated variance, V,, based
on the empirical likelihood score estimator tends to take slightly small values than the
true variance. In the MI-based test and empirical likelihood ratio test, the power around
o = 1 is close to the significance level, while the power of the KL-based test is slightly
larger than the significance level around o = 1.

In the first numerical study on the exponential distribution, a test with the smaller
density ratio model performs better than that using the larger model. We see that the
power of the Hotelling T2-test is high, since the Hotelling T2-test detects the difference
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in the mean value which is directly connected to the rate parameter of the exponential
distribution. As shown in the numerical results of the second and the third setups, when
the model 7(z;60) is correct, the powers of the KL-based test, MI-based test, empirical
likelihood ratio test, and empirical likelihood score test are almost the same. Thus, the
numerical simulations meet the theoretical results in Theorem 3. The empirical likelihood
score test has large type-1 error and the power is slightly biased especially when the
samples are generated from the t-distribution. Throughout the simulations, the MI-based
test and empirical likelihood ratio test have comparable power to the other methods, while
the type-1I error is well controlled. In the simulations, we see that the null distribution
of the MI-based test and that of the empirical likelihood ratio test are approximated by
the asymptotic distribution more accurately than that of the KL-based test, although the
first-order asymptotic theory provided in Section 5 does not explain the difference between
the MI-based test and KL-based test. We expect that higher order asymptotic theory is
needed to better understand the difference among f-divergences for the homogeneity test.

7 Conclusion

We have addressed inference methods of density ratios and their application to homo-
geneity test under the semiparametric models. We showed that the estimator introduced
in [20] provides an optimal estimator of the f-divergence with appropriate decomposition
of the function f, and proposed a test statistic for homogeneity test using the optimal
f-divergence estimator. It is revealed that the power function of the D¢-based test does
not depend on the choice of the f-divergence up to the first order under the local alter-
native setup. Additionally, the Dy-based test and empirical likelihood score test [7] were
shown to have asymptotically the same power. For misspecified density-ratio models, we
showed that the D-based test usually has greater power than the empirical likelihood
score test. In numerical studies, the MI-based test and empirical likelihood ratio test
provided the most reliable results than the others, that is, the null distribution was well
approximated by the asymptotic distribution with moderate samples size, and the power
was comparable to the Hotelling T2-test even under the normal case.

The choice of the f-divergence is an important open problem for the homogeneity
test. In our first-order asymptotic theory, the choice of the f-divergence does not affect
the power function of the D -based test. Hence, higher order asymptotic theory may be
necessary to make clear the difference among f-divergences for the homogeneity test.

In this paper, we considered the estimators of the form (11), while we can use a wider
class of estimators for the inference of divergences. In terms of the class of f-divergence
estimators, we have two challenging future works: one is to study the optimal estimator
among all estimators of the f-divergence, and another is to specify how large the class of
estimators (11) is among all estimators.
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A Asymptotic expansion of Z/jf

We make a supplementary statement on the asymptotic expansions of D rand Dy in (13).
We consider the asymptotic expansion of the estimator (11). For f(r) = fa(r) + rfu(r),
let us define Gf be

Z 0")) — Ealfa(r(z; 0"))]]

3\3

Z 2:0%)) — Eulfu(r(2:67))],

and G is also defined in the same way for the other decomposition f(r) = fq(r)+rfu(r).
Remember that

= En[{f'(r(2;0%) = ful(r(a;6))}V 1og r(x;6%)],
= Eu[{f'(r(;0%)) = fu(r(z;60%))}V log r(z; 6%)].

The Taylor expansion around ¢ = 6° yields fa(r(z; 0) = falr(z:07) +
Fa (20 (2:09)V log (. 0%)T(0 — 6) + O(||§ — 67]|2). We have the same expansion
for fu(r(z;6)). By using the above expansions with Assumption 3 and Assumption 4, we
have

Vm(Dy — Dy) = Gf — Vm "U; ' Q(87) + 0p(1),
Vm(Dy — Dy) = Gf — Vm & U Qq(07) + 0,(1).

The first and the second terms of v/m(D t—D;) and \/m(D;—D;) converge in distribution
to a centered normal distribution. For p, = pq, however, these terms may vanish and
vmDy becomes of the order o,(1), as shown in Appendix B. Substituting the above
expression into m - Cov[D; — Dy, Dy = E[{y/m(D; — D;) — /m(Dy — D) }/m(Dy —
Dy)] 4 o(1), we obtain (13).
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B Proof of Theorem 2

Proof. Let 60 = 6 — 6*. Then, due to (2), we have \/mdf = —VmU; ' Qy, + 0,(1),
where 1 = 7y defined in (3). Let fq(r) = f(r)/(1 + pr) and fu(r) = pf(r)/(1 + pr).
Then we have fq(1) = fd,<1) = fu(1) = fn,(l) = 0 and fd”(1> + fn”(l) = f"(1), since
f(1) = f'(1) = 0 is assumed. The asymptotic expansion of mlA?f around 6 = 6* leads to

~

mD; = %ﬁ&ngd[Wﬂ(w; 0*\Vr(x;0%)7]v/mdo,

+ —fn/;(l) VMO B[V (z; 0°)Vr (x;0)T/mdb + op(1)

_ %mgg;@n[w@ 67)Vr(2;6)7]) " /mQ, + 0,(1),

since p, = pg and r(x; 0*) = 1 hold. The asymptotic distribution of \/ﬁQn is the Gaussian
distribution with mean zero and variance-covariance matrix V,[Vr]/(1 + p)?, since the
equality nopt(x;0%) = Viogr(z;6*)/(1+ p) = Vr(x;0%)/(1+ p) holds. Let M be the d by
d matrix defined as M = E,[Vr(z;0*)Vr(x;6*)T], and VV be ad by d matrix such that
VUV = Va[Vr]. Then asymptotically
2 —~
f,—?;‘)pf A IV MWV 2,
holds, where Z,; is the d-dimensional random vector whose distribution is the d-
dimensional standard Gaussian distribution, that is, Z; ~ N4(0,1;). Let vV M be the

symmetric positive definite matrix such that M = +/ M+ M, and the vector u be
u = E [Vr(z;0*)]. Note that VM is well-defined, since M is a positive definite ma-

trix. Let P be the d by d matrix P = [ — \/MAMMT\/MA, then P is the pro-
jection matrix along the vector v M _lu. Indeed, for the vector b € R? such that
bVI'Viogr(z;0%) = Vr(z;0%)Th = 1, we have E,[Vr] = E,[Vr(Vr)Th] = E,[Vr(Vr)T]b,
and thus, H\/M_IM\P = E,[Vr|TE.[VrVrT|IE,[Vr] = E,[Vr]Tb = 1 holds. We
can choose VV = VMP, since VVVV T M- pup® holds. As a result, we have
ZINV M~V Z, = ZTPZ,, and the distribution of ZI'PZ, is the chi-square distri-
bution with d — 1 degrees of freedom.

C Proof of Theorem 3

First, we calculate the power function of ﬁf—based test. Proof. The equality pg’”) (x) =
pa(z)r(x;0,,) leads to Eq[Vr(x;0%)]Th = 0. Indeed

+o(1//m) (29)
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holds, since 6,,, = 0* + h,,, /«/m. Thus, we have E[Vr(z;0*)]"h = 0 when m tends to infin-
ity. Let the matrix M be M(0*) = E[Vr(x;0*)Vr(x;0*)], the vector u be E[Vr(z;0%)],
and v/V be a matrix such that VvV = VIVr]. Let 80,, be 6 — 6,,,. Under Assumption
5, the asymptotic expansion gives

Jf,—z)ﬁf — (/80 + )T M (/2060 -+ hyn) + 0,(1)
= (VmU (0,)60,, + U(0)R) U (0,,) MU (0,,) "
X (v/mU (0,,)00,, + U(0:)h) + 0,(1)

L WMV Zg+ VMR, Za~ Naf0, L), (30)

Since limyy_see U(6m) = M/(1 + p) and /mU(0,,)60, —= V'V Z4/(1 + p) hold. In the
same way as the proof of Theorem 2, we see that v/ M _1\/7 is the projection matrix along
the vector v M - 1. Moreover, v/MAh is orthogonal to the vector v/ M - p since pt'h =0
holds. As a result, we see that the distribution function of H\/MA\/VZCZ + \/Mh”2 is
the non-central chi-square distribution with d — 1 degrees of freedom and non-centrality
parameter h’ M (6*)h.

Next, we calculate the power function of empirical likelihood score test. The notations
M and p are the same as the proof above. Proof. From the definition of the statistic 5,
we have

S =m(B -3 Vu[Vssl(B — 57)
=m0 — )V - 6) + 0,(1),

where V' = V[Vr]. In the same way as (30), we have
m(@ — 0V (0 — 0°) + 0,(1) -5 |[VV VM (VM NV Zy+ VMR

The matrix vV T\/M ! is the projection matrix along the vector v/ M _lu and pufh =0
holds. Then we see that the vector \/M_lx/VZd + v/ Mh is orthogonal to \/M_lu. This
implies [|VV' VM (VM NV Zy+ VMR)|? = |VM NV Zy + VMh|2. Thus, under
the local alternative setup, the limit distribution of the test statistic S’ is the non-central
chi-square distribution with the same parameter as Ds-based test.

D Proof of Theorem 4

Below, the notations M = E[Vr(x;0*)Vr(x;0%)] and p = E[Vr(z;0*)] are used. Proof. In
the same way as (29), we have u’h + ¢ = 0. Let the random vector W be W = PZ, +
VMh, Z; ~ N40, 1), where P is the projection matrix along the vector \/M_l,u as
defined in the proof of Theorem 2. According to the proof of Theorem 3 in Appendix
C, the power of ﬁf—based test is asymptotically equal to Pr{||[W||? > x3_,(1 — «)}, and
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that of empirical likelihood score test is equal to Pr{||PW]|* > x3_,(1 — a)}. We have

the equality W = PW + C\/Milh with some ¢ € R. Note that generally v/Mh is not
orthogonal to v/ M - 1 in the misspecified case, since (v/ M _lu)T\/M h = pu*h = —¢ holds.
For € # 0, we have ¢ # 0 and then the inequality |[W||> > || PW]? holds. As a result, the
power of ﬁf—based test is larger than or equal to that of empirical likelihood score test
under the misspecified setup.
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