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Abstract. The objective of change-point detection is to discover abrupt
property changes lying behind time-series data. In this paper, we present
a novel statistical change-point detection algorithm that is based on non-
parametric divergence estimation between two retrospective segments.
Our method uses the relative Pearson divergence as a divergence mea-
sure, and it is accurately and efficiently estimated by a method of di-
rect density-ratio estimation. Through experiments on real-world human-
activity sensing, speech, and Twitter datasets, we demonstrate the use-
fulness of the proposed method.
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1 Introduction

Detecting abrupt changes in time-series data, called change-point detection, has
attracted researchers in the statistics and data mining communities for decades
[1–6].

Some pioneer works demonstrated good change-point detection performance
by comparing the probability distributions of time-series samples over past and
present intervals [1]. As both the intervals move forward, a typical strategy is to
issue an alarm for a change point when the two distributions are becoming sig-
nificantly different. Various change-point detection methods follow this strategy,
for example, the cumulative sum [1], the generalized likelihood-ratio method [2],
and the change finder [3].

Another group of methods that have attracted high popularity in recent
years is the subspace methods [4, 5]. By using a pre-designed time-series model,
a subspace is discovered by principle component analysis from trajectories in
past and present intervals, and their dissimilarity is measured by the distance
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Fig. 1. Notation.

between the subspaces. One of the major approaches is called subspace identifi-
cation [5], which compares the subspaces spanned by the columns of an extended
observability matrix generated by a state-space model with system noise.

However, the methods explained above rely on pre-designed parametric mod-
els such as underlying probability distributions [1, 2], auto-regressive models [3],
and state-space models [4, 5], for tracking some specific statistics such as the
mean, the variance, and the spectrum. Thus, they are not robust against dif-
ferent types of changes, which significantly limits the range of applications in
practice. To cope with this problem, non-parametric estimation methods such
as kernel density estimation may be used. However, non-parametric methods
tend to be less accurate in high-dimensional problems because of the so-called
curse of dimensionality.

To overcome this difficulty, a new strategy was introduced recently which
estimates the ratio of probability densities directly without going through density
estimation [7]. In the context of change-point detection, a direct density-ratio
estimation method called the Kullback-Leibler importance estimation procedure
(KLIEP) [8] was reported to outperform competitive approaches [6] such as the
one-class support vector machine [9] and singular-spectrum analysis [4].

The goal of this paper is to further advance this line of research. More specif-
ically, our contributions in this paper are two folds.
• We apply a recently-proposed density-ratio estimation method called the un-
constrained least-squares importance fitting (uLSIF) [10] to change-point detec-
tion. Notable advantages of uLSIF are that an analytical solution can be ob-
tained, it achieves the optimal non-parametric convergence rate, it has optimal
numerical stability, and it has higher robustness [7].
• We further improve the uLSIF-based change-point detection method by em-
ploying a state-of-the-art extension of uLSIF called relative uLSIF (RuLSIF)
[11], which was proved to have an even better non-parametric convergence prop-
erty than plain uLSIF [11], with other advantages of uLSIF maintained.

2 Problem Formulation

In this section, we formulate our change-point detection problem (see Figure 1).
Let y(t) ∈ Rd be a d-dimensional time-series sample at time t. Let

Y (t) := [y(t)⊤,y(t+ 1)⊤, . . . ,y(t+ k − 1)⊤]⊤ ∈ Rdk



be a subsequence of time series at time t with length k, where ⊤ represents the
transpose. Following the previous work [6], we treat the subsequence Y (t) as
a sample, instead of a single point y(t), by which time-dependent information
can be incorporated naturally. Let Y(t) be a set of n retrospective subsequence
samples starting at time t:

Y(t) := {Y (t),Y (t+ 1), . . . ,Y (t+ n− 1)}.

For change-point detection, let us consider two consecutive segments Y(t) and
Y(t+n). Our strategy is to compute a certain dissimilarity measure between Y(t)
and Y(t + n), and use it as the plausibility of change points. More specifically,
the larger the dissimilarity is, the more likely the point is a change point.

Now the problems that need to be addressed are what kind of dissimilarity
measure we should use and how we estimate it from data. We will discuss these
issues in the next section.

3 Change-Point Detection via Density-Ratio Estimation

In this section, we first define our dissimilarity measure, and then show methods
for estimating the dissimilarity measure.

3.1 Divergence-Based Dissimilarity Measure

We use a dissimilarity measure of the following form:

D(Pt∥Pt+n) +D(Pt+n∥Pt), (1)

where Pt and Pt+n are probability distributions of samples in Y(t) and Y(t+n),
respectively. D(P∥P ′) denotes the f -divergence [12, 13]:

D(P∥P ′) :=

∫
p′(Y )f

(
p(Y )

p′(Y )

)
dY ,

where f is a convex function such that f(1) = 0, and p(Y ) and p′(Y ) are
probability density functions of P and P ′, respectively. Because the f -divergence
is not symmetric, we use a symmetrized divergence in Eq.(1).

The f -divergence includes various popular divergences such as the Kullback-
Leibler (KL) divergence by f(t) = t log t and the Pearson (PE) divergence by
f(t) = 1

2 (t− 1)2:

KL(P∥P ′) :=

∫
p(Y ) log

p(Y )

p′(Y )
dY and PE(P∥P ′) :=

1

2

∫
p′(Y )

(
p(Y )

p′(Y )
−1

)2

dY .

In the rest of this section, we explain three methods of directly estimating

the density ratio p(Y )
p′(Y ) from samples {Y i}ni=1 and {Y ′

j}nj=1 drawn from p(Y )

and p′(Y ): the KL importance estimation procedure (KLIEP) [8] in Section 3.2,
unconstrained least-squares importance fitting (uLSIF) [10] in Section 3.3, and
relative uLSIF (RuLSIF) [11] in Section 3.4.



3.2 Kullback-Leibler Importance Estimation Procedure (KLIEP)

KLIEP [8] is a direct density-ratio estimation algorithm that is suitable for
estimating the KL divergence.

Density-Ratio Model: Let us model the density ratio p(Y )
p′(Y ) by the following

kernel model:

g(Y ;θ) :=
n∑

ℓ=1

θℓK(Y ,Y ℓ), (2)

where θ := (θ1, . . . , θn)
⊤ are parameters to be learned from data samples, and

K(Y ,Y ′) is a kernel basis function. In practice, we use the Gaussian kernel and
the kernel width is chosen by cross-validation (see [8] for details).

Learning Algorithm: The parameters θ in the model g(Y ;θ) are determined
so that the empirical KL divergence from p(Y ) to g(Y ;θ)p′(Y ) is minimized:

max
θ

1

n

n∑
i=1

log

(
n∑

ℓ=1

θℓK(Y i,Y ℓ)

)
s.t.

1

n

n∑
j=1

n∑
ℓ=1

θℓK(Y ′
j ,Y ℓ)=1, θ1, . . . , θn ≥ 0.

The equality constraint is for normalization purposes because g(Y ;θ)p′(Y )
should be a probability density function. The inequality constraint comes from
the non-negativity of the density-ratio function. Since this is a convex optimiza-
tion problem, the unique global optimal solution θ̂ can be simply obtained, for
example, by a gradient-projection iteration. Finally, a density-ratio estimator is
given as

ĝ(Y ) =
n∑

ℓ=1

θ̂ℓK(Y ,Y ℓ). (3)

KLIEP was shown to achieve the optimal non-parametric convergence rate [8].

Change-Point Detection by KLIEP: Given a density-ratio estimator ĝ(Y ),
an approximator of the KL divergence is given as

K̂L :=
1

n

n∑
i=1

log ĝ(Y i).

In the previous work [6], this KLIEP-based KL-divergence estimator was applied
to change-point detection and demonstrated to be promising in experiments.

3.3 Unconstrained Least-Squares Importance Fitting (uLSIF)

Recently, another direct density-ratio estimator called uLSIF was proposed [10],
which is suitable for estimating the PE divergence.



Learning Algorithm: In uLSIF, the same density-ratio model g(Y ;θ) as
KLIEP (see Eq.(2)) is used. However, its training criterion is different; the
density-ratio model is fitted to the true density ratio under the squared loss.
More specifically, the parameter θ in the model g(Y ;θ) is determined so that
the following squared loss J(Y ) is minimized:

J(Y ) :=
1

2

∫ (
p(Y )

p′(Y )
− g(Y ;θ)

)2

p′(Y ) dY

=
1

2

∫
p(Y )

p′(Y )

2

p′(Y ) dY −
∫

p(Y )g(Y ;θ) dY +
1

2

∫
g(Y ;θ)2p′(Y ) dY .

Since the first term is a constant, we focus on the last two terms. By approximat-
ing the expectations by the empirical averages, the uLSIF optimization problem
is given as follows:

min
θ∈Rn

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

λ

2
θ⊤θ

]
, (4)

where the penalty term λ
2θ

⊤θ is included for regularization purposes, and λ
(≥ 0) denotes the regularization parameter, which is chosen by cross validation.

(see [10] for details). Ĥ is the n × n matrix and ĥ is the n-dimensional vector
defined as

Ĥℓ,ℓ′ :=
1

n

n∑
j=1

K(Y ′
j ,Y ℓ)K(Y ′

j ,Y ℓ′) and ĥℓ :=
1

n

n∑
i=1

K(Y i,Y ℓ).

It is easy to confirm that the solution θ̂ of (4) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ, (5)

where In denotes the n-dimensional identity matrix. Finally, a density-ratio
estimator is given by Eq.(3) with Eq.(5).

Change-Point Detection by uLSIF: Given a density-ratio estimator ĝ(Y ),
an approximator of the PE divergence can be constructed as

P̂E := − 1

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

This approximator is derived from the following expression of the PE divergence:

PE(P∥P ′) = −1

2

∫ (
p(Y )

p′(Y )

)2

p′(Y )dY +

∫ (
p(Y )

p′(Y )

)
p(Y )dY − 1

2
. (6)

Notable advantages of uLSIF are that its solution can be computed ana-
lytically, it possesses the optimal non-parametric convergence rate, it has the
optimal numerical stability, and it has higher robustness [7]. As experimentally
demonstrated in our supplementary technical report [14], uLSIF-based change-
point detection compares favorably with the KLIEP-based method.



3.4 Relative uLSIF (RuLSIF)

Depending on the condition of the denominator density p′(Y ), the density-ratio

value p(Y )
p′(Y ) can be unbounded (i.e., they can be infinity). This is actually prob-

lematic because the non-parametric convergence rate of uLSIF is governed by

the “sup”-norm of the true density-ratio function: maxY
p(Y )
p′(Y ) . To overcome this

problem, relative density-ratio estimation was introduced [11].

Relative PE Divergence: Let us consider the α-relative PE-divergence for
0 ≤ α < 1:

PEα(P∥P ′) := PE(P∥αP + (1− α)P ′) =

∫
p′α(Y ) (rα(Y )− 1)

2
dY ,

where p′α(Y ) = αp(Y )+(1−α)p′(Y ) and rα(Y ) = p(Y )
p′
α(Y ) . We refer to rα(Y ) as

the α-relative density ratio. The α-relative density ratio is reduced to the plain
density ratio if α = 0, and it tends to be “smoother” as α gets larger. Indeed, the
α-relative density ratio is bounded above by 1/α for α > 0, even when the plain

density ratio p(Y )
p′(Y ) is unbounded. This was proved to contribute to improving

the estimation accuracy [11].

Learning Algorithm: In the same way as the uLSIF method, the parameter
θ of the model g(Y ;θ) is learned by minimizing the squared difference between
true and estimated ratios:

J(Y ) =
1

2

∫
p′α(Y )(rα(Y )− g(Y ;θ))2 dY

=
1

2

∫
p′α(Y )r2α(Y )dY −

∫
p(Y )rα(Y )g(Y ;θ) dY

+
α

2

∫
p(Y )g(Y ;θ)2 dY − 1− α

2

∫
p′(Y )g(Y ;θ)2 dY ,

where the first term is a constant term. Note that we still use the same kernel
model (2) as g(Y ;θ) for approximating the α-relative density ratio.

Again, by ignoring the constant and approximating the expectations by em-
pirical averages, the α-relative density ratio can be learned in the same way as
the plain density ratio. Indeed, the optimization problem of a relative variant of
uLSIF, called RuLSIF, is given as the same form as uLSIF; the only difference

is the definition of the matrix Ĥ, which is now given by

Ĥℓ,ℓ′ :=
α

n

n∑
i=1

K(Y i,Y ℓ)K(Y i,Y ℓ′) +
(1− α)

n

n∑
j=1

K(Y ′
j ,Y ℓ)K(Y ′

j ,Y ℓ′).

RuLSIF inherits the advantages of uLSIF, i.e., its solution can be computed
analytically, it has the superior numerical stability, and it has higher robust-
ness; furthermore, RuLSIF possesses an even better non-parametric convergence
property than uLSIF [11].



Change-Point Detection by RuLSIF: By using an estimator ĝ(Y ) of the
α-relative density ratio, the α-relative PE divergence can be approximated as

P̂Eα := − α

2n

n∑
i=1

ĝ(Y i)
2 − 1− α

2n

n∑
j=1

ĝ(Y ′
j)

2 +
1

n

n∑
i=1

ĝ(Y i)−
1

2
.

As experimentally demonstrated in our supplementary technical report [14],
the RuLSIF-based change-point detection performs even better than the plain
uLSIF-based method. Thus, we focus on RuLSIF in the experiments in Section 4.

4 Experiments

In this section, we experimentally investigate the performance of the proposed
and existing change-point detection methods.

First, we use a human activity dataset and a speech dataset. The human
activity dataset is a subset of the Human Activity Sensing Consortium (HASC)
challenge 2011, which provides human activity information collected by portable
three-axis accelerometers. The speech dataset is the IPSJ SIG-SLP Corpora and
Environments for Noisy Speech Recognition (CENSREC) dataset provided by
National Institute of Informatics (NII), which records human voice in a noisy
environment. We compare our RuLSIF-based method with several state-of-the-
art methods: Singular spectrum transformation (SST) [4], subspace identification
(SI) [5], auto regressive (AR) [3], and one-class support vector machine (OSVM)
[9]. Examples of RuLSIF-based change score and ROC curves over 10 datasets
are plotted in Figures 2 and 3, showing that the proposed RuLSIF-based method
outperforms other methods.

Finally, we apply the proposed change-point detection method to the CMU
Twitter dataset, which is an archive of Twitter messages that have been collected
from April 2010 to October 2010 via the Twitter API. Here we track the degree
of popularity of a given topic by monitoring the frequency of selected keywords.
More specifically, we focus on events related to “Deepwater Horizon oil spill in
the Gulf of Mexico” which occurred on April 20, 2010, and was widely broadcast
among the Twitter community. We use the frequency of 10 keywords: “gulf ”,
“spill”, “bp”, “oil”, “hayward”, “mexico”, “coast”, “transocean”, “halliburton”,
and “obama” (see Figure 4(a)). For quantitative evaluation, we referred to the
Wikipedia entry “Timeline of the Deepwater Horizon oil spill” as a real-world
event source. The change-point score obtained by the proposed RuLSIF-based
method is plotted in Figure 4(b), where four occurrences of important real-world
events show the development of this news story.

As we can see from Figure 4(b), the change-point score increases immediately
after the initial explosion of the deepwater horizon oil platform and soon reaches
the first peak when oil was found on the sea shore of Louisiana on April 30.
Shortly after BP announced its preliminary estimation on the amount of leaking
oil, the change-point score rises quickly again and reaches its second peak at the
end of May, at which time President Obama visited Louisiana to assure local
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Fig. 2. HASC human-activity dataset (http://hasc.jp/hc2011/).
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Fig. 3. NII speech dataset (http://research.nii.ac.jp/src/eng/list/index.html).
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residents of the federal government’s support. On June 25, the BP stock was at
its one year’s lowest price, while the change-point score spikes at the third time.
Finally, BP cuts off the spill on July 15, as the score reaches its last peak.

5 Conclusion

We extended the existing KLIEP-based change detection method and proposed
to use uLSIF or RuLSIF as a building block. Through experiments, we demon-
strated that the RuLSIF-based change detection method is promising.
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