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Abstract

Policy gradient is a useful model-free reinforcement learning approach, but it tends
to suffer from instability of gradient estimates. In this paper, we analyze and im-
prove the stability of policy gradient methods. We first prove that the variance
of gradient estimates in the PGPE (policy gradients with parameter-based explo-
ration) method is smaller than that of the classical REINFORCE method under a
mild assumption. We then derive the optimal baseline for PGPE, which contributes
to further reducing the variance. We also theoretically show that PGPE with the
optimal baseline is more preferable than REINFORCE with the optimal baseline in
terms of the variance of gradient estimates. Finally, we demonstrate the usefulness
of the improved PGPE method through experiments.

1 Introduction

The goal of reinforcement learning (RL) is to find an optimal decision-making policy that
maximizes the return (i.e., the sum of discounted rewards) through interaction with an un-
known environment [17]. Model-free RL is a flexible framework in which decision-making
policies are directly learned without going through explicit modeling of the environment.
Policy iteration and policy search are two popular formulations of model-free RL1.

In the policy iteration approach [7], the value function is first estimated and then
policies are determined based on the learned value function. Policy iteration was demon-
strated to work well in many real-world applications, especially in problems with discrete
states and actions [18, 21, 1]. Although policy iteration can naturally deal with continu-
ous states by function approximation [10], continuous actions are hard to handle due to
the difficulty of finding maximizers of value functions with respect to actions. Moreover,
since policies are indirectly determined via value function approximation, misspecification

1Policy iteration is originally a model-based RL approach, but it can be driven in a model-free mode
by implicitly approximating an environment model with samples.
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of value function models can lead to inappropriate policies even in very simple problems
[19, 2]. Another limitation of policy iteration especially in physical control tasks is that
control policies can vary drastically in each iteration. This causes severe instability in the
physical system and thus is not favorable in practice.

Policy search is another approach to model-free RL that can overcome the limitations
of policy iteration [22, 4, 8]. In the policy search approach, control policies are directly
learned so that the return is maximized, for example, via a gradient method (called the
REINFORCE method) [22], an EM algorithm [4], and a natural gradient method [8].
Among them, the gradient-based method is particularly useful in physical control tasks
since policies are changed gradually. This ensures the stability of the physical system.

However, since the REINFORCE method tends to have a large variance in the esti-
mation of the gradient directions, its naive implementation converges slowly [12, 14, 16].
Subtraction of the optimal baseline [20, 6] can ease this problem to some extent, but the
variance of gradient estimates is still large. Furthermore, the performance heavily depends
on the choice of an initial policy, and appropriate initialization is not straightforward in
practice.

To cope with this problem, a novel policy gradient method called policy gradients with
parameter-based exploration (PGPE) was proposed recently [16]. In PGPE, an initial
policy is drawn from a prior probability distribution, and then actions are chosen de-
terministically. This construction contributes to mitigating the problem of initial policy
choice and stabilizing gradient estimates [15]. Moreover, by subtracting a moving-average
baseline, the variance of gradient estimates can be further reduced. Through robot-control
experiments, PGPE was demonstrated to achieve more stable performance than existing
policy-gradient methods.

The goal of this paper is to theoretically support the usefulness of PGPE, and to
further improve its performance. More specifically, we first give bounds of the gradient
estimates of the REINFORCE and PGPE methods. Our theoretical analysis shows that
gradient estimates for PGPE have smaller variance than those for REINFORCE under
a mild condition. We then show that the moving-average baseline for PGPE adopted in
the original paper [16] has excess variance; we give the optimal baseline for PGPE that
minimizes the variance, following the line of [20, 6]. We further theoretically show that
PGPE with the optimal baseline is more preferable than REINFORCE with the optimal
baseline in terms of the variance of gradient estimates. Finally, the usefulness of the
improved PGPE method is demonstrated through experiments.

2 Policy Gradients for Reinforcement Learning

In this section, we review policy gradient methods.
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2.1 Problem Formulation

Let us consider a Markov decision problem specified by (S,A, PT , PI , r, γ), where S is a
set of ℓ-dimensional continuous states, A is a set of continuous actions, PT (s

′|s, a) is the
transition probability density from current state s to next state s′ when action a is taken,
PI(s) is the probability of initial states, r(s, a, s′) is an immediate reward for transition
from s to s′ by taking action a, and 0 < γ < 1 is the discounted factor for future rewards.
Let p(a|s,θ) be a stochastic policy with parameter θ, which represents the conditional
probability density of taking action a in state s.

Let h = [s1, a1, . . . , sT , aT ] be a trajectory of length T. Then the return (i.e., the
discounted sum of future rewards) along h is given by

R(h) :=
T∑
t=1

γt−1r(st, at, st+1).

The expected return for parameter θ is defined by

J(θ) :=

∫
p(h|θ)R(h)dh,

where

p(h|θ) = p(s1)
T∏
t=1

p(st+1|st, at)p(at|st,θ).

The goal of reinforcement learning is to find the optimal policy parameter θ∗ that maxi-
mizes the expected return J(θ):

θ∗ := argmax J(θ).

2.2 Review of the REINFORCE Algorithm

In the REINFORCE algorithm [22], the policy parameter θ is updated via gradient ascent :

θ ←− θ + ε∇θJ(θ),

where ε is a small positive constant. The gradient ∇θJ(θ) is given by

∇θJ(θ) =

∫
∇θp(h|θ)R(h)dh

=

∫
p(h|θ)∇θ log p(h|θ)R(h)dh

=

∫
p(h|θ)

T∑
t=1

∇θ log p(at|st,θ)R(h)dh,

where we used the so-called ‘log trick’:

∇θp(h|θ) = p(h|θ)∇θ log p(h|θ).
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Since p(h|θ) is unknown, the expectation is approximated by the empirical average:

∇θĴ(θ) =
1

N

N∑
n=1

T∑
t=1

∇θ log p(a
n
t |snt ,θ)R(hn),

where hn := [sn1 , a
n
1 , . . . , s

n
T , a

n
T ] is a roll-out sample.

Let us employ the Gaussian policy model with parameter θ = (µ, σ), where µ is the
mean vector and σ is the standard deviation:

p(a|s;θ) = 1

σ
√
2π

exp

(
−(a− µ⊤s)2

2σ2

)
.

Then the policy gradients are explicitly given as

∇µ log p(a|s,θ) = a− µ⊤s

σ2
s,

∇σ log p(a|s,θ) =
(a− µ⊤s)2 − σ2

σ3
.

A drawback of REINFORCE is that the variance of the above policy gradients is large
[14, 16], which leads to slow convergence.

2.3 Review of the PGPE Algorithm

One of the reasons for large variance of policy gradients in the REINFORCE algorithm
is that the empirical average is taken at each time step, which is caused by stochasticity
of policies.

In order to mitigate this problem, another method called policy gradients with
parameter-based exploration (PGPE) was proposed recently [16]. In PGPE, a linear deter-
ministic policy (i.e., action a is chosen as θ⊤s) is adopted, and stochasticity is introduced
by considering p(θ|ρ), a prior distribution over policy parameter θ with hyper-parameter
ρ. Since entire history h is solely determined by a single sample of parameter θ in this
formulation, it is expected that the variance of gradient estimates can be reduced.

The expected return for hyper-parameter ρ is expressed as

J(ρ) =

∫∫
p(h|θ)p(θ|ρ)R(h)dhdθ.

Differentiating this with respect to ρ, we have

∇ρJ(ρ) =

∫∫
p(h|θ)∇ρp(θ|ρ)R(h)dhdθ

=

∫∫
p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ,
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where the log trick for ∇ρp(θ|ρ) is used. We then approximate the expectation over h
and θ by the empirical average:

∇ρĴ(ρ) =
1

N

N∑
n=1

∇ρ log p(θ
n|ρ)R(hn),

where each trajectory sample hn is drawn from p(h|θn) and parameter θn is drawn from
p(θn|ρ).

Let us employ the Gaussian prior distribution with hyper-parameter ρ = (η, τ ) to
draw parameter vector θ, where η is the mean vector and τ is the vector consisting of
the standard deviation in each element:

p(θi|ρi) =
1

τi
√
2π

exp

(
−(θi − ηi)2

2τ 2i

)
.

Then the derivative of log p(θ|ρ) with respect to ηi and τi are given as follows:

∇ηi log p(θ|ρ) =
θi − ηi
τ 2i

,

∇τi log p(θ|ρ) =
(θi − ηi)2 − τ 2i

τ 3i
.

3 Variance of Gradient Estimates

In this section, we theoretically investigate the variance of gradient estimates in REIN-
FORCE and PGPE.

For multi-dimensional state space, we consider the trace of the covariance matrix of
gradient vectors. That is, for a random vector A = (A1, . . . , Aℓ)

⊤, we define

Var(A) = tr
(
E
[
(A− E[A])(A− E[A])⊤

])
=

ℓ∑
m=1

E
[
(Am − E[Am])

2
]
, (1)

where E denotes the expectation. Let

B =
ℓ∑

i=1

τ−2
i ,

where ℓ is the dimensionality of state s.
Below, we consider a subset of the following assumptions:

Assumption (A): r(s, a, s′) ∈ [−β, β] for β > 0.

Assumption (B): r(s, a, s′) ∈ [α, β] for 0 < α < β.
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Assumption (C): For δ > 0, there exist two series {ct}Tt=1 and {dt}Tt=1 such that

∥st∥2 ≥ ct and ∥st∥2 ≤ dt

hold with probability at least (1 − δ)1/2N respectively over the choice of sample
paths, where ∥ · ∥2 denotes the ℓ2-norm.

Note that Assumption (B) is stronger than Assumption (A). Let

L(T ) = CTα
2 −DTβ

2/(2π),

where

CT =
T∑
t=1

c2t and DT =
T∑
t=1

d2t .

First, we analyze the variance of gradient estimates in PGPE (the proofs of all the
theorems are provided in Appendix):

Theorem 1. Under Assumption (A), we have the following upper bounds:

Var
[
∇ηĴ(ρ)

]
≤ β2(1− γT )2B

N(1− γ)2
,

Var
[
∇τ Ĵ(ρ)

]
≤ 2β2(1− γT )2B

N(1− γ)2
.

This theorem means that the upper bound of the variance of∇ηĴ(ρ) is proportional to
β2 (the upper bound of squared rewards), B (the trace of the inverse Gaussian covariance),
and (1 − γT )2/(1 − γ)2, and is inverse-proportional to sample size N . The upper bound

of the variance of ∇τ Ĵ(ρ) is twice larger than that of ∇ηĴ(ρ). When T goes to infinity,
(1− γT )2 will converge to 1.

Next, we analyze the variance of gradient estimates in REINFORCE:

Theorem 2. Under Assumptions (B) and (C), we have the following lower bound with
probability at least 1− δ:

Var
[
∇µĴ(θ)

]
≥ (1− γT )2

Nσ2(1− γ)2
L(T ).

Under Assumptions (A) and (C), we have the following upper bound with probability at
least (1− δ)1/2:

Var
[
∇µĴ(θ)

]
≤ DTβ

2(1− γT )2

Nσ2(1− γ)2
.

Under Assumption (A), we have

Var
[
∇σĴ(θ)

]
≤ 2Tβ2(1− γT )2

Nσ2(1− γ)2
.
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The upper bounds for REINFORCE are similar to those for PGPE, but they are
monotone increasing with respect to trajectory length T . The lower bound for the variance
of ∇µĴ(θ) will be non-trivial if it is positive, i.e., L(T ) > 0. This can be fulfilled, e.g., if
α and β satisfy

2πCTα
2 > DTβ

2.

Deriving a lower bound of the variance of ∇σĴ(θ) is left open as future work.
Finally, we compare the variance of gradient estimates in REINFORCE and PGPE:

Theorem 3. In addition to Assumptions (B) and (C), we assume L(T ) is positive and
monotone increasing with respect to T . If there exists T0 such that L(T0) ≥ β2Bσ2, then
we have

Var[∇µĴ(θ)] > Var[∇ηĴ(ρ)]

for all T > T0, with probability at least 1− δ.

The above theorem means that PGPE is more favorable than REINFORCE in terms
of the variance of gradient estimates of the mean, if trajectory length T is large. This
theoretical result would partially support the experimental success of the PGPE method
[16].

4 Variance Reduction by Subtracting Baseline

In this section, we give a method to reduce the variance of gradient estimates in PGPE
and analyze its theoretical properties.

4.1 Basic Idea of Introducing Baseline

It is known that the variance of gradient estimates can be reduced by subtracting a
baseline b: for REINFORCE and PGPE, modified gradient estimates are given by

∇θĴ
b(θ) =

1

N

N∑
n=1

(R(hn)− b)
T∑
t=1

∇θ log p(a
n
t |snt ,θ),

∇ρĴ
b(ρ) =

1

N

N∑
n=1

(R(hn)− b)∇ρ log p(θ
n|ρ).

The adaptive reinforcement baseline [22] was derived as the exponential moving average
of the past experience:

b(n) = γR(hn−1) + (1− γ)b(n− 1),

where 0 < γ ≤ 1. Based on this, an empirical gradient estimate with the moving-average
baseline was proposed for REINFORCE [22] and PGPE [16].
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The above moving-average baseline contributes to reducing the variance of gradient
estimates. However, it was shown [6, 20] that the moving-average baseline is not optimal;
the optimal baseline is, by definition, given as the minimizer of the variance of gradient
estimates with respect to a baseline. Following this formulation, the optimal baseline for
REINFORCE is given as follows [14]:

b∗REINFORCE := argmin
b

Var[∇θĴ
b(θ)]

=
E[R(h)∥

∑T
t=1∇θ log p(at|st,θ)∥2]

E[∥
∑T

t=1∇θ log p(at|st,θ)∥2]
. (2)

However, only the moving-average baseline was introduced to PGPE so far [16], which is
suboptimal. Below, we derive the optimal baseline for PGPE, and study its theoretical
properties.

4.2 Optimal Baseline for PGPE

Let b∗PGPE be the optimal baseline for PGPE that minimizes the variance:

b∗PGPE := argmin
b

Var[∇ρĴ
b(ρ)].

Then the following theorem gives the optimal baseline for PGPE:

Theorem 4. The optimal baseline for PGPE is given by

b∗PGPE =
E[R(h)∥∇ρ log p(θ|ρ)∥2]

E[∥∇ρ log p(θ|ρ)∥2]
,

and the excess variance for a baseline b is given by

Var[∇ρĴ
b(ρ)]−Var[∇ρĴ

b∗PGPE(ρ)] =
(b− b∗PGPE)

2

N
E[∥∇ρ log p(θ|ρ)∥2].

The above theorem gives an analytic-form expression of the optimal baseline for
PGPE. When expected return R(h) and the squared norm of characteristic eligibility
∥∇ρ log p(θ|ρ)∥2 are independent of each other, the optimal baseline is reduced to aver-
age expected return E[R(h)]. However, the optimal baseline is generally different from
the average expected return. The above theorem also shows that the excess variance is
proportional to the squared difference of baselines (b− b∗PGPE)

2 and the expected squared
norm of characteristic eligibility E[∥∇ρ log p(θ|ρ)∥2], and is inverse-proportional to sample
size N .

Next, we analyze the contribution of the optimal baseline to the variance with respect
to mean parameter η in PGPE:

Theorem 5. If r(s, a, s′) ≥ α > 0, we have the following lower bound:

Var[∇ηĴ(ρ)]−Var[∇ηĴ
b∗PGPE(ρ)] ≥ α2(1− γT )2B

N(1− γ)2
.
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Under Assumption (A), we have the following upper bound:

Var[∇ηĴ(ρ)]−Var[∇ηĴ
b∗PGPE(ρ)] ≤ β2(1− γT )2B

N(1− γ)2
.

This theorem shows that the lower and upper bounds of the excess variance are pro-
portional to α2 and β2 (the bounds of squared immediate rewards), B (the trace of the
inverse Gaussian covariance), and (1 − γT )2/(1 − γ)2, and are inverse-proportional to
sample size N . When T goes to infinity, (1− γT )2 will converge to 1.

4.3 Comparison with REINFORCE

Next, we analyze the contribution of the optimal baseline for REINFORCE, and compare
it with that for PGPE. It was shown [6, 20] that the excess variance for a baseline b in
REINFORCE is given by

Var[∇θĴ
b(θ)]−Var[∇θĴ

b∗REINFORCE(θ)]

=
(b− b∗REINFORCE)

2

N
E

∥∥∥∥∥
T∑
t=1

∇θ log p(at|st,θ)

∥∥∥∥∥
2
 .

Based on this, we have the following theorem.

Theorem 6. Under Assumptions (B) and (C), we have the following bounds with proba-
bility at least 1− δ:

CTα
2(1− γT )2

Nσ2(1− γ)2
≤ Var[∇µĴ(θ)]−Var[∇µĴ

b∗REINFORCE(θ)] ≤ β2(1− γT )2DT

Nσ2(1− γ)2
.

The above theorem shows that the lower and upper bounds of the excess variance are
monotone increasing with respect to trajectory length T .

In the aspect of the amount of reduction in the variance of gradient estimates, Theo-
rem 5 and Theorem 6 show that the optimal baseline for REINFORCE contributes more
than that for PGPE.

Finally, based on Theorem 1 and Theorem 5 and based on Theorem 2 and Theorem 6,
we have the following theorem:

Theorem 7. Under Assumptions (B) and (C), we have

Var[∇ηĴ
b∗PGPE(ρ)] ≤ (1− γT )2

N(1− γ)2
(β2 − α2)B,

Var[∇µĴ
b∗REINFORCE(θ)] ≤ (1− γT )2

Nσ2(1− γ)2
(β2DT − α2CT ),

where the latter inequality holds with probability at least 1− δ.
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This theorem shows that the upper bound of the variance of gradient estimates for
REINFORCE with the optimal baseline is still monotone increasing with respect to tra-
jectory length T . On the other hand, since (1 − γT )2 ≤ 1, the above upper bound of
the variance of gradient estimates in PGPE with the optimal baseline can be further
upper-bounded as

Var[∇ηĴ
b∗PGPE(ρ)] ≤ (β2 − α2)B

N(1− γ)2
,

which is independent of T . Thus, when trajectory length T is large, the variance of
gradient estimates in REINFORCE with the optimal baseline may be significantly larger
than the variance of gradient estimates in PGPE with the optimal baseline.

5 Experiments

In this section, we experimentally investigate the usefulness of the proposed method,
PGPE with the optimal baseline.

5.1 Illustration

Let the state space S be one-dimensional and continuous, and the initial state is randomly
chosen from the standard normal distribution. The action space A is also set to be one-
dimensional and continuous. The transition dynamics of the environment is set at

st+1 = st + at + ε,

where ε ∼ N (0, 0.52) is stochastic noise and N (µ, σ2) denotes the normal distribution
with mean µ and variance σ2. The immediate reward is defined as

r = exp
(
−s2/2− a2/2

)
+ 1,

which is bounded as 1 < r ≤ 2.

5.1.1 Variance and Bias

First, we illustrate the variance of gradient estimates of the following methods:

• REINFORCE: REINFORCE without any baselines.

• REINFORCE-OB: REINFORCE with the optimal baseline.

• PGPE: PGPE without any baselines.

• PGPE-MB: PGPE with the moving-average baseline.

• PGPE-OB: PGPE with the optimal baseline.



Analysis and Improvement of Policy Gradient Estimation 11

Table 1: Variance and bias of estimated parameters for toy data.

T = 10 T = 50
Method Variance Bias Variance Bias

µ, η σ, τ µ, η σ, τ µ, η σ, τ µ, η σ, τ
REINFORCE 13.2570 26.9173 -0.3102 -1.5098 188.3860 278.3095 -1.8126 -5.1747

REINFORCE-OB 0.0914 0.1203 0.0672 0.1286 0.5454 0.8996 -0.2988 -0.2008
PGPE 0.9707 1.6855 -0.0691 0.1319 1.6572 3.3720 -0.1048 -0.3293

PGPE-MB 0.2127 0.3238 0.0828 -0.1295 0.4123 0.8332 0.0925 -0.2556
PGPE-OB 0.0372 0.0685 -0.0164 0.0512 0.0850 0.1815 0.0480 -0.0779

PGPE-MB-SyS 0.1070 0.8087 0.0850 0.2625 0.2717 1.7883 0.1022 0.1124
PGPE-OB-SyS 0.0908 0.1084 -0.0854 0.0640 0.2865 0.3009 0.0460 0.1602

For fair comparison, all of these methods use the same parameter setup: the mean and
standard deviation of the Gaussian distribution is set at µ = −1.5 and σ = 1, and the
length of the trajectory is set at T = 10 or 50. The discount factor is set at γ = 0.9, and
the number of episodic samples is set at N = 100.

Table 1 summarizes the variance of gradient estimates over 100 runs, showing that
the variance of REINFORCE is overall larger than PGPE. A notable difference between
REINFORCE and PGPE is that the variance of REINFORCE significantly grows as T
increases, whereas that of PGPE is not influenced that much by T . This well agrees with
our theoretical analysis in Section 3. The results also show that the variance of PGPE-OB
is much smaller than that of PGPE-MB. REINFORCE-OB contributes highly to reducing
the variance especially when T is large, which also well agrees with our theory. However,
PGPE-OB still provides much smaller variance than REINFORCE-OB.

We also investigate the bias of gradient estimates of each method. Here, we regard
gradients estimated with N = 1000 as true gradients, and compute the bias of gradient
estimates. The results are also included in Table 1, showing that introduction of baselines
does not increase the bias; rather, it tends to reduce the bias.

Figure 1 shows the variance of gradient estimates with respect to the mean parameter
as functions of discounted factor γ, in log10-scale. The graphs show that, as discount factor
γ gets close to 1, the variance increases. This well agrees with our theoretical analysis in
Section 3. Among the compared methods, PGPE-OB has the smallest variance overall.

5.1.2 Symmetric Sampling for PGPE

In order to improve the convergence property of the PGPE method, a heuristic of using
a pair of symmetric samples called the symmetric sampling method was introduced [16].
Here, we numerically investigate its effect on the variance of gradient estimates.

In the symmetric sampling method, perturbation sample ϵn is drawn from distribution
N (0, τ 2), and then symmetric parameter samples are created as θ+

n = η + ϵn and θ−
n =

η − ϵn. Let R
+
n and R−

n be returns obtained by θ+
n and θ−

n , respectively. Based on these
two returns, gradients with respect to η are calculated using the difference between the
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Figure 1: Variance of gradient estimates with respect to the mean parameter as functions
of discount factor γ for toy data.

two returns as

∇ηĴ(ρ) ≈
1

N

N∑
n=1

ϵn(R
+
n −R−

n )

2η2
.

On the other hand, gradients with respect to τ can not be directly computed from sym-
metric parameter samples since θ+ and θ− are equally probable under given τ . To cope
with this problem, the difference of the mean of the two returns and the baseline is used
as

∇τ Ĵ(ρ) ≈
1

N

N∑
n=1

∇τ log p(θ
n|ρ)

(
R+

n +R−
n

2
− b
)
.

Note that, since the symmetric sampling method produces two parameters θ+ and θ−, it
requires two trajectory samples in every update.

We numerically compare the variance of gradient estimates of the following methods:

• PGPE-MB-SyS: PGPE-MB with symmetric sampling.

• PGPE-OB-SyS: PGPE-OB with symmetric sampling.

In the previous experiments, the number of episodic samples for non-symmetric sampling
methods was set at N = 100. If the number of sampled parameters is the same, the
symmetric sampling methods will require twice as many trajectory samples (i.e., N = 200)
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as non-symmetric sampling counterparts since the symmetric sampling methods produce
two parameters θ+ and θ−. For fair comparison, we only use the half number of sampled
parameters for the symmetric sampling methods, which requires N = 100 trajectory
samples.

The bottom half of Table 1 shows the numerical results. In terms of the variance
of gradient estimates with respect to mean parameter η, PGPE-MB-SyS has smaller
variance than PGPE-MB. Thus, symmetric sampling contributes to reducing the variance
for the PGPE-MB method, which agrees with the experimental results reported in [16].
However, PGPE-OB (without symmetric sampling) has smaller variance than PGPE-
OB-SyS, indicating that symmetric sampling increases the variance for the PGPE-OB
method. As for the variance of gradient estimates with respect to deviation parameter τ ,
symmetric sampling tends to increase the variance both for the PGPE-MB and PGPE-OB
methods.

5.1.3 Variance and Policy Parameter Change through Entire Policy-Update
Process

Next, we investigate the variance of gradient estimates when policy parameters are up-
dated over iterations2.

In this experiment, we set T = 20, and the variance is computed from 50 runs. We
set N = 10 for all the methods, and policies are updated over 50 iterations. In order to
evaluate the variance in a stable manner, we repeat the above experiments 20 times with
random choice of initial mean parameter µ from [−3.0,−0.1], and investigate the average
variance of gradient estimates with respect to mean parameter µ over 20 trials.

The results are summarized in Figure 2. Figure 2(a) compares the variance of RE-
INFORCE with/without baselines, whereas Figure 2(b) compares the variance of PGPE
with/without baselines. These plots show that introduction of baselines contributes highly
to the reduction of the variance over iterations. Figure 2(c) compares the variance of
PGPE-MB and PGPE-MB-SyS, showing that symmetric sampling contributes highly to
stabilization. Figure 2(d) compares the variance of PGPE-OB and PGPE-OB-SyS, show-
ing that the variance of PGPE-OB (without symmetric sampling) is smaller than that
of PGPE-OB-SyS. Overall, in terms of the variance of gradient estimates, PGPE-OB
compares favorably with other methods.

Next, we investigate how policy parameters change over 50 iterations. We set N = 10
and T = 10, and set the initial mean parameter at η = −1.6, −0.8, or −0.1, and initial
deviation parameter at τ = 1. Figure 3 depicts the contour of the expected return
and illustrates changes of policy parameters over iterations for PGPE-MB and PGPE-
OB. In the graphs, the maximum of the return surface is located at the middle bottom.
Figure 3(a) shows that update directions of PGPE-MB are unstable and the three paths
do not converge even after 50 iterations. On the other hand, Figure 3(b) shows that

2If the deviation parameter σ takes a negative value during the policy-update process, we set it at
0.05.
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Figure 2: Variance of gradient estimates with respect to the mean parameter through
policy-update iterations for toy data.
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Figure 3: Policy parameter change through policy-update iterations for toy data.

PGPE-OB gives much more reliable update directions and the three paths converge to a
maximum point rapidly.

5.1.4 Performance of Learned Policies

Finally, we evaluate returns obtained by each method. The trajectory length is fixed
at T = 20, and the maximum number of policy-update iterations is set at 50. We
investigate average returns over 20 runs as functions of the number of episodic samples
N . We have two experimental results for different initial policies. Figure 4(a) shows the
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Figure 4: Average returns over 20 runs as functions of the number of episodic samples N
for toy data.

results when initial mean parameter µ is chosen randomly from [−1.6,−0.1], which tends
to perform well. The graph shows that PGPE-OB performs the best, especially when
N < 5; then REINFORCE-OB follows with a small margin. PGPE-MB and plain PGPE
also work reasonably well, although they are slightly unstable due to larger variance.
Plain REINFORCE is highly unstable, which is caused by the huge variance of gradient
estimates (see Figure 2 again).

Figure 4(b) describes the results when initial mean parameter µ is chosen randomly
from [−3.0,−0.1], which tends to result in poorer performance. In this setup, difference
among the compared methods is more significant than the case with good initial policies.
Overall, plain REINFORCE performs very poorly, and even REINFORCE-OB tends to
be outperformed by the PGPE methods. This means that REINFORCE is very sensitive
to the choice of initial policies. Among the PGPE methods, PGPE-OB works very well
and converges quickly.

5.2 Cart-Pole Balancing

Here, we evaluate the performance of our proposed method in a more complex task of
cart-pole balancing [3]. A pole is hanged to the roof of a cart (see Figure 5), and the goal
is to swing up the pole by moving the cart properly and try to keep the pole at the top.

The state space S is two-dimensional and continuous, which consists of the angle
φ ∈ [0, 2π] and angular velocity φ̇ ∈ [−3π, 3π] of the pole. The action space A is one-
dimensional and continuous, which corresponds to the force applied to the cart (note that
we can not directly control the pole, but only indirectly through moving the cart). We use
the Gaussian policy model for REINFORCE and linear policy model for PGPE, where
state s is non-linearly transformed to a feature space via a basis function vector.

We use 20 Gaussian kernels with standard deviation σ = 0.5 as the basis functions,
where the kernel centers are distributed over the following grid points:

{0, π/2, π, 3π/2} × {−3π,−3π/2, 0, 3π/2, 3π}.

For the position of pole, we use the polar system where φ = 0 and φ = 2π are treated as
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ϕϕ̇
Figure 5: Cart-pole balancing.

the same. That is, for the i-th Gaussian center (ci, ċi), the basis function ϕi(s) is given
by

ϕi(s) = exp

(
−((cos(φ)− cos(ci))

2 + (sin(φ)− sin(ci))
2) /4 + (φ̇− ċi)2/(6π)2

2σ2

)
.

The dynamics of the pole (i.e., the update rule of the angle and the angular velocity)
is given by

φt+1 = φt + φ̇t+1∆t,

φ̇t+1 = φ̇t +
9.8 sin(φt)− αwlφ̇2

t sin(2φt)/2 + α cos(φt)at
4l/3− αwl cos2(φt)

∆t,

where α = 1/W +w and at is the action taken at time t. We set the problem parameters
as: the mass of the cart W = 8[kg], the mass of the pole w = 2[kg], and the length of the
pole l = 0.5[m]. We set the time step ∆t for the position and velocity updates at 0.01[s]
and action selection at 0.1[s]. The reward function is defined as

r(st, at, st+1) = cos(φt+1).

That is, the higher the pole is, the more rewards we can obtain. The initial policy is
chosen randomly, and the initial-state probability density is set to be uniform. The agent
collects N = 100 episodic samples with trajectory length T = 40, and the discount factor
is set at γ = 0.9.

We investigate average returns over 10 trials as the functions of policy-update iter-
ations. The return at each trial is computed over 100 test episodic samples (which are
not used for policy learning). The experimental results are plotted in Figure 6, showing
that the improvement of both plain REINFORCE and REINFORCE-OB tend to be slow,
and all PGPE methods outperformed REINFORCE methods overall. Among the PGPE
methods, the proposed PGPE-OB converges faster than PGPE-MB and plain PGPE.
Moreover, the use of symmetric sampling further improves the performance. Overall,
PGPE equipped with both the optimal baseline and symmetric sampling (PGPE-OB-
SyS) gives the best performance.
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6 Conclusions

In this paper, we analyzed and improved the stability of the policy gradient method called
PGPE (policy gradients with parameter-based exploration). We theoretically showed
that, under a mild condition, PGPE provides more stable gradient estimates than the
classical REINFORCE method. We also derived the optimal baseline for PGPE, and
theoretically showed that PGPE with the optimal baseline is more preferable than REIN-
FORCE with the optimal baseline in terms of the variance of gradient estimates. Finally,
we demonstrated the usefulness of PGPE with optimal baseline through experiments.
We also experimentally showed that the use of symmetric sampling further improves the
performance.

Although we focused on the gradient based approach to optimize the distribution of
policy parameters, there are many alternative heuristic approaches such as the genetic
algorithm (GA), estimation of distribution algorithm (EDA), and hill climbing (HC). GA
is a heuristic approach inspired by mutation, selection, and crossover [5]. In GA, the
population of randomly generated individuals are initially constructed. Then, in each
iteration, multiple individuals are selected from the current population based on a fitness
function, and new populations are formed by crossover between selected individuals with
mutations. GAs could be applied to optimizing policy parameters by regarding individuals
and the fitness function as policy parameters and the reward function respectively.

EDA is an outgrowth of GAs [11]. In EDAs, the probability distribution of popula-
tions is estimated from selected individuals and new populations are sampled from the
distribution. EDAs would be more stable since the difficulty of designing crossover and
mutation is diminished. Similarly to GAs, EDA could be applied to optimizing policy
parameters. However, estimating a high-dimensional distribution of policy parameters is
highly challenging.
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HC is an optimization technique which belongs to the class of local search methods
[9]. HC iteratively finds a better parameter by comparing the value of all neighbors of
the current parameter. HC could be in principle applied to optimizing policy parameters,
but it would not be computationally efficient to compare the return of all neighbored
parameters.

These heuristic optimization techniques would be useful approaches to RL problem.
Thus, an important future work along this line is to combine the meta-heuristics with the
gradient-based method.

Another challenging issue to be discussed in the reinforcement learning field is the
trade-off between exploration and exploitation. PGPE is not an exception since choosing
similar policy parameters many times and collecting data is not efficient especially when
data collection is expensive and time consuming. Therefore, in our future work, we will
investigate the trade-off between exploration and exploitation in the framework of PGPE.

In real-world problems, often not all the state variables can be observed. In such cases,
it is natural to consider partially observable settings. Thus, an important future direction
is to formulate the PGPE problem in the framework of partially observable MDPs.

Recently, the combination of parameter-based exploration and natural policy gradient
has been proposed to speed up the policy gradient methods [13]. We will extend the
current theoretical analysis so that the above natural PGPE method can also be analyzed.

Acknowledgments

T. Z. and G. N. were supported by the MEXT scholarship and the GCOE program,
H. H. was supported by the FIRST program, and M. S. was supported by MEXT KAK-
ENHI 23120004.

Appendix

In the appendix, we give proofs of the theorems. First, we give some preliminaries.
If X ∼ χ2(k), then the non-central moments are given by

E [Xn] = 2n
Γ(n+ k/2)

Γ(k/2)
= k(k + 2) · · · (k + 2n− 2),

where Γ(z) is the Gamma function defined as

Γ(z) :=

∫ +∞

0

tz−1e−tdt.

The Gamma function satisfies Γ(z + 1) = zΓ(z), Γ(1/2) =
√
π, and Γ(1) = 1.

If X ∼ N (µ, σ2), central absolute moments (the moments of |X − µ|) are given by

E [|x− µ|p] =

{
σp(p− 1)!!

√
2/π, p is odd,

σp(p− 1)!! p is even,
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where n!! denotes the double factorial defined by

n!! :=


n · (n− 2) · · · 5 · 3 · 1 n is positive odd,

n · (n− 2) · · · 6 · 4 · 2 n is positive even,

1 n = 1 or 0.

A Proof of Theorem 1

For notational brevity, we denote the i-th component of f(θ) = ∇η log p(θ | ρ) and the
i-th component of g(θ) = ∇τ log p(θ | ρ) as

fi(θ) = ∇ηi log p(θ | ρ) =
θi − ηi
τ 2i

,

gi(θ) = ∇τi log p(θ | ρ) =
(θi − ηi)2 − τ 2i

τ 3i
.

Proof. According to Eq.(1), we have

Var[R(h)f(θ)] ≤
ℓ∑

i=1

E
[
(Rfi)

2
]

=
ℓ∑

i=1

∫
p(θi)

(
T∑
t=1

γt−1r(st, at, st+1)

)2(
θi − ηi
τ 2i

)2

dθi

≤
ℓ∑

i=1

∫
p(θi)

(
T∑
t=1

γt−1β

)2(
θi − ηi
τ 2i

)2

dθi

=
ℓ∑

i=1

∫
p(θi)

(
β(1− γT )
1− γ

)2(
θi − ηi
τ 2i

)2

dθi

=
ℓ∑

i=1

β2(1− γT )2

τ 2i (1− γ)2
E

[(
θi − ηi
τi

)2
]
.

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , ℓ. We could know that ψi ∼ χ2(1) and E[ψi] = 1
since θi ∼ N (ηi, τ

2
i ), and thus

Var[R(h)f(θ)] ≤ β2(1− γT )2B
(1− γ)2

.

Hence the first part of Theorem 1 follows due to

Var
[
∇ηĴ (ρ)

]
=

1

N
Var[R(h)f(θ)].
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Similarly,

Var[R(h)g(θ)] ≤
ℓ∑

i=1

E
[
(Rgi)

2
]

≤
ℓ∑

i=1

β2(1− γT )2

τ 2i (1− γ)2
E

((θi − ηi
τi

)2

− 1

)2
 .

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , ℓ. Since θi ∼ N (ηi, τ
2
i ), we could know that

E
[
(ψi − 1)2

]
= E

[
ψ2
i

]
− 2E[ψi] + 1 = 2.

Hence

Var[R(h)g(θ)] ≤ 2β2(1− γT )2B
(1− γ)2

.

Notice that

Var
[
∇τ Ĵ (ρ)

]
=

1

N
Var[R(h)g(θ)],

which completes the proof.

B Proof of Theorem 2

To begin with, we note that µ is a vector and σ is a scalar in REINFORCE. We denote
the i-th component of f(h) =

∑T
t=1∇µ log p(at | st,θ) and the scalar function g(h) as

fi(h) =
T∑
t=1

∇µi
log p(at | st,θ) =

T∑
t=1

at − µ⊤st
σ2

st,i,

g(h) =
T∑
t=1

∇σ log p(at | st,θ) =
T∑
t=1

(at − µ⊤st)
2 − σ2

σ3
,

where all functions above are parameterized by θ.

Proof. Since

Var[∇µĴ (θ)] =
1

N
Var[R(h)f(h)],

Var[∇σĴ (θ)] =
1

N
Var[R(h)g(h)],

we can just focus on the bounds of Var[R(h)f(h)] and Var[R(h)g(h)].
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The upper bound of Var[R(h)f(h)]:

Var[R(h)f(h)] ≤
ℓ∑

i=1

E
[
(Rfi)

2
]

= E
[
R2f⊤f

]
=

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)2

×

(
T∑
t=1

at − µ⊤st
σ2

st

)⊤( T∑
t=1

at − µ⊤st
σ2

st

)
dh

≤ β2(1− γT )2

σ2(1− γ)2
E

[(
T∑

t,t′=1

(at − µ⊤st)(at′ − µ⊤st′)

σ2
s⊤tst′

)]
.

Let ξt = (at − µ⊤st)/σ for t = 1, . . . , T . Then, ξ1, . . . , ξT are independent standard
normal variables because of at ∼ N (µ⊤st, σ

2). Since all ∇µ log p(at | st,θ) in f(h) are
parameterized by the states st, and the stochasticity of ξt comes only from at, it is sufficient
to consider fixed states. Given {st}Tt=1, ξ1s1, . . . , ξTsT are ℓ-dimensional independent
normal variables with zero means, that is, E[ξtst] = 0. Hence,

E

[(
T∑

t,t′=1

(at − µ⊤st)(at′ − µ⊤st′)

σ2
s⊤tst′

)]
= E

[(
T∑

t,t′=1

ξtξt′s
⊤
tst′

)]

=
T∑
t=1

E
[
ξ2t s

⊤
tst
]
+

T∑
t,t′=1,t̸=t′

E[ξtst]⊤E[ξt′st′ ]

=
T∑
t=1

∥st∥2E
[
ξ2t
]
.

Since ξt ∼ N (0, 1), we have ξ2t ∼ χ2(1) and E[ξ2t ] = 1. Consequently,

Var[R(h)f(h)] ≤ β2(1− γT )2

σ2(1− γ)2
T∑
t=1

∥st∥2E
[
ξ2t
]

=
β2(1− γT )2

σ2(1− γ)2
T∑
t=1

∥st∥2

≤ DTβ
2(1− γT )2

σ2(1− γ)2
,

with probability at least (1− δ)1/2N .
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The upper bound of Var[R(h)g(h)]:

Var[R(h)g(h)] ≤ E
[
(Rg)2

]
=

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)2( T∑
t=1

(at − µ⊤st)
2 − σ2

σ3

)2

dh

≤ β2(1− γT )2

σ2(1− γ)2
E

( T∑
t=1

(
at − µ⊤st

σ

)2

− T

)2
 .

Let ξt = (at−µ⊤st)/σ for t = 1, . . . , T . Then ξ1, . . . , ξT are independent standard normal
variables. Let κ =

∑T
t=1 ξ

2
t . Then we have κ ∼ χ2(T ) and

E
[
(κ− T )2

]
= E

[
κ2
]
− 2TE[κ] + T 2 = 2T.

Hence

Var[R(h)g(h)] ≤ 2Tβ2(1− γT )2

σ2(1− γ)2
.

The lower bound of Var[R(h)f(h)]: By the same technique used in the corresponding
upper bound, we can prove that with probability at least (1− δ)1/2N ,

ℓ∑
i=1

E
[
(Rfi)

2
]
≥ CTα

2(1− γT )2

σ2(1− γ)2
.

On the other hand, based on the existence of {dt}Tt=1, there must be {dt,i}Tt=1 for

i = 1, . . . , ℓ, such that d2t =
∑ℓ

i=1 d
2
t,i and the inequality |st,i| ≤ dt,i holds with probability

at least (1 − δ)1/2Nℓ. Let ξt,i = sgn(st,i)(at − µ⊤st)/σ for t = 1, . . . , T and i = 1, . . . , ℓ.

Then all ξt,i are independent standard normal variables. Let κi =
∑T

t=1 ξt,i|st,i| and
ζi =

∑T
t=1 ξt,idt,i. Then κi ∼ N (0,

∑T
t=1 s

2
t,i) for fixed s1,i, . . . , sT,i, ζi ∼ N (0,

∑T
t=1 d

2
t,i),

and E[|κi| | s1,i, . . . , sT,i] ≤ E[|ζi|] holds with probability at least (1 − δ)1/2Nℓ over the
choice of s1,i, . . . , sT,i according to the underlying p(h). When

∫
h
p(h)Rfidh > 0, with



Analysis and Improvement of Policy Gradient Estimation 23

probability at least (1− δ)1/2Nℓ,∫
h

p(h)Rfidh ≤
∫
{h|fi(h)>0}

p(h)Rfidh

≤ β(1− γT )
1− γ

∫
{h|fi(h)>0}

p(h)fidh

=
β(1− γT )
1− γ

∫
{h|

∑T
t=1 ξt,i|st,i|>0}

p(h)
T∑
t=1

ξt,i|st,i|dh

=
β(1− γT )
1− γ

∫ +∞

0

p(κi)κidκi

=
β(1− γT )
1− γ

(
1

2
E[|κi|]

)
=
β(1− γT )
1− γ

(
1

2
Es1,i,...,sT,i

[
Eκi

[|κi| | s1,i, . . . , sT,i]
])

≤ β(1− γT )
1− γ

(
1

2
E[|ζi|]

)

=
β(1− γT )
1− γ

√∑T
t=1 d

2
t,i√

2π
.

When
∫
h
p(h)Rfidh < 0, with probability at least (1− δ)1/2Nℓ,

∫
h

p(h)Rfidh ≥ −
β(1− γT )
1− γ

√∑T
t=1 d

2
t,i√

2π
.

Therefore,

ℓ∑
i=1

(E[Rfi])2 =
ℓ∑

i=1

(∫
h

p(h)Rfidh

)2

≤
ℓ∑

i=1

β2(1− γT )2

σ2(1− γ)2

∑T
t=1 d

2
t,i

2π

=
β2(1− γT )2

2πσ2(1− γ)2
T∑
t=1

ℓ∑
i=1

d2t,i

=
β2(1− γT )2

2πσ2(1− γ)2
T∑
t=1

d2t

=
DTβ

2(1− γT )2

2πσ2(1− γ)2
,

with probability at least (1− δ)1/2N .
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Finally, with probability at least (1− δ)1/N , we have

Var[R(h)f(h)] =
ℓ∑

i=1

E
[
(Rfi)

2
]
− (E[Rfi])2

≥ (1− γT )2

σ2(1− γ)2
L(T ).

C Proof of Theorem 3

Proof. According to Theorem 1 and Theorem 2, we could know that if there exists T0
such that

(1− γT )2

Nσ2(1− γ)2
L(T0) ≥

β2(1− γT )2B
N(1− γ)2

,

we could get
L(T0) ≥ β2Bσ2.

Under our assumption that L(T ) > 0 and L(T ) is monotonically increasing with respect
to T , we will have that whenever

∃T0,L(T0) ≥ β2Bσ2,

there must be
∀T > T0,Var[∇µĴ(θ)] > Var[∇ηĴ(ρ)].

D Proof of Theorem 4

We denote f(θ) and its i-th component fi(θ) as

f(θ) =
(
∇η log p(θ | ρ)⊤,∇τ log p(θ | ρ)⊤

)⊤
= ∇ρ log p(θ | ρ),

fi(θ) = (∇ηi log p(θ | ρ),∇τi log p(θ | ρ))⊤ = ∇ρi
log p(θ | ρ).

Note that we still have

Var
[
∇ρĴ

b(ρ)
]
= Var

[
∇ηĴ

b(ρ)
]
+Var

[
∇τ Ĵ

b(ρ)
]

=
1

N
Var[(R(h)− b)∇η log p(θ | ρ)]

+
1

N
Var[(R(h)− b)∇τ log p(θ | ρ)]

=
1

N
Var[(R(h)− b)f(θ)].
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Proof. According to Eq.(1), we have

Var[(R(h)− b)f(θ)] =
ℓ∑

i=1

E[(R− b)2f⊤
i fi]− (E[(R− b)fi])

⊤(E[(R− b)fi])

=
ℓ∑

i=1

E[R2f⊤
i fi]− 2E[Rbf⊤

i fi] + E[b2f⊤
i fi]

− (E[Rfi]− E[bfi])
⊤(E[Rfi]− E[bfi]).

Noticing that

E[bfi] =

∫
p(θi | ρi)b∇ρi

log p(θi | ρi)dθi

=

∫
b∇ρi

p(θi | ρi)dθi

= b∇ρi

∫
p(θi | ρi)dθi

= b∇ρi
1

= b(∇ηi1,∇τi1)
⊤

= (0, 0)⊤,

we have

Var[(R(h)− b)f(θ)] = E[R2f⊤f ]− 2E[Rbf⊤f ] + E[b2f⊤f ]− E[Rf ]⊤E[Rf ]. (3)

The optimal baseline is obtained by minimizing the variance, so that differentiating it with
respect to b and setting the result to zero will give us the optimal baseline for PGPE:

b∗PGPE =
E[Rf⊤f ]

E[f⊤f ]
.

Subsequently,

Var[(R− b)f ]−Var[(R− b∗PGPE)f ]

= −2E[Rbf⊤f ] + E[b2f⊤f ] + 2E[Rb∗PGPEf
⊤f ]− E[b∗2PGPEf

⊤f ]

= −2E[Rbf⊤f ] + E[b2f⊤f ] + 2
E[Rf⊤f ]

E[f⊤f ]
E[Rf⊤f ]−

(
E[Rf⊤f ]

E[f⊤f ]

)2

E[f⊤f ]

= b2E[f⊤f ]− 2bE[Rf⊤f ] +
(E[Rf⊤f ])2

E[f⊤f ]

=

(
b− E[Rf⊤f ]

E[f⊤f ]

)2

E[f⊤f ]

= (b− b∗PGPE)
2 E[f⊤f ],
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which leads to

Var[∇ρĴ
b(ρ)]−Var[∇ρĴ

b∗PGPE(ρ)] =
1

N
Var[(R− b)f ]− 1

N
Var[(R− b∗PGPE)f ]

=
(b− b∗PGPE)

2

N
E[f⊤f ].

E Proof of Theorem 5

We denote the i-th component of f(θ) = ∇η log p(θ | ρ) as

fi(θ) = ∇ηi log p(θ | ρ) =
θi − ηi
τ 2i

.

Proof. By the same technique used in the proof of Theorem 4, we know, when the baseline
b = 0,

Var[∇ηĴ(ρ)]−Var[∇ηĴ
b∗PGPE(ρ)] =

(
E[Rf⊤f ]

)2
NE[f⊤f ]

.

On one hand,

E[f⊤f ] =
ℓ∑

i=1

E[f 2
i ]

=
ℓ∑

i=1

E

[(
θi − ηi
τ 2i

)2
]

=
ℓ∑

i=1

1

τ 2i
E

[(
θi − ηi
τi

)2
]
.

Let ψi = ((θi − ηi)/τi)2 for i = 1, . . . , ℓ. We could know that ψi ∼ χ2(1) and E[ψi] = 1
since θi ∼ N (ηi, τ

2
i ), and thus

E[f⊤f ] =
ℓ∑

i=1

1

τ 2i
= B.

On the other hand, when E[Rf⊤f ] > 0, we have

E[Rf⊤f ] =
ℓ∑

i=1

∫
p(θi)R

(
θi − ηi
τ 2i

)2

dθi

≤
ℓ∑

i=1

β(1− γT )
τ 2i (1− γ)

∫
p(θi)

(
θi − ηi
τi

)2

dθi

=
ℓ∑

i=1

β(1− γT )
τ 2i (1− γ)

E[ψi]

=
β(1− γT )B
(1− γ)

,



Analysis and Improvement of Policy Gradient Estimation 27

while E[Rf⊤f ] < 0, we have

E[Rf⊤f ] ≥ −β(1− γ
T )B

(1− γ)
.

Hence, (
E[Rf⊤f ]

)2
E[f⊤f ]

≤ β2(1− γT )2B
(1− γ)2

.

Similarly, (
E[Rf⊤f ]

)2
E[f⊤f ]

≥ α2(1− γT )2B
(1− γ)2

,

which completes the proof.

F Proof of Theorem 6

We denote f(h) =
∑T

t=1∇µ log p(at | st,θ).

Proof. It is easy to prove that, when b = 0,

Var[∇µĴ(θ)]−Var[∇µĴ
b∗REINFORCE(θ)] =

(E[Rf⊤f ])2

NE[f⊤f ]
.

From the proof of Theorem 2, we could have

E[f⊤f ] =
1

σ2

T∑
t=1

∥st∥2.

On the other hand,

E[Rf⊤f ] =

∫
h

p(h)

(
T∑
t=1

γt−1r(st, at, st+1)

)(
T∑
t=1

at − µ⊤st
σ2

st

)⊤( T∑
t=1

at − µ⊤st
σ2

st

)
dh

≤ β(1− γT )
σ2(1− γ)

E

[(
T∑

t,t′=1

(at − µ⊤st)(at′ − µ⊤st′)

σ2
s⊤tst′

)]

=
β(1− γT )
σ2(1− γ)

T∑
t=1

∥st∥2.

Similarly,

E[Rf⊤f ] ≥ α(1− γT )
σ2(1− γ)

T∑
t=1

∥st∥2.
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Therefore,

α2(1− γT )2
∑T

t=1 ∥st∥2

σ2(1− γ)2
≤ (E[Rf⊤f ])2

E[f⊤f ]
≤ β2(1− γT )2

∑T
t=1 ∥st∥2

σ2(1− γ)2
,

and subsequently, with probability at least (1− δ)1/N , we have

CTα
2(1− γT )2

σ2(1− γ)2
≤ (E[Rf⊤f ])2

E[f⊤f ]
≤ β2(1− γT )2DT

σ2(1− γ)2
.

From this, the theorem follows.

G Proof of Theorem 7

Proof. According to Theorem 5, we know

Var[∇ηĴ
b∗PGPE(ρ)] ≤ Var

[
∇ηĴ(ρ)

]
− α2(1− γT )2B

N(1− γ)2
.

According to Theorem 1, we have

Var
[
∇ηĴ(ρ)

]
≤ β2(1− γT )2B

N(1− γ)2
.

Hence,

Var[∇ηĴ
b∗PGPE(ρ)] ≤ (1− γT )2

N(1− γ)2
(β2 − α2)B.

According to Theorem 6, we know that

Var[∇µĴ
b∗REINFORCE(θ)] ≤ Var

[
∇µĴ(θ)

]
− CTα

2(1− γT )2

Nσ2(1− γ)2

will holds with probability at leat (1 − δ)1/2. Furthermore, according to Theorem 2, we
have the following upper bound with probability at least (1− δ)1/2:

Var
[
∇µĴ(θ)

]
≤ DTβ

2(1− γT )2

Nσ2(1− γ)2
.

Eventually, we arrive at the upper bound for REINFORCE with the optimal baseline:

Var[∇µĴ
b∗REINFORCE(θ)] ≤ (1− γT )2

Nσ2(1− γ)2
(DTβ

2 − CTα
2),

with probability at least 1− δ.



Analysis and Improvement of Policy Gradient Estimation 29

References

[1] N. Abe, P. Melville, C. Pendus, C. K. Reddy, D. L. Jensen, V. P. Thomas, J. J.
Bennett, G. F. Anderson, B. R. Cooley, M. Kowalczyk, M. Domick, and T. Gardinier.
Optimizing debt collections using constrained reinforcement learning. In Proceedings
of the 16th ACM SGKDD Conference on Knowledge Discovery and Data Mining,
pages 75–84, 2010.

[2] J. Baxter, P. Bartlett, and L. Weaver. Experiments with infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research, 15:351–381, 2001.

[3] M. Bugeja. Non-linear swing-up and stabilizing control of an inverted pendulum
system. In Proceedings of IEEE Region 8 EUROCON, volume 2, pages 437–441,
2003.

[4] P. Dayan and G. E. Hinton. Using expectation-maximization for reinforcement learn-
ing. Neural Computation, 9(2):271–278, 1997.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, 1989.

[6] E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for
gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5:1471–1530, 2004.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996.

[8] S. Kakade. A natural policy gradient. In T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems 14, pages 1531–
1538, Cambridge, MA, 2002. MIT Press.

[9] J. Koza, K. Martin, S. Matthew, M. William, Y. Jessen, and L. Guido. Genetic Pro-
gramming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic
Publishers, 2003.

[10] M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine
Learning Research, 4:1107–1149, 2003.
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