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Abstract

Pool-based batch active learning is aimed at choosing training inputs from a ‘pool’
of test inputs so that the generalization error is minimized. P-ALICE (Pool-based
Active Learning using Importance-weighted least-squares learning based on Con-
ditional Expectation of the generalization error) is a state-of-the-art method that
can cope with model misspecification by weighting training samples according to
the importance (i.e., the ratio of test and training input densities). However, im-
portance estimation in the original P-ALICE is based on the assumption that the
number of training samples to gather is small, which is not always true in practice.
In this paper, we propose an alternative scheme for importance estimation based
on the inclusion probability, and show its validity through numerical experiments.
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1 Introduction

The objective of supervised learning is to find an input-output relationship behind training
samples (Hastie et al., 2001; Bishop, 2006). Once the input-output relationship is suc-
cessfully learned, outputs for unseen inputs can be predicted, i.e., the learning machine
can generalize.

When users are allowed to choose the location of training inputs, it is desirable to
design the input locations so that the generalization error is minimized. Such a problem
is called active learning (Settles, 2009) or experiment design (Fedorov, 1972; Pukelsheim,
1993), and has been shown to be useful in various application areas such as text clas-
sification (Lewis & Gale, 1994; McCallum & Nigam, 1998), age estimation from images
(Ueki et al., 2010), medical data analysis (Wiens & Guttag, 2010), chemical data analysis
(Warmuth et al., 2003), biological data analysis (Liu, 2004), and robot control (Akiyama
et al., 2010).



Improving Importance Estimation in Pool-based Batch Active Learning 2

If users are allowed to locate training inputs at any position in the domain, the active
learning setup is said to be population-based (Wiens, 2000; Kanamori & Shimodaira, 2003;
Sugiyama, 2006). On the other hand, if users need to choose training input locations
from a pool of finite candidate points, it is said to be pool-based (McCallum & Nigam,
1998; Kanamori, 2007; Sugiyama & Nakajima, 2009). Depending on the way training
input locations are chosen, active learning is also categorized into sequential or batch
approaches: Training inputs are selected one by one iteratively in the sequential approach
(Box & Hunter, 1965; Sugiyama & Ogawa, 2000), while all training inputs are selected at
once in the batch approach (Kiefer, 1959; Sugiyama & Ogawa, 2001). In this paper, we
focus on a pool-based batch active learning.

Active learning generally induces a covariate shift—a situation where training and
test input distributions are different (Shimodaira, 2000; Quiñonero-Candela et al., 2009;
Sugiyama & Kawanabe, 2012). When a model is correctly specified, covariate shifts do
not matter in designing active learning methods. However, for a misspecified model, a
covariate shift causes a strong estimation bias and thus classical active learning techniques
that require a correct model become unreliable (Kiefer, 1959; Fedorov, 1972).

To cope with the bias induced by the covariate shift, active learning techniques that
explicitly take model misspecification into account have been developed (Wiens, 2000;
Kanamori & Shimodaira, 2003; Sugiyama, 2006; Kanamori, 2007; Sugiyama & Nakajima,
2009; Beygelzimer et al., 2009). The key idea of covariate shift adaptation is importance
weighting—a loss function used for training is weighted according to the importance
(i.e., the ratio of test and training input densities). Among the importance-weighted
active learning methods, the pool-based batch active learning method for approximate
linear regression called P-ALICE (Pool-based Active Learning using Importance-weighted
least-squares learning based on Conditional Expectation of the generalization error) was
demonstrated to be useful (Sugiyama & Nakajima, 2009).

However, in the original P-ALICE, the number of training samples to gather is assumed
to be sufficiently smaller than the size of the sample pool. However, when this assumption
is not satisfied, the importance weight used in P-ALICE is not reliable. In this paper, we
propose a new method to set the importance weight that does not rely on this assumption.
Our new weighting scheme is based on the inclusion probability (Horvitz & Thompson,
1952), which allows us to precisely capture the relation between the training and test
input distributions. Through experiments, we show that the active learning performance
of P-ALICE can be improved by the proposed weighting method when the training sample
size is relatively large.

The rest of this paper is structured as follows. In Section 2, we formulate the problem
of pool-based active learning and give an overview of P-ALICE. In Section 3, we point out
a limitation of importance estimation in P-ALICE, and propose an alternative method.
In Section 4, experimental results on toy and benchmark datasets are reported. Finally,
concluding remarks are given in Section 5.
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2 Problem Formulation

In this section, we formulate the problem of pool-based active learning and briefly review
the P-ALICE method.

2.1 Pool-Based Active Learning for Linear Regression

Let us consider a regression problem of learning a real-valued function f(x) defined on
D ⊂ Rd. For training input-output samples

{(xtr
i , y

tr
i ) | ytri = f(xtr

i ) + ϵtri }ntr
i=1,

where {ϵtri }ntr
i=1 are i.i.d. noise with mean zero and unknown variance σ2, let us use the

following linear regression model:

f̂(x) =
t∑

ℓ=1

θℓφℓ(x), (1)

where {φℓ(x)}tℓ=1 are fixed linearly independent basis functions and {θℓ}tℓ=1 are parameters
to be learned. Let us denote the vector of parameters by θ = (θ1, θ2, . . . , θt)

⊤, where ⊤

denotes the transpose.
The parameter θ of the regression model is learned by Weighted Least-Squares (WLS)

with weight function w(x) (> 0 for all x ∈ D), i.e.,

θ̂W = argmin
θ

[
ntr∑
i=1

w(xtr
i )
(
f̂(xtr

i )− ytri

)2]
, (2)

where the subscript ‘W’ denotes ‘Weighted’. Let X be the ntr× t matrix with the (i, ℓ)-th
element

Xi,ℓ = φℓ(x
tr
i ), (3)

and let W be the ntr × ntr diagonal matrix with the i-th diagonal element

Wi,i = w(xtr
i ). (4)

Then θ̂W is given in a closed form as

θ̂W = LWytr, (5)
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Figure 1: Regression problem.

where1

LW = (X⊤WX)−1X⊤W , (7)

ytr = (ytr1 , y
tr
2 , . . . , y

tr
ntr
)⊤. (8)

Note that the solution θ̂W does not depend on the constant scaling of the weight function
w(x).

We adopt the squared-loss as the generalization error, i.e., the goodness of a learned
function f̂(x) is measured by

G =

∫ (
f̂(xte)− f(xte)

)2
pte(x

te)dxte, (9)

where pte(x) (> 0 for all x ∈ D) is a probability density function of test input points.
The above formulation is summarized in Figure 1.

Below, we consider a pool-based active learning situation where we are given a ‘pool’
of test input points {xte

j }nte
j=1 drawn independently from pte(x) and choose training input

points {xtr
i }ntr

i=1 from the pool so that the generalization error (9) is minimized.

2.2 P-ALICE

P-ALICE (Pool-based Active Learning using Importance-weighted least-squares learning
based on Conditional Expectation of the generalization error; Sugiyama & Nakajima,
2009) is a pool-based active learning method that chooses training input points one by

1Although we can obtain the analytic solution for Eq.(2), we often face with numerical instability
when computing the inverse of the matrix X⊤WX in Eq.(7). To avoid this problem, we practically
employ a regularization technique (Hoerl & Kennard, 1970; Tikhonov & Arsenin, 1977; Poggio & Girosi,
1990), i.e., Eq.(7) is replaced with

LW = (X⊤WX + γIt)
−1X⊤W , (6)

where γ is a small positive scalar called the regularization parameter and It is the t× t identity matrix.
In our experiments, we set γ = 10−10.
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one (i.e., sampling without replacement), with probability proportional to a user-designed
resampling bias function b(x). Mathematically, the resampling bias function is a strictly
positive function defined over the pool of test input samples. P-ALICE finds the resam-
pling bias function that minimizes a generalization error estimator

J = tr(ÛLWL⊤
W),

where Û is the t× t matrix with the (ℓ, ℓ′)-th element

Ûℓ,ℓ′ =
1

nte

nte∑
j=1

φℓ(x
te
j )φℓ′(x

te
j ), (10)

and

w(xte
j ) ∝

1

b(xte
j )

(11)

is used as a weight in WLS (2).
A more detailed description of P-ALICE is given in Appendix.

3 Improving Importance Estimation in P-ALICE

In this section, we point out a weakness of P-ALICE and propose an alternative approach.

3.1 Weakness of P-ALICE

In P-ALICE, the importance weight w(xte
j ) is set as Eq.(11), which implies that the

training input density ptr(x
te
j ) is proportional to the product of the test input density

pte(x
te
j ) and a resampling bias function b(x), i.e.,

ptr(x
te
j ) ∝ pte(x

te
j )b(x

te
j ).

Theoretically, the above derivation is based on the assumption that training input samples
are i.i.d. However, because samples drawn without replacement from the pool are not
generally i.i.d. and thus the above importance estimation method can be unreliable. In
particular, when the size of the training set ntr is not small relative to the pool size nte,
the influence of sampling without replacement is not negligible.

Let us illustrate this fact using a simple numerical example. Let 1-dimensional pool
samples {xj}nte

j=1 be drawn from the uniform distribution on [−5, 5] for nte = 100. The
resampling bias function b(xj) is set to be proportional to the standard normal distribu-
tion:

b(xj) ∝ exp

(
−
x2
j

2

)
.



Improving Importance Estimation in Pool-based Batch Active Learning 6

−5 0 5
x

(a) ntr/nte = 5/100

−5 0 5
x

(b) ntr/nte = 40/100

Figure 2: Illustration of the effect of sampling without replacement. 1-dimensional pool
samples {xj}nte

j=1 are drawn from the uniform distribution on [−5, 5] for nte = 100. The re-
sampling bias function b(xj) is set to be proportional to the standard normal distribution.
We draw ntr = 5 or ntr = 40 samples from the pool following b(xj) without replacement.
In the graphs, the resampling bias function b(xj) is depicted by the dotted line and the
frequency that the sample xj was drawn over 10000 trials is depicted as a histogram.

We draw ntr = 5 or ntr = 40 samples from the pool following b(xj) without replacement.
In Figure 2, b(xj) is depicted by the dotted line and the frequency that the sample xj

was drawn over 10000 trials is depicted as a histogram. We can see that, when ntr is
sufficiently smaller than nte (i.e., ntr/nte = 5/100), the resampling bias function b(xj)
well agrees with the histogram (i.e., the true distribution of drawn samples). On the
other hand, when ntr is not sufficiently smaller than nte (i.e., ntr/nte = 40/100), the
resampling bias function b(xj) is significantly different from the true distribution. This
is because, if ntr is large, test input samples with large b(xj) are ‘out of stock’, and thus
samples with small b(xj) will be chosen more frequently. Because the true distribution is
generally flatter than the distribution specified by the resampling bias function b(xj), the
weight 1/b(xj) is too peaky and thus this could potentially lead to poor performance.

3.2 Improvement of Importance Estimation

To overcome this drawback, we propose an alternative method for estimating the impor-
tance weights. According to the theory of finite population sampling (Horvitz & Thomp-
son, 1952), we have to distinguish two probabilities: the selection probability and the
inclusion probability. The k-th selection probability qk(x

te
j ) is the probability that a
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sample xte
j is selected at the k-th draw:

0 ≤ qk(x
te
j ) ≤ 1 and

nte∑
j=1

qk(x
te
j ) = 1.

On the other hand, the inclusion probability π(xte
j ) is the probability that xte

j is included
in a training set of size ntr:

0 ≤ π(xte
j ) ≤ 1 and

nte∑
j=1

π(xte
j ) = ntr.

In P-ALICE, the selection probability is set to be proportional to the resampling
bias at the first draw, i.e., q1(x

te
j ) ∝ b(xte

j ). Theoretically, the selection probability
qk(x

te
j ) gradually changes as k increases, because selection probabilities of samples that

have already been drawn are set to 0. However, the original P-ALICE keeps using the
same resampling bias function until ntr samples are gathered (if the chosen sample has
already been taken, a new candidate point is kept re-drawn following the same resampling
bias function until an unchosen sample is selected). Because the gap between the true
selection probability and the initial resampling bias function grows as k increases, the
original P-ALICE tends to be inaccurate if ntr is not small.

Actually, the precise relation between ptr(x
te
j ) and pte(x

te
j ) is given by using the inclu-

sion probability π(xte
j ) as

ptr(x
te
j ) ∝ pte(x

te
j )π(x

te
j ).

Thus, the correct importance weight w(xte
j ) is given as

w(xte
j ) ∝

1

π(xte
j )

,

which is expected to reduce the estimation bias when ntr is not small. Furthermore, this
will also help reduce the estimation variance because it tends to be flatter than Eq.(11)
(see Figure 2 again).

However, because the true inclusion probability π(xte
j ) is unknown, we numerically

approximate it by the frequency of selecting each xte
j through Monte Carlo simulations2.

That is, w(xte
j ) is estimated as

ŵ(xte
j ) =

1

F (xte
j )

, (12)

where F (xte
j ) is the frequency that xte

j was chosen. A pseudo code of our modified
P-ALICE procedure is described in Figure 3 (see Appendix for the details of P-ALICE).

2Direct calculation of inclusion probabilities is known to be a hard problem (Hansen & Hurwitz, 1943;
Madow, 1949; Midzuno, 1949; Horvitz & Thompson, 1952).
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Input: Test input points {xte
j }nte

j=1 and basis functions {φℓ(x)}tℓ=1

Output: Learned parameter θ̂W

Compute the t× t matrix Û with Ûℓ,ℓ′ =
1
nte

∑nte

j=1 φℓ(x
te
j )φℓ′(x

te
j );

For several different values of λ

Compute {bλ(xte
j )}nte

j=1 with bλ(x) =
(∑t

ℓ,ℓ′=1[Û
−1]ℓ,ℓ′φℓ(x)φℓ′(x)

)λ
;

Count the frequency of selecting {Fλ(x
te
j )}nte

j=1 through Monte Carlo simulations;
Choose X tr

λ = {xtr
i }ntr

i=1 from {xte
j }nte

j=1 following {bλ(xte
j )}nte

j=1 without replacement;
Compute the ntr × t matrix Xλ with [Xλ]i,ℓ = φℓ(x

tr
i );

Compute the ntr × ntr diagonal matrix Wλ with [Wλ]i,i = (Fλ(x
tr
i ))

−1
;

Compute Lλ = (X⊤
λ WλXλ)

−1X⊤
λ Wλ;

Compute JW(λ) = tr(ÛLλL
⊤
λ );

End

Compute λ̂ = argminλ JW(λ);
Gather training output values ytr = (ytr1 , y

tr
2 , . . . , y

tr
ntr
)⊤ at X tr

λ̂
;

Compute θ̂W = Lλ̂y
tr;

Figure 3: Pseudo code of the proposed algorithm.

4 Experiments

In this section, the proposed and existing active learning methods are compared through
numerical experiments.

4.1 Toy Dataset

We first illustrate how the proposed and existing active learning methods behave under a
controlled setting. Let the input dimension be d = 1 and let the learning target function
be

f(x) = 1− x+ x2 + δr(x),

where

r(x) =
z3 − 3z√

6
with z =

x− 0.2

0.4
. (13)

We set the test input density pte(x) to the Gaussian density with mean 0.2 and stan-
dard deviation 0.4, which is treated as unknown here. See Figure 4(a) for the profile of
pte(x). Let us construct a pool of input points by drawing nte = 1000 points independently
from the test input distribution.

Let δ = 0.04 and let {ϵtri }ntr
i=1 be i.i.d. Gaussian noise with mean zero and standard

deviation σ = 0.3, where σ is also treated as unknown here. See Figure 4(b) for the profile
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Figure 4: Input density functions and learning target function for generating toy dataset.

of f(x). A polynomial model of order 2 is used for learning3:

f̂(x) = θ1 + θ2x+ θ3x
2.

We compare the performance of the following strategies (see Appendix for the details
of each method).

P-ALICE(π−1): Training input points are drawn following

bλ(x) =

(
t∑

ℓ,ℓ′=1

[Û−1]ℓ,ℓ′φℓ(x)φℓ′(x)

)λ

. (14)

for

λ ∈ Λ = {0, 0.05, 0.10, . . . , 1.00}. (15)

Then the best value of λ that minimizes JW is chosen from the above candidates.
IWLS (importance-weighted least-squares) is used for parameter learning. Weight
functions in P-ALICE and IWLS are determined by Eq.(12), which are numerically
approximated by Monte Carlo simulations with 10000 repetitions.

P-ALICE(b−1): Training input points are drawn following Eq.(14) for Eq.(15) and the
best value of λ that minimizes JW is chosen. IWLS is used for parameter learning.
The weight function in P-ALICE and IWLS is determined by Eq.(11).

3For these basis functions, the residual function r(x) in Eq.(13) (which is actually a Hermite polyno-
mial) fulfills the orthogonality condition (18) and normalization condition (19) (see Appendix for details).
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P-CVO: Training input points are drawn following Eq.(14) for Eq.(15) and the best value
of λ that minimizes JO is chosen. OLS is used for parameter learning.

Passive: Training input points are drawn uniformly from the pool of test input samples
(or equivalently Eq.(14) for λ = 0). OLS is used for parameter learning.

Figure 5 depicts the bias B, the variance V , and the generalization error G averaged
over 10000 trials as functions of ntr, where the model error δ2 (that corresponds to the
residual function r(x)) is subtracted from G for better comparison (see Appendix for
details).

Figure 5(a) shows behaviors of the bias. P-CVO has larger bias than Passive, due to
the influence of a covariate shift. On the other hand, P-ALICE(b−1) and P-ALICE(π−1)
have smaller bias than Passive, implying that their importance-weighting schemes help
alleviate the influence of a covariate shift. However, as ntr increases, P-ALICE(b−1)
tends to have larger bias than P-ALICE(π−1), because importance weight estimation in
P-ALICE(b−1) becomes inaccurate due to the influence of sampling without replacement.

Figure 5(b) shows behaviors of the variance. All three active learning methods have
smaller variance than Passive. P-CVO has the smallest variance, and P-ALICE(π−1) has
smaller variance than P-ALICE(b−1) particularly when ntr is not small. This implies that
our candidate set of resampling bias functions helps reduce the variance, and the variance
tends to be smaller as the weight becomes flatter.

Figure 5(c) shows behaviors of the generalization error. Among all methods,
P-ALICE(π−1) always has the smallest generalization error. P-ALICE(b−1) achieves al-
most the same performance as P-ALICE(π−1) when ntr is small, but it is outperformed
by P-ALICE(π−1) when ntr is not small.

In Table 1, the mean squared test error obtained by each method is described for
ntr = 50, 200, 400. After drawing training samples, the remaining samples in the pool
may have a different density than the original test input density. Here, we computed the
mean squared error not using the remaining samples in the pool, but using another 10000
test samples newly drawn from the test input density. The numbers in the table are means
and standard deviations of the error over 10000 trials. In each row of the table, the best
method and comparable ones by the t-test (Henkel, 1976) at the significance level 5% are
indicated with ‘◦’. We can see that proposed P-ALICE(π−1) always performs better than
other sampling schemes.

Overall, we confirmed that the importance weight plays an important role in reducing
an estimation bias caused by a covariate shift, and our new weighting scheme gives fur-
ther improvement upon P-ALICE; it reduces both the bias and variance when ntr is not
sufficiently small relative to nte.

4.2 Benchmark Datasets

Finally, we compare the proposed and existing active learning methods on more challeng-
ing benchmark datasets.
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Figure 5: The bias B, the variance V , and the generalization error G as functions of ntr

for the toy dataset, averaged over 10000 trials. For better comparison, the model error δ2

is subtracted from G.

Table 1: The mean squared test error for the toy dataset (means and standard deviations
over 10000 trials). All values are multiplied by 103 for better comparison. In each row of
the table, the best method and comparable ones by the t-test at the significance level 5%
are indicated with ‘◦’.

P-ALICE(π−1) P-ALICE(b−1) P-CVO Passive
ntr = 50 ◦6.28±4.30 6.34±4.34 7.03±4.68 8.54±6.81
ntr = 200 ◦2.61±1.32 2.68±1.36 2.98±1.55 3.11±1.68
ntr = 400 ◦2.05±1.02 2.12±1.03 2.14±1.11 2.26±1.11
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The Bank, Kin, and Pumadyn regression benchmark data families provided by
DELVE4 are used here. Each data family consists of 8 different datasets:

Input dimension d: Input dimension is either d = 8 or 32.

Target function type: The target function is either ‘fairly linear’ or ‘non-linear’ (‘f’ or
‘n’).

Unpredictability/noise level: The unpredictability/noise level is either ‘medium’ or
‘high’ (‘m’ or ‘h’).

Thus, 24 datasets are used in total. Each dataset includes 8192 samples, consisting of
d-dimensional input and 1-dimensional output data. For convenience, every attribute
is normalized into [0, 1]. 1000 input samples are used as a pool of input points (i.e.,
nte = 1000), and the remaining 7192 samples are used only for performance evaluation.
We draw ntr = 500 training samples from the pool. The following linear regression model
is used for learning:

f̂(x) =
50∑
ℓ=1

θℓ exp

(
−∥x− cℓ∥2

2h2

)
,

where h = median
(
{∥xi − xj∥}nte

i,j=1

)
and {cℓ}50ℓ=1 are template points randomly chosen

from the pool of test input points. λ is chosen from

Λ = {0, 0.1, 0.2, . . . , 2.0}. (16)

Other settings are the same as the toy experiments in Section 4.1.
In Table 2, mean squared test errors obtained by each method averaged over 100 trials

are described. For better comparison, all values are normalized by the mean error of the
Passive method. The best method and comparable ones by the t-test at the significance
level 5% are indicated with ‘◦’.

The table shows that P-CVO overall performs rather well, implying that the bias tends
to be dominated by the variance due to the high-dimensionality of the problems. Indeed,
P-CVO actually performs the best for some datasets. However, P-CVO is outperformed
by the baseline Passive sampling scheme for some datasets. This is probably due to the
bias caused by a covariate shift. As a result, the behavior of P-CVO tends to be unstable
due to its sensitivity to model misspecification. On the other hand, the importance-
weighted methods P-ALICE(b−1) and P-ALICE(π−1) tend to perform more reliably, which
are consistently better than the baseline Passive methods. Among them, the proposed
P-ALICE(π−1) performs better than P-ALICE(b−1).

4http://www.cs.toronto.edu/~delve/
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Table 2: The mean squared test error for benchmark datasets (means and standard
deviations over 100 trials). For better comparison, all values are normalized by the mean
error of the Passive method. The best method and comparable ones by the t-test at the
significance level 5% are indicated with ‘◦’.

P-ALICE(π−1) P-ALICE(b−1) P-CVO Passive

Bank-8fm ◦0.984±0.017 0.988±0.019 ◦0.981±0.014 1.000±0.021
Bank-8fh ◦0.985±0.018 0.989±0.019 ◦0.984±0.014 1.000±0.022
Bank-8nm ◦0.966±0.019 0.974±0.022 1.021±0.020 1.000±0.033
Bank-8nh ◦0.979±0.020 0.984±0.022 0.992±0.013 1.000±0.024
Bank-32fm ◦0.973±0.018 0.983±0.019 0.989±0.015 1.000±0.023
Bank-32fh ◦0.985±0.019 0.990±0.021 0.994±0.017 1.000±0.023
Bank-32nm ◦0.985±0.021 ◦0.985±0.022 1.022±0.020 1.000±0.027
Bank-32nh ◦0.990±0.016 0.993±0.017 0.999±0.015 1.000±0.019
Kin-8fm ◦0.990±0.017 ◦0.992±0.017 1.000±0.016 1.000±0.020
Kin-8fh 0.989±0.014 0.994±0.015 ◦0.977±0.014 1.000±0.018
Kin-8nm ◦0.988±0.017 0.994±0.018 0.991±0.014 1.000±0.019
Kin-8nh ◦0.991±0.018 0.995±0.019 ◦0.990±0.016 1.000±0.020
Kin-32fm ◦0.990±0.014 0.994±0.017 1.006±0.017 1.000±0.017
Kin-32fh 0.993±0.014 0.995±0.015 ◦0.989±0.012 1.000±0.016
Kin-32nm 0.995±0.015 0.997±0.014 ◦0.992±0.013 1.000±0.014
Kin-32nh 0.994±0.014 0.997±0.015 ◦0.991±0.011 1.000±0.015

Pumadyn-8fm 0.990±0.022 0.994±0.022 ◦0.979±0.017 1.000±0.024
Pumadyn-8fh 0.994±0.018 0.995±0.018 ◦0.986±0.015 1.000±0.019
Pumadyn-8nm 0.985±0.014 0.993±0.017 ◦0.981±0.013 1.000±0.019
Pumadyn-8nh ◦0.989±0.018 0.992±0.018 1.007±0.014 1.000±0.019
Pumadyn-32fm ◦0.982±0.015 0.989±0.016 0.993±0.016 1.000±0.018
Pumadyn-32fh ◦0.991±0.012 0.995±0.014 ◦0.990±0.012 1.000±0.015
Pumadyn-32nm 0.991±0.021 0.997±0.022 ◦0.988±0.019 1.000±0.022
Pumadyn-32nh 0.992±0.015 0.995±0.016 ◦0.988±0.013 1.000±0.016

Average ◦0.988±0.019 0.992±0.019 0.994±0.019 1.000±0.021

5 Conclusions

In this paper, we discussed importance weight estimation in the pool-based batch active
learning criterion called P-ALICE. We pointed out that when the number of training
samples to gather is not small compared with the pool size, importance weights used
in the original P-ALICE are not accurate. This inaccuracy is due to the influence of
sampling without replacement.

To cope with this problem, we proposed an alternative method of importance weight
estimation based on the inclusion probability. Because the true inclusion probability is
generally unknown, we numerically approximated it by the frequency of selection of each
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sample through Monte Carlo simulations.
The importance weights obtained by the proposed approach is more accurate when

the sampling rate is not small, and thus it achieves a lower estimation bias. Furthermore,
because the importance weights obtained by the proposed approach tends to be flatter
than the original ones, it also reduces the variance. Numerical experiments with toy and
benchmark datasets showed that our new weighting scheme gave statistically significant
improvement upon the original P-ALICE.

The importance of active learning research grows significantly in recent years because
labeling costs became a critical bottleneck of real-world machine learning applications. In
consideration of this increasing interest and demand in active learning, further enhancing
the active learning performance is an important challenge, for instance, in the context of
crowdsourcing.
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A Review of Existing Active Learning Methods

Here, we describe a basic strategy for population-based active learning and review existing
methods and their extensions to pool-based scenarios.

A.1 Basic Strategy for Population-Based Active Learning

Population-based active learning is the problem of optimally designing the training input
density ptr so that the generalization error (9) is minimized:

min
ptr

G(ptr).

Thus, the generalization error needs to be reasonably estimated as a functional of ptr
before observing output values.

Let us decompose that the learning target function f(x) as

f(x) = g(x) + δr(x), (17)

where g(x) is the optimal approximation to f(x) by the model (1):

g(x) =
t∑

ℓ=1

θ∗ℓφℓ(x).

θ∗ = (θ∗1, θ
∗
2, . . . , θ

∗
t )

⊤ is the unknown optimal parameter defined by

θ∗ = argmin
θ

G.

δr(x) in Eq.(17) is the residual function, which is orthogonal to {φℓ(x)}tℓ=1 under pte(x)
(see Figure 6): ∫

r(xte)φℓ(x
te)pte(x

te)dxte = 0 for ℓ = 1, 2, . . . , t. (18)

The function r(x) governs the nature of the model error, while δ is the possible magnitude
of this error. To separate these two factors, the following normalization condition on r(x)
is further imposed: ∫ (

r(xte)
)2

pte(x
te)dxte = 1. (19)

Therefore, a scalar δ corresponds to the degree of model misspecification. In traditional
active learning literature (Kiefer, 1959; Fedorov, 1972; Cohn et al., 1996; Fukumizu, 2000),
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Figure 6: Orthogonal decomposition of f(xtr).

the model is assumed to be correctly specified, i.e., δ is exactly zero. However, such a
strict model assumption may not be satisfied in practice. In this paper, we assume that
the model is approximately correct, i.e., sufficiently small δ is still allowed5.

To obtain a generalization error estimator, we analyze the conditional -expectation
of the generalization error, i.e., the expectation over the training output noise {ϵtri }ntr

i=1,
given the realization of training input points {xtr}ntr

i=1 (Sugiyama et al., 2009). Let Eϵ be
the expectation over the noise {ϵtri }ntr

i=1. Then, the generalization error expected over the
training output noise can be decomposed into three terms:

E
ϵ
G = B + V + δ2, (20)

where

B =

∫ (
E
ϵ
f̂(xte)− g(xte)

)2

pte(x
te)dxte,

V =

∫
E
ϵ

(
f̂(xte)− E

ϵ
f̂(xte)

)2

pte(x
te)dxte.

The first term B in Eq.(20) corresponds to the (squared) bias. This term is not
accessible without observing {ytri }ntr

i=1 because it contains the unknown function g(x).
The second term V in Eq.(20) corresponds to the variance. In the current setup, V can
be expressed as

V = σ2tr(ULWL⊤
W),

where σ2 is the noise variance and U is the t× t matrix with the (ℓ, ℓ′)-th element

Uℓ,ℓ′ =

∫
φℓ(x

te)φℓ′(x
te)pte(x

te)dxte.

Thus, we can access this term without observing {ytri }ntr
i=1 except the scaling factor σ2.

The third term δ2 in Eq.(20) corresponds to the model error. This term can be safely

5When δ is large, learning itself may not work well with such a strongly misspecified model. In such
a case, model selection needs to be performed (Sugiyama & Rubens, 2008).
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ignored in the minimization problem because δ is a constant that depends neither on ptr
nor {xtr

i }ntr
i=1.

Below, we consider an approximate regression model, which causes a bias but the
bias is dominated by the variance. Therefore, our basic strategy for active learning is
the variance-only approach, in which the generalization error is estimated only from the
variance term6.

A.2 Conditional-Expectation Variance-Only Active Learning
for IWLS: ALICE

We first review a population-based batch active learning criterion called ALICE (Active
Learning using Importance-weighted least-squares learning based on Conditional Expecta-
tion of the generalization error) following Sugiyama (2006).

In ALICE, the importance weight (Fishman, 1996), which refers to the ratio of the
test and training input densities,

w(x) =
pte(x)

ptr(x)
, (21)

is used as the weight function in WLS. This method is particularly called Importance-
Weighted Least-Squares (IWLS).

Let GW, BW, and VW be G, B, and V for a learned function obtained by IWLS,
respectively. Then it was shown that, for IWLS with an approximately correct model, B
and V are expressed as

BW = Op(δ
2n−1

tr ),

VW = σ2tr(ULWL⊤
W) = Op(n

−1
tr ).

Note that the asymptotic orders in the above equations are in probability because random
variables {xtr

i }ntr
i=1 are included. These equations imply that if δ = op(1),

E
ϵ
GW = σ2tr(ULWL⊤

W) + op(n
−1
tr ).

Motivated by this asymptotic form, the active learning criterion of ALICE is given as

JW = tr(ULWL⊤
W). (22)

Based on this estimator, the optimal training input density ptr is searched from the set P
of all strictly positive probability densities as

pALICE
tr = argmin

ptr∈P
JW.

6Another possibility is the bias-and-variance approach, in which the bias term is also estimated using
a small number of training samples chosen randomly in the beginning (Kanamori & Shimodaira, 2003).
However, the variance-only approach appears to be practically more useful for approximate regression
models because bias estimation is difficult (Sugiyama, 2006).
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Practically, P may be replaced by a finite subset P̂ and choose the one that minimizes
JW from the set P̂ . A useful heuristic for determining P̂ was also proposed in Sugiyama
and Nakajima (2009), which will be explained later.

A.3 Conditional-Expectation Variance-Only Active Learning
for OLS: CVO

If we use the uniform weight in WLS, or equivalently if we set W defined by Eq.(4) to
be the ntr × ntr identity matrix, WLS is reduced to Ordinary Least-Squares (OLS):

θ̂O = LOy
tr, (23)

where

LO = (X⊤X)−1X⊤. (24)

The subscript ‘O’ denotes ‘Ordinary’. Here, we review a population-based active learning
method based on OLS (Fedorov, 1972; Cohn et al., 1996; Fukumizu, 2000), which we refer
to as CVO (Conditional-expectation Variance-only active learning for OLS).

Let GO, BO, and VO be G, B, and V for the learned function obtained by OLS,
respectively. For an approximately correct model, BO and VO are expressed as follows
(Sugiyama, 2006; Sugiyama & Nakajima, 2009):

BO = O(δ2),

VO = σ2tr(ULOL
⊤
O) = Op(n

−1
tr ).

The above equations imply that if δ = op(n
− 1

2
tr ),

E
ϵ
GO = σ2tr(ULOL

⊤
O) + op(n

−1
tr ).

Motivated by this asymptotic form, the active learning criterion of CVO is given as

JO = tr(ULOL
⊤
O). (25)

Then the optimal training input density of CVO is given as

pCVO
tr = argmin

ptr∈P
JO.

A.4 ALICE vs. CVO

In active learning scenarios, the training input density generally differs from the test
input density, which is called a covariate shift (Shimodaira, 2000; Quiñonero-Candela
et al., 2009; Sugiyama & Kawanabe, 2012). It is known that a misspecified model under a
covariate shift yields a significant estimation bias. Indeed, OLS with a misspecified model
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is not unbiased even asymptotically under a covariate shift. On the other hand, IWLS
is asymptotically unbiased thanks to the importance weight, which could be intuitively
understood by the following identity (Fishman, 1996):∫ (

f̂(xte)− f(xte)
)2

pte(x
te)dxte =

∫ (
f̂(xtr)− f(xtr)

)2
w(xtr)ptr(x

tr)dxtr,

where w(x) in the above equation is the importance weight (21). This is the reason why

the model requirement for ALICE (δ = op(1)) is weaker than that for CVO (δ = op(n
− 1

2
tr )).

This implies that ALICE has a wider range of applications than CVO, and thus is more
promising in practical situations where the model at hand is not correctly specified.

A.5 Full-Expectation Variance-Only Active Learning for IWLS:
FVW

Next, we review a population-based active learning criterion that we refer to as Full-
expectation Variance-only active learning for WLS (FVW). For IWLS, Kanamori and
Shimodaira (2003) proved that the full-expectation of the generalization error, i.e., the
expectation over both training input points {xtr

i }ntr
i=1 and training output noise {ϵtri }ntr

i=1 is
asymptotically expressed as

E
x
E
ϵ
GW =

1

ntr

tr(U−1S) +
σ2

ntr

tr(U−1T ) +O(ntr
− 3

2 ),

where Ex is the expectation over training input points {xtr
i }ntr

i=1. S and T are the t × t
matrices with the (ℓ, ℓ′)-th elements

Sℓ,ℓ′ = δ2
∫

φℓ(x
te)φℓ′(x

te)
(
r(xte)

)2
w(xte)pte(x

te)dxte,

Tℓ,ℓ′ =

∫
φℓ(x

te)φℓ′(x
te)w(xte)pte(x

te)dxte,

where w(x) is the importance weight (21). Note that 1
ntr

tr(U−1S) corresponds to the

squared bias, whereas σ2

ntr
tr(U−1T ) corresponds to the variance.

It can be shown (Kanamori & Shimodaira, 2003; Sugiyama, 2006) that if δ = o(1),

E
x
E
ϵ
GW =

σ2

ntr

tr(U−1T ) + o(ntr
−1).

Based on this asymptotic form, the criterion of FVW is given as follows (Wiens, 2000):

pFVW
tr = argmin

ptr∈P
JFW,

where

JFW =
1

ntr

tr(U−1T ). (26)
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The subscript ‘FW’ denotes ‘Full’ and ‘Weighted’. A notable property of FVW is that
the optimal training input density pFVW

tr can be obtained in a closed form (Wiens, 2000;
Kanamori, 2007):

pFVW
tr (x) ∝ pte(x)bFVW

(x), (27)

where

bFVW
(x) =

(
t∑

ℓ,ℓ′=1

[U−1]ℓ,ℓ′φℓ(x)φℓ′(x)

) 1
2

.

Eq.(27) implies that the importance weight for the optimal training input density pFVW
tr (x)

is given by

wFVW
(x) ∝ 1

bFVW
(x)

.

A.6 ALICE vs. FVW

As we have mentioned, there are two ways to take an expectation of the generalization
error: full -expectation (i.e., the generalization error is expected over both training output
noise and training input realization) and conditional -expectation (i.e., the generalization
error is expected over training output noise given training input realization).

Our ideal approach is to directly evaluate the single-trial generalization error, i.e., the
generalization error where both {xtr

i }ntr
i=1 and {ϵtri }ntr

i=1 are given and fixed. However, such
single-trial evaluation is not possible in practice because we are not allowed to access
realized values of the noise {ϵtri }ntr

i=1. Thus, taking an expectation over the noise may not
be avoidable. On the other hand, the location of training input points {xtr

i }ntr
i=1 is acces-

sible by nature, and utilizing this information may help us estimate the single-trial gen-
eralization error accurately. Therefore, the conditional-expectation (or input-dependent)
approach is more promising for the single-trial analysis than the full-expectation (or input-
independent) approach.

Motivated by this idea, ALICE adopts the generalization error estimator JW that is
based on the conditional-expectation analysis. On the other hand, the estimator JFW
used in FVW is based on the full-expectation analysis. Sugiyama (2006) showed that JW
(22) and JFW (26) are related to each other by

JW = JFW +Op(n
− 3

2
tr ),

which implies that they are actually equivalent asymptotically. However, they are still

different in the order of n−1
tr ; indeed, if δ = op(n

− 1
4

tr ) and terms of op(n
−3
tr ) are ignored, the

following inequality holds:

E
ϵ
(σ2JFW −GW)2 ≥ E

ϵ
(σ2JW −GW)2.
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This implies that σ2JW is asymptotically a more accurate estimator of the single-trial
generalization error GW than σ2JFW.

We have explained that ALICE is more preferable than FVW for the single-trial gener-
alization error analysis. However, although FVW has an analytic solution, the minimizer
of JW cannot be obtained in a closed form due to its input-dependent nature. Thus, an
efficient strategy is necessary for searching the ALICE solution. A useful heuristic is to
search the solution around the minimizer of JFW. We will explain this in more detail
below.

A.7 Extension to Pool-based Scenarios

In this section, we review extensions of ALICE, CVO, and FVW to pool-based scenarios
(Sugiyama & Nakajima, 2009), which we call P-ALICE, P-CVO, and P-FVW, respectively.

In the pool-based setting, we are given a ‘pool’ of test input points {xte
j }nte

j=1 drawn
independently from pte(x) (> 0 for all x ∈ D). From the pool, we choose ntr training
input points for observing output values. The objective of pool-based active learning is
to choose training input points {xtr

i }ntr
i=1 from a pool of test input points {xte

j }nte
j=1 so that

the generalization error is minimized.
In the pool-based scenario, we are not allowed to directly access pte(x). Moreover,

possible locations of training input points are not arbitrary, but limited to choosing from
the test pool. This implies that directly determining a training input density itself and
drawing i.i.d. training input points from the training input distribution is not possible.
Instead, we are only allowed to choose training input points from the test pool and thus
ptr(x) is also unknown. These limitations cause the following three issues:

(a) The expectation over pte(x) contained in U is not directly computable.

(b) A sampling strategy to gather training input points {xtr
i }ntr

i=1 from the test pool
{xte

j }nte
j=1 is necessary.

(c) The importance weight pte(x)/ptr(x) at training input points {xtr
i }ntr

i=1 contained in
LW through W is not directly computable.

Regarding (a), we practically approximate the expectation over pte(x) by the expecta-
tion over test input samples {xte

j }nte
j=1, which is consistent. More specifically, U in Eqs.(22),

(25), and (26) is replaced with its empirical estimate Û defined by Eq.(10).
Regarding (b), Sugiyama and Nakajima (2009) employed a resampling bias function

b(x) defined over the pool of samples to draw training samples, i.e., a training input point
is chosen one by one with probability proportional to the resampling bias function; then
the selection weight for the chosen sample is set to zero to prevent overlapping.

Regarding (c), Sugiyama and Nakajima (2009) proposed a simple estimation scheme.
The above sampling procedure implies that if ntr ≪ nte, the training input density ptr(x

te
j )

is regarded as being proportional to the product of the test input density pte(x
te
j ) and the
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resampling bias function b(xte
j ), i.e.,

ptr(x
te
j ) ∝ pte(x

te
j )b(x

te
j ).

Then the importance weight w(xte
j ) is given as

w(xte
j ) ∝

1

b(xte
j )

.

In practice, users prepare a candidate set of b(x) and choose the best one based on their

generalization error estimators (JW = tr(ÛLWL⊤
W) for P-ALICE and JO = tr(ÛLOL

⊤
O)

for P-CVO). Therefore, to achieve a good learning performance, we need to prepare
reasonable candidates of b(x). Sugiyama and Nakajima (2009) proposed to use the closed-
form solution of P-FVW as a ‘base’ of the candidates and search for the best solution
around its vicinity. More specifically, the following family of resampling bias functions
parameterized by a scalar λ is used as a candidate set:

bλ(x) =

(
t∑

ℓ,ℓ′=1

[Û−1]ℓ,ℓ′φℓ(x)φℓ′(x)

)λ

.

The parameter λ controls the ‘shape’ of the training input distribution. The optimal
solution of P-FVW corresponds to λ = 1/2, and passive learning (i.e., the training and
test input densities are equivalent) corresponds to λ = 0. Practically, the best value of λ
may be searched for by simple multi-point search, i.e., the value of JW is computed for
several different values of λ and the minimizer is chosen.


