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1. This Work in A Nutshell

2.2 Naïve Approach
2-step method of first estimating two densities 
separately and then computing their difference.
Kernel density estimation (KDE):

A smoother function is obtained.
Difference of smooth functions                    
tends to be too smooth.

L2-distance is under-estimated.
Cf. Anderson, Hall & Titterington (J. Multivariate Analysis 1994)

2.3 Vapnik’s Principle

If you possess a restricted amount of information 
for solving some problem, try to solve the 
problem directly and never solve a more general 
problem as an intermediate step. It is possible 
that the available information is sufficient for a 
direct solution but is insufficient for solving a more 
general intermediate problem.

Vladimir N. Vapnik (1998)
Statistical Learning Theory, Wiley.

3.1 Least-Squares Density-Difference
(LSDD) Estimation 

Density-difference model:

Least-squares estimation:

Sample approximation:
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Regularized training criterion:

Solution can be computed analytically:

Cross-validation is available for objectively tuning   
Gaussian width    and regularization parameter  .
MATLAB code is available:

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSDD/

3.2 Theoretical Analyses

Non-parametric case: Gaussian RKHS    

For all            , there exists a constant     
such that, for appropriately chosen      ,   
the following inequality holds with 
probability             for all            :

Cf. Eberts & Steinwart (NIPS2011)

: Regularity of Besov space that contains true

4.1 L2-Distance Approximation

Naïve approximators via LSDD:

Consider their linear combination:

For small   , Taylor expansion gives

Bias caused by regularization can be 
eliminated by         .

3.3 Numerical Examples

Difference of KDEs LSDD

Difference of KDEs LSDD

4.2 Numerical Examples
L2-Distance Approximation

L2-Distance vs. KL-Divergence

L2-distance is more robust than KL-divergence.

Outlier

Cf. Basu, Harris, Hjort & Jones (Biometrika1998)

Outlier mean μ

5.1 Class-Balance Estimation
Pattern recognition when class balances are 
different in training and test phases.
If test class-balance is known, weighted 
learning eliminates estimation bias.
When test class-balance is unknown, fit 
mixture of training class-wise input densities 
to test input density: Du Plessis & Sugiyama (ICML2012)

ptrain(x|y = −1)

ptest(x)

ptrain(x|y = +1)

Class-balance estimation error

Classification accuracy:

Australian HeartGerman

: True test class-balance

Regularized kernel least-squares classifier with class-balance weighting is used.

5.2 Change Detection
Goal: Find change points in time-series.
Use L2-distance between past and current data 
as change score: Kawahara & Sugiyama (SADM2012)
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Parametric case:

For                                  , we have

: Optimal parameter

: LSDD estimator

2.1 Target Problem & Motivations
From two sets of i.i.d. samples

estimate the difference between two densities: 

Via density-difference estimation, we want to
Compare probability distributions.
Approximate the L2-distance.

Target problem: Estimate the difference between 
two densities.
Approach: Avoid density estimation and directly 
estimate the difference in a single-shot process.
Theory: Parametric and non-parametric optimality 
in terms of the approximation accuracy. 
Usage: L2-distance approximation.
Applications: Semi-supervised class-prior 
estimation and unsupervised change detection.
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Optimal convergence rate is achieved.

Optimal convergence rate is achieved.
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Related Work: Density Ratio Estimation

Density ratio is a versatile tool:

Importance sampling:

Divergence estimation:

Mutual information estimation:

Conditional probability estimation:
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Sugiyama, Suzuki & Kanamori (2012)
Density Ratio Estimation in Machine Learning
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