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Abstract

Reinforcement learning (RL) is a flexible framework for learning a decision rule in
an unknown environment. However, a large number of samples are often required
for finding a useful decision rule. To mitigate this problem, the concept of transfer
learning has been employed to utilize knowledge obtained from similar RL tasks.
However, most approaches developed so far are useful only in low-dimensional set-
tings. In this paper, we propose a novel transfer learning idea that targets problems
with high-dimensional states. Our idea is to transfer knowledge between state fac-
tors (e.g., interacting objects) within a single RL task. This allows the agent to
learn the system dynamics of the target RL task with fewer data samples. The
effectiveness of the proposed method is demonstrated through experiments.
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1 Introduction

Recently, there is an increasing interest in methods of learning a decision rule in an
unknown and stochastic environment. These methods have been investigated in the field
of Reinforcement Learning (RL), where the environment is modeled as a Markov Decision
Problem (MDP). RL methods have been applied to various domains, including robotics
[12], and AI for computer games such as Tetris [5] and fighting games [4].
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However, one of the main limiting factors for RL methods is that lots of samples are
required for finding good decision rules. One of the approaches for mitigating this problem
is to reuse data or previously found solutions from similar RL tasks (see Section 2 for the
review). These approaches have been a focus of the research lately and are called transfer
learning or multi-task learning methods for RL.

Current approaches to multi-task learning in RL focus on transferring solutions be-
tween several MDPs. However, such approaches do not scale to high-dimensional state
spaces due to the curse of dimensionality since current approaches share knowledge be-
tween states of different RL tasks.

To tackle the high-dimensional RL tasks, we propose a novel usage of multi-task
learning in RL: the transition models are shared between the state factors of a single
MDP. An example of such sharing is a lake crossing problem where the agent has to
navigate a boat through a lake full of floating objects, each object is represented as a
state factor. The idea is to identify which state factors (objects) are similar to each other
based on observed data and then share data between similar factors (objects). This allows
the agent to transfer the knowledge learned from the interaction with one object to other
similar objects. To accomplish that we propose a transfer learning method that uses a
mixture-based approach (our implementation of the method is freely available1).

The contributions of our paper are the introduction of multi-task learning for state
factors and a method for solving this setting. To our knowledge our paper is the first to
introduce such an explicit multi-task learning between different state factors.

The rest of the paper is organized as follows. In the next section we review related
research. In Section 3 we formally introduce the setting of RL with factored states.
Our proposed multi-task learning ideas are introduced and formalized in Section 4. The
performance of the proposed method is evaluated experimentally in Section 5. We discuss
extensions and practical applications in Section 6 and finally conclude in Section 7.

2 Related Research

Transfer learning methods for RL can be categorized based on several different aspects
[19]. One of the most important differentiating aspects is what is being shared between
RL tasks, with most of the existing approaches transferring value functions, transition
dynamics, instances or policies.

In the case of value function transfer, the value functions of previously solved RL tasks
are transferred to the new task. A popular approach for transferring value functions is to
use the previously found value functions as the initial solutions for the value function of
the new RL task. These methods are called starting-point methods [17, 20]. A special case
of such value-based transfer has been considered in [13], where it was assumed that all
MDPs have exactly the same states, actions and state transition dynamics. This approach
has been extended by [18] by using hypothesis testing to choose the most appropriate RL
task and incrementally improve the chosen task. A hierarchical Bayesian approach was

1Please see http://code.google.com/p/mt-factors/.
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proposed by [9], where value functions are shared by using Dirichlet Processes. This is a
step forward from the starting-point methods, as the sharing is performed in a multi-task
way, i.e., several tasks are learned simultaneously.

A similar approach to value function transfer is policy transfer, i.e., reusing the learned
policies from previous tasks. [3] proposed a policy transfer method that biases a current
policy in a new task towards the most similar previously learned policy. The idea is similar
to starting-point methods, but is based on policy sharing and the weights of sharing are
continuously updated based on new samples.

In the methods based on transition dynamics transfer, the transition and reward mod-
els are transferred from the solved RL tasks to new tasks. A model-based transfer method
was proposed by [22] that uses hierarchical Bayesian clustering to estimate the prior prob-
abilities of transition models of MDPs. If the model of the new MDP is similar to a
previously encountered MDP, the data from the previous tasks are used to estimate the
transition and reward models of the new task. Thus, the new task can be learned with
fewer samples.

An approach similar to transition dynamics transfer is instance transfer. Instead of
transferring the learned dynamics, [10] proposed to transfer samples from similar tasks to
the new task. To avoid negative transfer, only the samples from the most similar tasks
are transferred.

A field related to our work is reinforcement learning in factored-state MDPs where
special structure at the state level is used to acquire better policies with fewer samples.
Linear decomposition of the Q-function based on the state factor dependencies was pro-
posed by [6] that allows more accurate learning of the Q-function. Instead of Q-function
learning a popular approach is a model-based RL in factored-state MDPs, for example see
[14]. We follow the latter approach, which will be described in detail in the next section.
Our contribution to the previous factored-state RL works is that we consider a more gen-
eral factored-state dependency that allows us to model more fine-grained dependencies
between the factors (see Section 3.2). Additionally, as already mentioned, our work is the
first we know of to consider sharing ideas in the context of state factors of an MDP.

3 Reinforcement Learning

The goal of RL is to learn optimal actions in an unknown and stochastic environment.

3.1 RL with Factored States

The environment is specified as an MDP, which is a state-space-based planning problem
defined by S, PI , A, PT , R and γ. Here S denotes the set of states, PI(s) defines the initial
state probability, A is the set of actions, and 0 ≤ γ < 1 is the discount factor. At each
step the agent receives rewards defined by the function R(s, a, s′) ∈ R, where s, a, s′ are,
respectively, the current state, the action and the next state. The state transition function
PT (s

′|s, a) defines the conditional probability of the next state s′ given the current state
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s and action a. The state is assumed to satisfy the Markov property, i.e., the probability
of next state s′ only depends on s and a, and not the previous states or actions. The
state is assumed to be factored into elements s = (x0,x1, . . . ,xF ) where x0 is the factor
for our agent and F is the number of non-agent factors (e.g., objects in the environment).
Additionally, the state transition function is assumed to have a factorized form

PT (s
′|s, a) =

F∏
f=0

PT (x
′
f |s, a).

The goal of RL here is to find a policy π : S → P (A) that maximizes the expected
discounted sum of future rewards, under the setup that the transition probability PT is
unknown. The discounted sum of future rewards is

∑∞
t=0 γ

trt, where rt is the reward
received at step t. In this paper we assume the reward function R is known to the agent,
but our multi-task sharing ideas can be applied also for learning the reward function.

In our paper we focus on model-based RL for finding the optimal policy. The model-
based RL approach [16] consists of the following two steps:

1. Estimate the transition probabilities PT (s
′|s, a) using transition data.

2. Use the estimated transition probabilities to plan actions, for example, by simulating
dynamics few steps ahead and choosing the action giving the largest value. Another
option is to find an optimal policy for the estimated transition model (e.g., by using
a dynamic programming).

More specifically, the transition data consists of, possibly non-episodic2, samples
{(st, at, s′t)}Tt=1, where st and at correspond to the state and action of the t-th transi-
tion and s′t is the the next state.

The performance of model-based RL is guaranteed by the Simulation lemma [7], which
states that as the estimated transition probabilities get closer to the true probabilities,
the value function of the estimated MDP is getting closer to that of the true MDP. This
lemma also applies to the model-based transfer learning methods, i.e., if a model-based
transfer learning method can learn a more accurate transition model it is expected to also
obtain a more accurate value function and consequently, a better policy.

We focus on the case where the state transitions probabilities PT are defined by a
parametric model3, i.e.,

PT (s
′|s, a, β) =

F∏
f=0

PT (x
′
f |s, a, βf ),

where β = (β0, β1, . . . , βF ) are the unknown parameters for each factor. The learning of
the transition probabilities is, thus, simplified to the learning of these parameters.

2Non-episodic means that there is no requirement that the next state of the t-th transition sample
(i.e., s′t) has to be equal to the starting state of the (t+ 1)-th transition sample (i.e., st+1).

3It should be noted that non-parametric extension is possible using the standard kernel trick.
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3.2 Restricted Transition Model

An important and very useful aspect of factored state models is the possibility to restrict
the interactions between different state factors. A standard approach is to use global
restrictions, by employing dynamic Bayesian networks [8]. For example, a global restric-
tions allow us to specify that the next state of factor x0 only depends on the current value
of factor x2 and does not depend on factor x1.

In this paper we adopt state-level restriction for the factors, which is slightly more
flexible than the global restriction. Namely, at every state s the next state of a factor xf

is only affected by a subset of factors denoted by gf (s) ⊆ {0, . . . , F}. Thus, in contrast
to the global model, the dependencies between factors can vary according to state s.
We assume that the functions gf (s) for all f ∈ {0, . . . , F} are known to the agent (as
explained below, this assumption is realistic). Note that global restrictions are a special
case of state-level restrictions and the reason why we use state-level restrictions is to
make the factored state model (and our proposed transfer learning idea) applicable to
more general RL problems.

To illustrate the state-level restriction, consider the lake crossing problem where the
agent controls a boat that has to get from one shore to another while avoiding collision
with floating objects in the lake. In this example, the next value of the agent factor
(boat), x′

0, is affected by its own current value (x0) and only by the states of few floating
objects close to it. Floating objects that are currently far away are not affecting the
boat. Such dependency can be captured by a dependency function g0(s) that acts like
a nearest neighbor function by only selecting the closest factor within a certain radius
to the boat factor x0. Notice that such a dependency cannot be represented by using
global restrictions, because all floating objects can, at certain states, interact with the
boat factor (and also with other factors). In that case the boat factor would need to
depend on all factors, losing one of the main advantages of the factored state model.

To formally introduce the state-level restrictions, let xh = (xh1 , . . . ,xhH
) be the state

factors chosen by an H-dimensional vector h with hi ∈ {0, . . . , F}. The restricted tran-
sition model for xf can be expressed, for all f ∈ {0, . . . , F}, as

PT (x
′
f |s, a, βf ) = PT (x

′
f |a,xh, βf,h), (1)

where h = gf (s). The parameter βf,h specifies the model for the states where the factor
xf is affected by factors xh. For example, the parameter β0,(0,3,4) specifies the model for
the boat factor x0 in the states where the next state of the boat is affected by itself and
objects x3 and x4, i.e., in states s where g0(s) = (0, 3, 4).

An example of parametric form of (1), which can be used as a transition model for
the lake crossing problem, is a multivariate Gaussian distribution

PT (x
′
f |a,xh, βf,h) = N (xf +w⊤

f,hϕ(xh, a),Σf,h), (2)

where N (a, b) denotes the multivariate Gaussian distribution with mean a and covariance
b. Parameters in the transition model are βf,h = (wf,h,Σf,h) where wf,h and Σf,h affect
the mean and the covariance of the Gaussian distribution, respectively; ϕ(xh, a) is a



Multi-Task Approach to Reinforcement Learning for Factored-State MDPs 6

feature vector. By adding xf to the mean of the Gaussian distribution, wf,h estimates the
mean change in the state factor xf . Modeling the change is useful for continuous dynamics
domains such as the above lake crossing task. If ϕ(xh, a) ∈ RB and the dimension of factor
xf is C, then the parameters are wf,h ∈ RB×C and Σf,h ∈ RC×C .

3.3 Estimating the Parameters of the Transition Model

The parameters β have to be learned from data. A natural approach is to maximize the
logarithm of a posteriori of the observed transition data (MAP). Let S = {sn}Nn=1, A =
{an}Nn=1 and S ′ = {s′n}Nn=1 be the observed states, actions and next states, respectively,
where N is the number of observed transitions. Then the logarithm of a posteriori is given
by

L(β) = logP (S ′|S,A, β)P (β)

=
N∑

n=1

logP (s′n|sn, an, β) + logP (β),

=
N∑

n=1

F∑
f=0

logP (x′
n,f |sn, an, βf ) + logP (β), (3)

where P (β) is the prior of the transition model and double indexed x denotes a particular
factor of that state, i.e., sn = (xn,0, . . . , xn,F ) and s′n = (x′

n,0, . . . ,x
′
n,F ). For multinomial

and Gaussian models (as the one specified in (2)), the maximization of L(β) is a convex
optimization problem and thus the solution can be effectively computed by standard
maximum likelihood approaches [1].

However, learning such models in complicated domains still demands large amounts
of data to get an accurate estimate, because the number of parameters (β) needed to be
estimated is very large. We now introduce the multi-task sharing method for the state
factors, which tries to improve the accuracy of the estimation of β.

4 Multi-Task Learning for State Factors

In this section, we introduce our multi-task sharing method for the state factors.

4.1 Basic Idea

Before introducing the general idea, let us again come back to the lake crossing example.
Suppose there are two types of floating objects in the lake: seaweed and plastic bottles.
In such case it would be beneficial to share data between the floating objects of the same
type. Firstly, the same type of floating objects should have similar effect to the boat when
they come into contact with it. Secondly, the same type of floating objects should also
move in a similar way in the lake.
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(a) Sharing idea 1: factors
x2 and x3 have similar effect
on agent factor (x0).

(b) Sharing idea 2: factors
x2 and x3 have similar tran-
sition dynamics.

Figure 1: Multi-task learning ideas for state factors, showing links from the time step t
to the next time step t+ 1.

Our multi-task learning approach tries to achieve these two types of sharing, which
can be expressed in a general way as follows:

• Sharing idea 1: If two factors xf and x′
f are similar, then their effect to the agent

factor and other factors is similar, as illustrated in Figure 1(a).

• Sharing idea 2: If two factors xf and x′
f are similar, then their transition models

are similar, i.e., βf and βf ′ are similar, as illustrated in Figure 1(b).

Note that the agent does not know in advance which factors are similar and this
grouping has to be also learned from the data. If the grouping is incorrect, wrong transfer
can occur between the factors, increasing the model error. To avoid such incorrect transfer
we will next introduce a mixture model that allows us to learn the grouping that best
explains the data.

4.2 Mixture Model for State Factors

For accomplishing the two multi-task learning goals mentioned above we propose to use
a mixture model for the non-agent factors, i.e., x1, . . . ,xF . Every non-agent factor xf is
assumed to belong to one mixture component, denoted by cf ∈ {1, . . . , C}. Thus, each
component represents similar types of objects (for example, in the case of the lake crossing
task there are two components, one for seaweed and the other for plastic bottles).

The main idea is that the factors in the same component have the same transition
dynamics, which we can express by replacing Eq.(1) by

PT (x
′
f |s, a, βMT , c) = PT (x

′
f |a,xh, β

MT
cf ,ch

)
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where h = gf (s), c = {c0, c1, . . . , cF}, and ch = (ch1 , . . . , chdim(h)
) denotes the components

of factors xh.
4 The crucial difference to (1) is that we now have introduced multi-task

transition model βMT that uses the same transition model for factors belonging to the
same component. This means that βMT

c,k specifies the transition model for all factors
belonging to the mixture component c when they are affected by factors belonging to
components specified in vector k.

To illustrate the idea in the lake crossing problem, assume objects x1 and x2 (e.g.,
floating seaweed) belong to component 1 and factors x3 and x4 (e.g., plastic bottles)
belong to component 2. Then the dynamics of object x1 when affected only by object x3

is the same as the dynamics of the object x2 when affected by x4, both dynamics specified
by the parameter βMT

1,(1,2).

With respect to the difficulty of the learning task, the number of parameters in βMT

is greatly reduced compared to β. For example, consider models where factors are af-
fected at most by only one other factor. Then the number of parameters in β is O(F 2),
whereas in βMT there are O(C2) parameters. Multi-task learning can be very useful if C
is significantly smaller than F .

Analogously to Eq.(3) we now define a likelihood for the multi-task learning model

L(βMT ) = logP (S ′|S,A, βMT )P (βMT )

= log
∑
c

P (c, S ′|S,A, βMT ) + logP (βMT ).

Next we will discuss how to maximize the likelihood by using EM method.

4.3 EM Method for the Mixture of State Factors

As c are unknown a standard approach to finding the maximum likelihood solutions to the
mixture models is to treat c as latent variables and employ the Expectation-Maximization
(EM) algorithm [1]. In our case, the main steps iterated by the EM algorithm are to

evaluate P (c|S, S ′, A, βMT old
) for each c and then to find a new βMT that maximizes∑

c

P (c|S, S ′, A, βMT old
) logP (c, S ′|S,A, βMT ).

The number of possible values for c is exponential to the number of factors. However,
full enumeration is usually not necessary (e.g., in the case of a mixture of Gaussians [1]),
because the latent variables (cf ) are conditionally independent. Unfortunately, in the
mixture of state factors this is not the case, i.e.,

P (c|S, S ′, A, βMT ) ̸=
F∏

f=1

P (cf |S, S ′, A, βMT ),

4To simplify the notation we have added a pseudo component for the agent factor x0, fixed as c0 = 0.
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because a single transition can be affected by several cf . A simple example of this is
when a factor f is affected by factor f ′, then the multi-task transition probability is
P (x′

f |x(f,f ′), a, β
MT
cf ,(cf ,cf ′ )

), depending on both cf and cf ′ .

Therefore, we employ an extended EM approach where evaluating P (c|S, S ′, A, βMT old
)

is replaced by sampling c from it. This is possible by using Gibbs sampling, as we will
detail below. The maximization step is then carried out over the sampled c. The drawback
of this approach is that the sampling is computationally expensive. To overcome this
problem we will exploit the fact that there are training samples which only depend on a
single latent variable cf . The idea is to first use only those samples, allowing us to carry
out EM without sampling and then switch to a heavier sampling-based approach. We
describe this in Section 4.4.

We now outline the steps of the proposed EM method and leave the details of the
derivation to the A:

1. Initialize transition models βMT . One option is to initialize randomly. A more
efficient way will be discussed in Section 4.4.

2. E-step: Draw K samples of c from distribution

P (c|S ′, S, A, βMT )

using Gibbs sampling, i.e., drawing sequentially each cf from
P (cf |c−f , S

′, S, A, βMT ) where c−f is c without cf . We will denote the K
sampled values by {ζk}Kk=1.

3. M-step: Find the parameter βMT that maximizes

1

K

K∑
k=1

logPT (S
′|S,A, βMT , c = ζk) + logP (βMT ).

4. If the log likelihood or parameters have converged, stop; otherwise, go to step 2.

The Algorithm 1 gives a general pseudo code description of the proposed method.
The derivation of the algorithm for Gaussian transition dynamics is discussed in detail
in B. The inputs to the algorithm are the transition data (S, S ′, A) and parameters
for the number of components (C) and regularizer for the Gaussian model (λ). In the
experiments we will choose the values of the two parameters using holdout validation, i.e.,
we train the model using two thirds of the data and using the rest to validate. Choices
for parameters are C ∈ {2, 4, 6} and λ ∈ {100, 10−1, 10−2}. Note that the number of
possible c′′ in the M-step of Algorithm 1 grows exponentially with respect to its length.
In experiments we limit the length of c′′ to three. This allows us to model interactions
with up to two affecting state factors (the first element of c′′ is always the component of
the state factor that is being affected).

The goal of the agent in the model-based learning is to be able to generate samples
of state transitions from the current state and possible actions. For that we propose a
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Algorithm 1 Algorithm for finding the solution for the mixture models.

1: procedure LearnFactorMT(S, S ′, A, C, λ)
2: i = 0
3: Initialize βMT i

4: repeat
5: i← i+ 1
6: ζi ← Estep(S,S ′,A, C, βMT i−1

)

7: βMT i ← Mstep(S,S ′,A, C, ζi, λ)

8: until ∥βMT i − βMT i−1∥ becomes small
9: end procedure
10:

11: procedure Estep(S, S ′, A, C, K, βMT )
12: Initialize c randomly from 1 to C
13: for k in 1..K do
14: For each f in turn sample cf from
15: cf ∼ P (cf |c−f , S

′, S, A, βMT )
16: ζk,f ← cf
17: end for
18: return ζ
19: end procedure
20:

21: procedure Mstep(S, S ′, A, C, ζ, λ)
22: For each c′, c′′:
23: Loop through ζ and (S, S ′, A)
24: Collect all (xn,h,x

′
n,f , an, ζk) such that:

25: ζk,f = c′ and ζk,h = c′′ with gf (s) = h.
26: Using collected data find βMT

c′,c′′ maximizing

27:
∑

data logPT (x
′
n,f |an,xn,h, β

MT
c′,c′′) + logP (βMT ;λ)

28: End for
29: return βMT

30: end procedure

following approach using the estimated transition model βMT and component assignments
ξ. Firstly, the agent samples k uniformly from {1, . . . , K}, specifying the component
assignment ξk for factors. Then, the transition is generated according to PT (x

′
f |s, a, c =

ξk), where we assume that we can generate samples from transitions model. For example,
this can be easily done for Gaussian and multinomial dynamics. See section 5.2 for the
details of model-based policy used in the experiments.

Algorithm 1 does not specify how to initialize βMT (line 3 in the algorithm). A
straightforward option is to initialize βMT randomly, but that often results in lots of
iterations before convergence. Below we discuss a better initialization option that often
speeds up the convergence.
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4.4 Speeding Up EM Method

The proposed method above can be slow due to sampling in E-step. Sampling is required
in E-step because cf for different factors xf are not independent given the data. Here,
our idea is to initialize βMT by only using a subset of data where cf are conditionally
independent. If cf are conditionally independent the E-step can be carried out analytically.

This initialization is expected to converge close to the main method solution if there
is low dependency between cf ; thus, only requiring few iterations of slow sampling-based
E-steps.

This analytically approximated E-step is formally expressed for cf by

P (cf = c′|S ′, S, A, βMT )

=
P (S ′|cf = c′, S, A, βMT )∑M

c′′=1 P (S ′|cf = c′′, S, A, βMT )

≈
∏

(n,h)∈I(f) P (x′
n,h|cf = c′, sn, an, β

MT )∑M
c′′=1

∏
(n,h)∈I(f) P (x′

n,h|cf = c′′, sn, an, βMT )
, (4)

where I(f) contains pairs of indices of a transition sample and a factor which do not
depend on any latent variables except cf and c0 (which is just a constant).

Note that in the M-step we will also only use the subset of the data specified by I(·),
resulting in an EM procedure that is just based on the subset of data. See C for the
details of the M-step.

5 Experimental Results

We test our proposed method in a lake crossing task where the agent has to control a
boat from one shore to another and has to avoid hitting the shores, which terminates its
run. The difficulty lies in the fact that the lake contains floating objects that interact
with the boat, e.g., light garbage and floating lake weed. Although it is a toy problem
it has several challenging aspects that are present in real-world problems. Firstly, the
state space is very large, with 41 objects and 5 features for each object; the state has
more than 200 dimensions. Thus, applying standard value function estimation methods
such as fitted Q-learning [2] is not feasible. Secondly, as the objects are interacting when
they get close (i.e., gf (s) is a nearest neighbor function with a fixed threshold), the agent
has to plan its route carefully in the lake to avoid or control collisions, requiring accurate
estimation of the dynamics of the objects.

5.1 Setup

We now outline the details of the lake crossing tasks. The goal of the agent is to guide the
boat from the start state to the goal state, see Figure 2. The environment is simulated
using continuous state dynamics, which we adopted from [10] where the environment
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start

goal

ν0
(ḃ0, ḋ0)

b0

d0

Figure 2: Example of a lake crossing problem with a boat factor (x0 = (b0, d0, ḃ0, ḋ0, ν0))
and 4 floating objects of two types (the actual setup contained 40 objects of 4 types).

consisted only of one 5-dimensional factor, the boat. In our setup we adopt the dynamics
of the boat to all objects, i.e., factor xf ∈ R5:

xf = (bf , df , ḃf , ḋf , νf ),

where bf , df ∈ [0, 200] are the location coordinates on the lake, ḃf , ḋf ∈ [−5, 5] are the
speeds of the object along the respective coordinates, and νf ∈ [−π/6, π/6] is the rotation
speed (angles per time step). If the distance between two objects in the lake is less than
5 they are interacting, i.e., if

∥(bf , df )− (bf ′ , df ′)∥2 < 5, (5)

then xf is affected by xf ′ or formally f ′ ∈ gf (s). At the state s the dynamics for non-agent
factor f is

x′
f =


bf + ḃf
df + ḋf∑F

f ′=0 ωf ′(ḃf ′ cos νf ′ − ḋf ′ sin νf ′)∑F
f ′=0 ωf ′(ḃf ′ sin νf ′ + ḋf ′ cos νf ′)

νf

+ ϵf ,

where ϵf is 5-dimensional Gaussian noise with zero mean and the variable ωf ′ shows the
strength of the effect from object xf ′ to object xf . The sum of weights ωf ′ is equal to 1.
For objects xf ′ that do not satisfy (5) the weight is 0 (thus, they have no effect on xf )
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Table 1: Values used in the lake crossing experiments.
Variable Value

Discount factor (γ) 0.98
Goal location (150, 200)
Goal radius 15

Initial state of boat (x0) (20, 5, 0, 0.5, 0)
Inertia of boat (I0) 0.05

Inertia of type 1 objects 0.01
Inertia of type 2 objects 0.04
Inertia of type 3 objects 0.3
Inertia of type 4 objects 0.6

Goal reward +10
Reaching the shore reward −1

and for others it depends on their inertia If ′ and their strength of interaction ρf,f ′ ∈ [0, 1]
(for the factor xf we have ρf,f = 1):

ωf ′ =

{
0 if (5) is false,

ρf,f ′If ′/C otherwise,

where If is the inertia of object xf (proportional to its mass) and C is a normalization

constant for making
∑F

f ′=0 ωf ′ = 1.
For the agent factor x′

0 we add an additional action-dependent effect[
0, 0,

ḃ0
v0
(a1 − v0)I0,

ḋ0
v0
(a1 − v0)I0, (a2 − ν0)

v0
vmax

]⊤
,

where v0 = ∥(ḃ0, ḋ0)∥2 is the speed of the agent factor x0, vmax is the maximum speed
(equal to 5), a1 ∈ [0, vmax] and a2 ∈ [−π/6, π/6] are actions by the agent, respectively,
controlling the movement and rotation speeds. At each step the agent chooses (a1, a2) to
be one of the following 5 actions: (0, 0), (2, 0), (5, 0), (1.0,−π/6), (1.0,−π/6).

There are 4 types of floating objects differing by their inertia (If ), specified in Table 1
together with other values used in the experiments. There are in total 10 objects of each
type and the initial state of the objects is chosen randomly.

5.2 Model-Based Policy

As model-free approaches cannot be used for the lake crossing problem, due to the high-
dimensionality of the state space, we compare our proposed method (MT-factors) to the
case where no multi-task learning is used, i.e., a transition model is learned for each object
separately. For both approaches we use the following look-ahead strategy:

1. Estimate transition model PT .
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2. Estimate the Q-function from data where the boat is not affected by other objects,
i.e., the case of an empty lake. In such a case the learning of the Q-function is
feasible, since the problem has only 5-dimensional state (x0) and 5 possible actions.
For learning the Q-function we employ Fitted Q-learning [2] with the Extra Trees
method5.

3. To find the best action at state s, we look ahead 5 steps by generating the next
states according to the estimated PT and then record its value using the Q-function
found in step 2. We repeat this 4 times and return the action that has the highest
average value.

This approach uses the Q-function from no interaction model as a general guide. By
looking ahead the agent can plan the possible interactions with the floating objects and
should be able to achieve good performance if its learned model of transition dynamics is
accurate.

As the underlying model for the transition dynamics we use the parametric Gaussian
model given in Eq.(2) with a quadratic function for the features, which can be expressed
as ϕ(xh, a) = z ⊗ z with z = (1,x⊤

h , a)
⊤ and ⊗ is the tensor product (we removed the

double entries that are from the symmetry).
To apply the MT-factors in the case of Gaussian dynamics the maximization (line 27

in Algorithm 1) in the M-step becomes ridge regression and in the E-step we have to use
(2) to calculate the transition probabilities. The details are given in B.

5.3 Compared Methods

We compare the performance of MT-factors to other approaches. Firstly, we adopt the
standard model-based approach for factored-state environments to our setup, which is
essentially equivalent to learning the transition dynamics of each factor separately. We
call it ST-factors, i.e., single-task learning for factored-state RL. Secondly, we compare
against Fitted-Q that uses just the boat factor without interaction data (Plain Fitted-Q).
Applying Fitted-Q to learn the whole state-space of more than 200 dimensions would
require intractable amounts of training data, because the full Q-function would require
representing very complex interaction effects between the boat factor and each floating
object.

In general, more suitable approach for learning the Q-function in factored-state en-
vironments is to exploit the factor dependencies and separate the Q-function into linear
components as proposed by [6]. However, in our setting this approach would not be
successful because dependencies between factors are not global but based on state-level
restrictions, i.e., all factors can be, at some point, dependent on each other. Therefore, ef-
ficient linear decomposition of the whole Q-function cannot be made without very serious
losses in accuracy, e.g., if we decompose the Q-function into a sum of several Q-functions

5Specifically, we generated 500,000 samples from the estimated no interactions model, i.e., the samples
where the boat x0 is affected only by itself (g0(s) = (0)). The Fitted Q-learning was run 40 iteration with
15 trees. The parameter determining the leaf size in Extra Trees was chosen by using holdout validation.
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where each Q-function depends only on a single factor it would be impossible to represent
any effects of interactions. Thus, we do not compare against this approach.

5.4 Results

To clearly see the effects of the learned model on the performance we used the same
randomly collected data as input for each method. The data was sampled uniformly over
the state and action space (note that model-based methods can use non-episodic data as
input). The found policies were then ran on the environment for 100 episodes to measure
the expected value and success rate. Each episode started from the initial state and ended
in a terminal state or after 200 steps, whichever came first. This was repeated 10 times
for each data size (1000, 2000, 4000, 8000 and 12000 samples) to find mean and standard
deviations for all the methods.

Figure 3 shows the performances of our proposed method (MT-factors), ST-factors and
Plain Fitted-Q. In the case of sample sizes 2000 and higher MT-factors has (statistically)
better performance at 1% statistical significance (using t-test) compared to ST-factors
and Plain Fitted-Q.

To see how well the policies are working we also compared the success rate of the
agent, which is depicted in Figure 4. The success rate shows the proportion of runs where
the agent is able to reach the goal state.

We also computed the performances of random policy (Random) and the policy that
uses the true transition model (True-Model), which are not depicted in the figures. The
value of the random policy was −0.3 with success rate of 0% and True-Model6 had value
1.8 with success rate of 95%. This means that having accurate transition model is crucial
for good performance. None of the methods could reach success rate of the 95% of the
True-Model, which shows that the lake crossing problem is challenging. Nevertheless, our
proposed method outperformed the non-sharing approaches.

To investigate how MT-factors is grouping together similar factors we measured the
frequency that two factors belong to the same component, which is depicted in Figure 5.
Factors belonging to the same type were assigned to the same component with frequency
1.0, meaning that MT-factors was able to detect the similar factors (for reference, factors
1–10 were type 1, 11–20 type 2, 21–30 type 3 and 31–40 type 4). However, factors of
type 3 and type 4 factors were almost always assigned to the same component, which is
probably caused by the fact that their dynamics are similar due to similar inertia (0.3
and 0.6, respectively). On the other hand, more distinct types, like type 1 and type 4,
are never grouped together, showing that MT-factors avoids sharing data between too
distinct types.

6 Discussion

In this section, we discuss extensions and practical applications of the proposed method.

6True-Model used the Fitted-Q value function that was based on 12000 training samples.
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Figure 3: Values of the policies in the lake crossing experiment showing the mean and the
standard deviation over 10 trials. In each trial the value (sum of discounted returns) was
calculated as the average of 100 runs.
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Figure 4: Success rate of the policies in the lake crossing experiment showing the mean
and the standard deviation over 10 trials. In each trial the success rate was calculated
from 100 runs.

6.1 Applications

MT-factors is suitable for applications where there is interaction between several factors
that have hidden characteristics. An example is a dialog agent that can observe people
chatting and has a goal to chat with them. In terms of the MT-factors framework a text
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Figure 5: Averaged frequency of two factors belonging to the same component with 8000
training samples, averaged over 100 runs. No dot means that the two factors were never
assigned to the same component.

by each chatter f can be considered as factor xf and we model how two chatters interact
by modelling the probabilities of P (x′

f |xf , xf ′ , βf,f ′). This model allows each chatter f to
have a different style for each other chatter f ′, which is often the case as people choose
styles depending on the characteristics of the other person (like mood, personality). This
is the key reason why MT-factors is needed if we want to share between similar chatting
styles. In terms of mixture components, the model for the text of chatter f depends, in
addition to its own component cf , to the component of his/her chatting parter cf ′ .

This kind of situation also arises in modelling the strategy of opponents in games where
players adjust their policies depending on their opponent type. An example of such games
is poker where players can observe an opponent’s play. Our proposed MT-factors can be
adopted for creating AI players that quickly adapt to the strategy of their opponent by
sharing between players that have similar style.

6.2 Exploration and Exploitation

Up to now we have considered the case where the agent has access to random samples from
the environment. But often instead it is required to collect useful samples while incurring
as minimal loss as possible. This is called the exploration-exploitation dilemma. As MT-
factors is a model-based method we can use a exploration bonus approach [21]. The idea
is to give an explicit bonus to states where there are agent and factor interactions that
have very few samples: the fewer data points we have (implying a less accurate model)
the bigger the exploration bonus. In more general terms, the exploration bonus is given
for visiting factor interactions whose parameters of the transition model (βMT ) are not
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yet accurately estimated.
However, we leave the exact details of the exploration method for future research.

6.3 Structural Prior Knowledge

Similarly to other factored-state based approaches MT-factors requires additional prior
structural knowledge, i.e., the factorization of the state space and dependency information,
which is specified by gf (s). Thus, currently our proposed method can be applied to tasks
where such prior information is readily available.

There have been several proposals for learning the structural knowledge in factored-
state RL, for example see [15] and [11]. These approaches remove the need for prior
structural knowledge by finding global dependencies between the factors. However, re-
garding MT-factors the structure learning is still an open problem as the dependencies
allowed by gf (s) are more complex. This is also left as a future work.

7 Conclusions

We proposed multi-task learning for the state factors that is able to learn transition prob-
abilities more accurately by sharing data between similar factors. This was demonstrated
in the challenging lake crossing problem where the MT-factors method outperformed stan-
dard factored-state RL learning approaches. We proposed applications of MT-factors in
real-world domains such as learning dialog agents and adaptable AIs for games.
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A Details of EM Algorithm

Here, we explain the details of the EM algorithm for the state factors (see Section 4.2).
The EM method constists of following steps:

1. Initialize transition models βMT .

2. E-step: find the expectation of the latent variable c given the data and current value
of βMT , i.e., P (c|S ′, S, A, βMT ).

3. M-step: find βMT maximizing the expected log-likelihood

max
βMT

Ec logP (c, S ′|S,A, βMT )P (βMT ), (6)

where Ec denotes the expectation over c found in E-step, i.e., c ∼ P (c|S ′, S, A, βMT ).

4. If the log-likelihood or parameters have converged, stop, otherwise, go to step 2.
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A.1 E-Step

Usually in the E-step of the mixture models it is possible to analytically evaluate
P (c|S ′, S, A, βMT ) by using the fact that latent variables are conditionally independent.
However, in the case of the mixture of state factors the variables cf and cf ′ are not condi-
tionally independent, because the model allows interaction between several non-agent fac-
tors. In such situation a standard approach is to use sampling of c from P (c|S ′, S, A, βMT )
in E-step.

In our case a straightforward option for sampling is to use Gibbs sampling, i.e., sam-
pling each cf in turn from the conditional distribution P (cf |c−f , S

′, S, A, βMT ), where c−f

is c without cf . The conditional distribution is

P (cf = c′|c−f , S
′, S, A, βMT )

=
P (S ′|cf = c′, c−f , S, A, β

MT )∑C
c′′=1 P (S ′|cf = c′′, c−f , S, A, βMT )

, (7)

where

P (S ′|cf = c′, c−f , S, A, β
MT )

=
N∏

n=1

F∏
f=0

PT (x
′
n,f |sn, an, cf = c′, c−f , β

MT ).

This product can be easily calculated because the elements in the product are just tran-
sition probabilities when transition models are βMT and the component assignments of
the factors are given by cf and c−f .

A.2 M-Step

Given K samples of c from E-step, denoted by {ζk}Kk=1, we want to find solution to (6).
We express

P (c, S ′|S,A, βMT )

= PT (S
′|S,A, βMT , c)P (c)

=
1

CF
PT (S

′|S,A, βMT , c)

=
1

CF

∑
c′

δc,c′PT (S
′|S,A, βMT , c′)

=
1

CF

∏
c′

PT (S
′|S,A, βMT , c′)δc,c′ , (8)

where δc,c′ is Kronecker’s delta, i.e., equal to 1 if and only if c and c′ are equal.
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The product form in (8) allows us to easily express the expectation of its logarithm as
follows

Ec logP (c, S ′|S,A, βMT )

= Ec log
1

CF

∏
c′

PT (S
′|S,A, βMT , c′)δc,c′

= Ec

[∑
c′

δc,c′ logPT (S
′|S,A, βMT , c′) + log

1

CF

]
=

∑
c′

Ec[δc,c′ ] logPT (S
′|S,A, βMT , c′) + const., (9)

where the summation is over all possible assignments to c′.
When summing over all c′ the number of summation elements is exponential with

respect to the number of factors F . However, since we have only K samples of c from
E-step, denoted by {ζ1, . . . , ζK} we can use them to approximate (9) as follows,∑

c′

Ec[δc,c′ ] logPT (S
′|S,A, βMT , c′)

≈ 1

K

K∑
k=1

logPT (S
′|S,A, βMT , c = ζk)

=
1

K

K∑
k=1

N∑
n=1

F∑
f=0

logPT (x
′
n,f |sn, an, βMT , c = ζk). (10)

The maximization of (10) together with a standard prior P (βMT ) with respect to βMT is
tractable for multinomial models and for Gaussian models. For the details of the latter
see B.

B EM Algorithm in the Case of Gaussian Models

Here are the detailed steps of the EM procedure for the Gaussian model, expressed in
Eq.(2). Consider a state s and one of its factors xf being affected by factors xh where
h = gf (s). Then for all possible components of xf , denoted by cf , and all possible
components of the affecting factors xh, denoted by ch, we have parameters βMT

cf ,ch
=

(wcf ,ch ,Σcf ,ch) that express the distribution of the next state of the factor xf with the
Gaussian N (xf +w⊤

cf ,ch
ϕ(xh, a),Σcf ,ch).

For clarity we recall that the unknown parameters of the Gaussian are wcf ,ch ∈ RB×C

and Σcf ,ch ∈ RC×C (see Eq.(2) for details).
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B.1 E-Step

Given the current model for βMT we carry out Gibbs sampling of cf as expressed in (7)
with

PT (x
′
n,f |sn, an, cf = c′, c−f , β

MT )

= N (xn,f +w⊤
cf ,ch

ϕ(xn,h, an),Σcf ,ch),

where c denotes the combined cf and c−f .

B.2 M-Step

Maximizing the log likelihood given the K samples {ζk}Kk=1 of c from E-step. The
maximization of βMT can be carried out separately for each βMT

c′,c′′ . For that we define
J(c′, c′′) 7→ (n, f, k) to return indices of all points xn,f whose transition is affected by
βMT
c′,c′′ when c = ζk.

The part that depends on βMT
c′,c′′ in (10) can be written as

1

K

∑
(k,n,f)∈J(c′,c′′)

logPT (x
′
n,f |sn, an, βMT

c′,c′′ , c = ζk), (11)

i.e., everything else in (10) is constant with respect to βMT
c′,c′′ . Adding the log of prior

logPT (β
MT
c′,c′′) to (11) we can find the maximum a priori estimator (MAP) of the parameters

wc′,c′′ and Σc′,c′′ by the standard least-squares approach. Assuming a prior for the mean,

logP (wc′,c′′) =− λ∥wc′,c′′∥2,

where λ ∈ [0,∞), we get MAP solutions:

wc′,c′′ =(Φ⊤Φ+KλI)−1Φ⊤∆x,

Σc′,c′′ =
1

Lc′,c′′
(∆x−Φwc′,c′′)

⊤(∆x−Φwc′,c′′),

where I is the identity matrix. Φ is a matrix where the i-th row is ϕ(xn,h)
⊤ with xn

corresponding to i-th triplet (n, f, k) ∈ J(c′, c′′); similarly, the i-th row in matrix ∆x
corresponds to i-th (x′

n,f − xn,f )
⊤. Lc′,c′′ denotes the size of J(c′, c′′) (thus, equal to the

number of rows in both matrices). Note that Φ and ∆x are different for different c′ and
c′′, and for better readability we have dropped the indices of the matrices.

C Details of Initialization of EM Algorithm

Here we describe the derivation of initialization of βMT in the EM algorithm.
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C.1 M-Step

As in Appendix A.2 we try to maximize the expected log-likelihood. However, in this case
we only use the data that depends on a single non-agent factor. This data is specified by
index functions I(f) for every f ∈ {1, . . . , F}. Let S̄, S̄ ′ and Ā be the unions of these
datasets, respectively, for starting state, next state and action. We want to maximize

Ec logP (c, S̄ ′|S̄, Ā, βMT )

= Ec logP (S̄ ′|S̄, Ā, βMT , c) + const.

with respect to βMT .
Due to the conditional independence of cf we have

P (S̄ ′|S̄, Ā, βMT , c)

=
F∏

f=1

∏
(n,h)∈I(f)

PT (xn,h|sn, an, βMT , c)

=
F∏

f=1

∏
(n,h)∈I(f)

PT (xn,h|sn, an, βMT , cf )

=
F∏

f=1

∏
(n,h)∈I(f)

C∑
c′f=1

δcf ,c′fPT (xn,h|sn, an, βMT , c′f )

=
F∏

f=1

∏
(n,h)∈I(f)

C∏
c′f=1

PT (xn,h|sn, an, βMT , c′f )
δcf ,c′

f .

Analogously to the derivation of (9), we now get

Ec logP (S̄ ′|S̄, Ā, βMT , c)

= Ec

F∑
f=1

∑
(n,h)∈I(f)

C∑
c′f=1

δcf ,c′f

· logPT (xn,h|sn, an, βMT , c′f )

=
F∑

f=1

C∑
c′f=1

∑
(n,h)∈I(f)

Ec[δcf ,c′f ]

· logPT (xn,h|sn, an, βMT , c′f ),

where Ec[δcf ,c′f ] is the expectation calculated in the analytic E-step, Eq.(4).


