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Abstract

The local model fitting (LMF) method is a useful single-shot surface profiling algo-
rithm that features fast measurement speed and robustness against vibration. How-
ever, the measurement range of the LMF method (i.e., measurable height difference
between two neighboring pixels) is limited up to a quarter of the light source wave-
length. To cope with this problem, the multiwavelength-matched LMF (MM-LMF)
method was proposed, where the plain LMF method is first applied individually to
interference images obtained from multiple light sources with different wavelengths,
and then the LMF solutions are matched to obtain a range-extended solution. Al-
though the MM-LMF method was shown to provide high measurement accuracy
under moderate noise, phase unwrapping errors can occur if individual LMF solu-
tions are erroneous. In this paper, we propose the multiwavelength-integrated LMF
(MI-LMF) method that directly computes a range-extended solution from multiple
interference images in an integrated way. The effectiveness of the proposed MI-LMF
method is demonstrated through simulations and actual experiments.
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1 Introduction

Interferometric surface profiling allows an accurate, fast, and non-destructive measure-
ment of nano-scale objects. For this reason, it is used for quality control of various
industrial products such as semi-conductors and display panels [1].

The phase-shift method [2] is a classic interferometric surface profiling method that
uses multiple interference images taken by changing the relative distance between the
target object and the reference mirror. Although the phase-shift method provides high
measurement accuracy, it is vulnerable to disturbance such as vibration.

To overcome this weakness, single-shot surface profiling methods have been developed.
The single-shot methods use only a single interference image that has spatial fringe pat-
terns introduced by tilting the reference mirror. Several algorithms for single-shot surface
profiling have been proposed: The Fourier transform method [3], the spatial phase de-
tection method [4], the spatial phase synchronization method [5], the windowed Fourier
transform method [6], the spatial phase-shift method [7, 8], and the local model fitting
(LMF) method [9]. Among these single-shot methods, the LMF method was shown to be
particularly useful.

The measurement principle of the LMF method relies on the assumption that the
target surface to be profiled is locally flat. This assumption enables us to utilize the
information brought by nearby pixels in the single interference image for robust local
model fitting. The locality of LMF allows the measurement of objects with sharp steps
and/or covered with heterogeneous materials, which is an advantage over the Fourier
transform method and the spatial-phase synchronization method. The windowed Fourier
transform method also processes the fringe image locally, but it requires the assumption
that the target surface to be profiled is sufficiently smooth. The spatial phase-shift method
does not suffer from this problem, but it requires the reference mirror to be exactly tilted to
a specified angle, which is hard to achieve in practice. The spatial phase detection method
does not suffer from this problem, but its height estimation is performed only from a
number of pixels on a line segment with width corresponding to a single wavelength. Thus,
under an noisy environment, the spatial phase detection method tends to be inaccurate.
The LMF method can be regarded as an extention of the spatial phase detection method
in that any pixels in the vicinity of the target pixel can be used for height estimation, as
long as the local flatness is not strongly violated.

However, in the original LMF method, the measurement range (i.e., measurable height
difference between two neighboring pixels) is limited up to a quarter of the light source
wavelength. To extend the measurement range, the multiwavelength-matched LMF(MM-
LMF) method [10] was proposed. The MM-LMF method uses multiple interference images
generated by multiple light sources with different wavelengths. In the MM-LMF method,
a range-extended solution is obtained by a two-stage process: The plain LMF method
is first applied individually to multiple interference images, and then a range-extended
solution is computed from the LMF solutions by matching the individual LMF solutions.

Although the MM-LMF method was shown to provide high measurement accuracy
under moderate noise, peaky artifacts are often observed in the final measurement result
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under noisy environments. Such artifacts typically occur under a high spatial-resolution
measurement because the size of local windows in LMF needs to be made small, which re-
duces the number of samples used for estimation. Consequently, the final measurement re-
sult becomes susceptible to noise and this accuracy degradation causes phase-unwrapping
errors in the second stage of the MM-LMF method.

To cope with the problem, we propose a new method called the multiwavelength-
integrated LMF (MI-LMF) method, which computes an estimate of the surface profile from
multiple interference images in an integrated way. This highly mitigates the problem of
suffering from peaky artifacts caused by phase-unwrapping errors. The effectiveness of the
MI-LMF method is demonstrated through computer simulations and actual experiments.

The rest of this paper is structured as follows. In Section 2, we briefly review the
LMF and the MM-LMF methods. In Section 3, we describe our proposed method and
demonstrate its effectiveness through computer simulations and actual measurement ex-
periments. Finally, we conclude in Section 4.

2 Review of Existing Methods

In this section, we briefly review the measurement principles of the LMF method [9] and
the MM-LMF method [10].

2.1 The Local Model Fitting Method

We tilt the reference mirror in an arbitrary angle. Then an interference pattern at (x, y)
is given as

g(x, y) := a(x, y) + b(x, y) cos

(
4πz(x, y)

λ
+ 2πpx+ 2πqy

)
, (1)

where a(x, y) and b(x, y) are the bias and the amplitude, z(x, y) denotes a relative height
of a target object, λ is the wavelength of a light source, and p and q are spatial carrier
frequencies along the x- and y-axes, respectively. The goal of the LMF method is to
estimate z(x, y) from the observed interference image.

In the LMF method, we consider a local area for each target point (x, y), and assume
that a(x, y), b(x, y), and z(x, y) take constant values a, b, and z in the local area, respec-
tively. Furthermore, because we can estimate p and q in advance using global information
of the fringe image such as the number of fringe patterns, we replace them by their es-
timates p̂ and q̂. Then the intensity value at a point (x, y) in the local area is modeled
as

ḡ(x, y) := a+ b cos

(
4πz

λ
+ 2πp̂x+ 2πq̂y

)
, (2)

where unknown parameters in this local model are only a, b, and z.
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After having some variable transformations, ḡ(x, y) can be rewritten as

ḡ(x, y) = a+ ξφ(x, y) + ζψ(x, y), (3)

where

ξ := b cos

(
4πz

λ

)
, (4)

ζ := b sin

(
4πz

λ

)
, (5)

φ(x, y) := cos(2πp̂x+ 2πq̂y), (6)

ψ(x, y) := − sin(2πp̂x+ 2πq̂y). (7)

Unknown parameters in Eq. (3) are a, ξ, and ζ. To determine these parameters, this local
model is fitted to observed intensity values {gi}ni=1 in the vicinity of the target point by
least-squares:

(â, ξ̂, ζ̂) := argmin
(a,ξ,ζ)

n∑
i=1

(gi − ḡ(xi, yi))
2 . (8)

Because the local model is linear with respect to a, ξ, and ζ, the least-squares solutions
â, ξ̂, and ζ̂ can be analytically obtained as

(â, ξ̂, ζ̂)⊤ = (A⊤A)−1A⊤g, (9)

where ⊤ denotes the transpose, and A is the n × 3 matrix and g is the n-dimensional
vector defined by

A :=

1 φ(x1, y1) ψ(x1, y1)
...

...
...

1 φ(xn, yn) ψ(xn, yn)

 and g :=

g1...
gn

 . (10)

We can estimate candidates of the target height using ξ̂ and ζ̂ as

ẑ(k) :=
λ

4π
arctan

(
ξ̂

ζ̂

)
+
λk

2
, (11)

where k is an unknown integer called the order of interference. k can be determined by a
proper phase-unwrapping algorithm [11], if the height difference between two neighboring
pixels is less than a quarter of the wavelength.

Note that an estimate of the amplitude b̂ can also be obtained using ξ̂ and ζ̂ as

b̂ =

√
ξ̂2 + ζ̂2. (12)
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2.2 The Multiwavelength-Matched LMF Method

The measurement range of the LMF method is limited up to a quarter of the light source
wavelength. To extend the measurement range, the MM-LMF method was proposed [10].

Suppose we observe multiple interference images for light sources with different wave-
lengths. Let us denote the intensity value of the j-th image at point (x, y) by gj(x, y)
(j = 1, . . . ,m). Then gj(x, y) is modeled as

gj(x, y) := aj(x, y) + bj(x, y) cos

(
4πz(x, y)

λj
+ 2πpjx+ 2πqjy

)
, (13)

where aj(x, y) and bj(x, y) are the bias and the amplitude of the fringe pattern, λj is the
wavelength of the light source, pj and qj are spatial carrier frequencies along the x-axis
and y-axis, respectively. z(x, y) is the height of the target object, which is common to
all j = 1, . . . ,m. The goal of the MM-LMF method is to estimate a surface profile in an
extended range from these multiple interference images.

In the MM-LMF method, the plain LMF method is first applied to each interference
image to obtain a set of height candidates. According to Eq. (11), the height candidates
{ẑj(kj)}mj=1 obtained by the LMF method are written as

ẑj(kj) :=
λj
4π

arctan

(
ξ̂j

ζ̂j

)
+
λjkj
2
, (14)

where {kj}mj=1 are the orders of interference.
Then the orders {kj}mj=1 are determined so that the following matching error of

{ẑj(kj)}mj=1 is minimized:

(k̂1, . . . , k̂m) := argmin
(k1,...,km)

(
max(ẑ1(k1), . . . , ẑm(km))−min(ẑ1(k1), . . . , ẑm(km))

)
. (15)

Finally, we obtain a range-extended estimate ẑ as

ẑ :=
1

m

m∑
j=1

ẑj(k̂j). (16)

3 Proposed Method

In this section, we propose a new single-shot algorithm called the multiwavelength-
integrated LMF (MI-LMF) method. We first describe an algorithm of the MI-LMF method
in a range-unextended measurement in Section 3.1. Then we show how this can be ex-
tended to a range-extended measurement in Section 3.2. Finally, we report the results of
actual experiments.
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3.1 The Multiwavelength-Integrated LMF Method

To estimate a surface profile with a high spatial resolution by the LMF method, the local
area needs to be made sufficiently small. However, this causes the number of samples
for model fitting to be reduced, and thus the measurement is susceptible to noise in an
observed interference image.

Let us illustrate this by computer simulations. Fig. 1(a) shows the surface profile of an
artificial object we use here. The surface contains 9 spiky bumps that have 100nm height
with 3× 3 pixel width. Fig. 1(b) shows multiple interference images generated based on
the model (13), and Fig. 1(c) illustrates its one-dimensional plot at y = 50. It consists
of three interference images for three colors (wavelengths): blue (470nm), green (560nm),
and red (600nm). Gaussian noise with mean 0 and standard deviation 10 is added to the
intensity value of each pixel in each image. Note that measurement of such spiky bumps
under a noisy environment is a highly challenging task.

Because the plain LMF method uses a single interference image, we focus on the image
corresponding to blue. Fig. 1(d), (e), and (f) illustrate the results of the LMF method
with vicinity sizes 3×3, 5×5, and 7×7, respectively, and Fig. 1(g), (h), and (i) illustrate
their one-dimensional plots at y = 50. We also included the root mean square error
(RMSE) of estimated heights in Fig. 1(d), (e), and (f). When the vicinity size is 5×5 and
7× 7, the bumps tend to be lost due to low spatial resolutions. On the other hand, when
the vicinity size is 3 × 3, the height of the bumps can be somehow recovered. However,
the measurement result is highly degraded by noise.

If we use multiple interference images, the number of samples can be essentially in-
creased even with the same vicinity size. The key idea of the proposed method is to
perform model fitting to multiple interference images simultaneously.

Let us assume that the height z(x, y) is a constant value z in the local area. We further
assume that the bias aj(x, y) and amplitude bj(x, y) in the local area have been estimated

as âj(x, y) and b̂j(x, y) by some method1. Then the local model of the MI-LMF method
is given by

ḡj(x, y) := âj(x, y) + b̂j(x, y) cos

(
4πz

λj
+ 2πp̂jx+ 2πq̂jy

)
, (17)

where p̂j and q̂j are estimates of pj and qj, respectively. Note that an unknown parameter
in this model is only z. We estimate it by least-squares model fitting using data points
taken from multiple images:

ẑ := argmin
z

J(z), (18)

1In this paper, we use the following method: We first apply the plain LMF method to each interference
image and obtain estimates of the bias aj(x, y) and amplitude bj(x, y). Then we apply a 7×7-pixel median

filter to the entire images of aj(x, y) and bj(x, y) and use the obtained values as âj(x, y) and b̂j(x, y).
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Figure 1: Simulations for spiky bumps.
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Figure 2: Profile of the error criterion J(z) defined by Eq. (19) at point (25, 25) for
the interference image shown in Fig. 1(b). Note that the horizontal axis of this graph
corresponds to the vertical axis (i.e., the height) in Fig. 1 and Fig. 3.

where

J(z) :=
m∑
j=1

1

cj

n∑
i=1

(gi,j − ḡj(xi, yi))
2 (19)

is an error criterion, {gi,j}n,mi=1,j=1 are observed intensity values, and {cj}mj=1 are normal-
ization constants for each wavelength:

cj :=
1

n

n∑
i=1

b̂j(xi, yi)
2. (20)

If the amplitude of fringe patterns differs in multiple wavelengths, an image with a larger
amplitude will dominate the error criterion (19). To prevent this, the above normalization
constants were introduced.

Fig. 2 illustrates the error function J(z) defined by Eq. (19) at point (25, 25) in the
interference image shown in Fig. 1(b). Note that the true height at (25, 25) is zero. As
the graph shows, J(z) actually has many local minima. Here, we use a gradient-descent
method with the initial point set at the solution of the LMF method obtained from the
blue image.

Finally, we report simulation results. Fig. 1(j) illustrates the result of the MI-LMF
method for the interference images shown in Fig. 1(b), and Fig. 1(k) illustrates its one-
dimensional plot at y = 50. The vicinity size is set to 3× 3. We can see that the bumps
are restored clearly with less noise.

3.2 Range-Extension of the MI-LMF Method

The MM-LMF method takes a two-stage process to obtain a range-extended solution
from multiple interference images. In the first stage, the plain LMF method is applied to
each image individually to obtain height candidates. Then, in the second stage, the LMF
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solutions are matched to determine the order of interference. If larger errors are incurred
in individual measurement results, order matching fails and thus peaky artifacts appear
in the final measurement result.

Let us illustrate this by computer simulations. Fig. 3(a) illustrates the surface profile
of an artificial object. The surface has 9 super -spiky bumps, which are similar to the
spiky bumps in Fig. 1(a). However, the height of bumps in Fig. 3(a) is 4000nm, which
is 40 times higher than that in Fig. 1(a). Fig. 3(b) shows multiple interference images
generated in the same way as Section 3.1, and Fig. 3(c) illustrates its one-dimensional
plot at y = 50.

Fig. 3(d), (e), and (f) show the measurement results obtained by the MM-LMF method
with vicinity sizes 3× 3, 5× 5, and 7× 7, respectively, and Fig. 3(h), (i), and (j) illustrate
their one-dimensional plots at y = 50. As shown in these graphs, a small vicinity size
such as 3 × 3 is required to accurately measure the height of the bumps. However, this
causes high susceptibility to noise.

To obtain a range-extended solution by the MI-LMF method, we use the gradient-
descent method with multiple initial points. More precisely, we first apply the plain LMF
method to one of the interference images and obtain height candidates {ẑ1(k1)}k1 in some
range. Then we run the gradient-descent method with {ẑ1(k1)}k1 as initial values and
find a set of local minima {ẑk1}k1 . Finally, from {ẑk1}k1 , we choose the solution ẑ that
minimizes the error criterion (19).

Now, we report simulation results of the above algorithm. Fig. 3(j) illustrates an
estimated surface profile obtained by the extend range algorithm, and Fig. 3(k) illustrates
its one-dimensional plot at y = 50. We can see that spiky artifacts are suppressed and
the profile of bumps is clearly restored.

3.3 Actual Measurement Experiments

Finally, we report the results of actual experiments. We obtained multiple interference
images by the multiwavelength single-shot surface profiler MW-500 developed by Toray
Engineering Co., Ltd2 (see Fig. 4(a)). The target object to measure is a color filter for a
flat-panel display.

Fig. 4(b) shows a simplified diagram of the structure of our surface profiler, which
consists of 3 light sources, a color camera, a beam splitter, and a reference mirror. Three-
wavelength composite light given off from the light sources is separated into two different
directions by the beam splitter: One goes down to the target object and the other goes
to the reference mirror. The reflected lights are recombined at the beam splitter and
then taken by the camera. The reference mirror are tilted so that spatial fringe patterns
are introduced. A notable feature of this measurement system is that, thanks to the
combination of a three-color light source and a color camera, single-shot measurement of
3 interference images is possible.

Fig. 4(c) shows the obtained fringe image, which consists of 3 interference images with
different wavelengths: 471nm (blue), 559nm (green), and 600nm (red). The size of a pixel

2See ‘http://www.scn.tv/user/torayins/’ for details.
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Figure 3: Simulations for super-spiky bumps.
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Figure 4: Actual measurement results.
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in the image is 1.28µm by 1.28µm. We applied the MM-LMF method and the MI-LMF
method to these interference images, and estimated the surface profile. The vicinity size
was set to 13 (vertical) × 3 (horizontal) pixels3.

Fig. 4(d) and Fig. 4(e) show surface profiles estimated by the MM-LMF method and
the MI-LMF method, respectively. We can see that large spiky artifacts are incurred
in the MM-LMF result, whereas such artifacts are substantially reduced in the MI-LMF
result.

4 Conclusion

The MM-LMF method has useful characteristics such as fast measurement speed, ro-
bustness against vibration, and a measurement range over a quarter of the light source
wavelength. However, the MM-LMF method tends to suffer from phase unwrapping errors
particularly when the spatial resolution of the LMF method is set to be high. In this pa-
per, we proposed a new multiwavelength single-shot surface profiling algorithm called the
MI-LMF method, which directly estimates the surface profile from multiple interference
images in an integrated way. The usefulness of the proposed method was demonstrated
by computer simulations and actual measurement experiments.
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based on phase-shifting electronic moiré patterns,” Applied Optics 36, 8403–8412
(1997).

3In this experiment, we were interested in the sharpness of the steps along the x-axis. A practical
heuristic for accurate measurement is to introduce a spatial carrier orthogonal to the direction of interest,
i.e., along the y-axis. Following this heuristic, we decided to use a rectangular-shaped local area along
the y-axis.



Multiwavelength-Integrated Local Model Fitting Method 13

[6] Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Applied Optics
43(13), 2695–2702 (2004).

[7] D. C. Williams, N. S. Nassar, J. E. Banyard, and M. S. Virdee, “Digital phase-step
interferometry: A simplified approach,” Optics & Laser Technology 23, 147–150
(1991).

[8] N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak, and J. C.
Wyant, “Dynamic interferometry,” in “Novel Optical Systems Design and Optimiza-
tion VIII, Proceedings of SPIE,” , vol. 5875, J. M. Sasián, R. J. Koshel, and R. C.
Juergens, eds. (2005), vol. 5875, pp. 1–10.

[9] M. Sugiyama, H. Ogawa, K. Kitagawa, and K. Suzuki, “Single-shot surface profiling
by local model fitting,” Applied Optics 45, 7999–8005 (2006).

[10] K. Kitagawa, “Fast surface profiling by multi-wavelength single-shot interferometry,”
International Journal of Optomechatronics 4, 136–156 (2010).

[11] M. Takeda and T. Abe, “Phase unwrapping by a maximum cross-amplitude spanning
tree algorithm: A comparative study,” Optical Engineering 35, 2345–2351 (1996).


