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Abstract

Canonical correlation analysis (CCA) is a classical dimensionality reduction tech-
nique for two sets of variables that iteratively finds projection directions with max-
imum correlation. Although CCA is still in vital use in many practical application
areas, recent real-world data often contain more complicated non-linear correlations
that can not be properly captured by classical CCA. In this paper, we thus pro-
pose an extension of CCA that can effectively capture such complicated non-linear
correlations through statistical dependency maximization. The proposed method,
which we call least-squares canonical dependency analysis (LSCDA), is based on
a squared-loss variant of mutual information, and it has various useful properties
besides its ability to capture higher-order correlations, for example, it can simulta-
neously find multiple projection directions (i.e., subspaces), it does not involve den-
sity estimation, and it is equipped with a model selection strategy. We demonstrate
the usefulness of LSCDA through various experiments on artificial and real-world
datasets.
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1 Introduction

Canonical correlation analysis (CCA) (Hotelling, 1936) is a classical dimensionality re-
duction technique for two data sources, which finds projection directions with maximum
correlation. CCA has been successfully applied in various fields such as neuroscience
(Becker, 1996; Becker & Hinton, 1992; Favorov & Ryder, 2004), econometrics (Bossaerts,
1988; Vinod, 1968), psychometrics (McKeon, 1967), meteorology (Storch & Zwiers, 2002),
bioinformatics (Gumus et al., 2012; Naylor et al., 2010; Vert & Kanehisa, 2003; Yamanishi
et al., 2003), and information retrieval (Hardoon et al., 2004; Li & Shawe-Taylor, 2006;
Vinokourov et al., 2003).

Although CCA has been originally developed as an unsupervised learning method, it is
also closely related to supervised tasks such as classification. Indeed, in some special cases,
CCA is equivalent to Fisher’s Linear Discriminant Analysis (LDA) (Bartlett, 1938). Such
CCA-based classification methods have been widely studied (Farquhar et al., 2005; Kursun
et al., 2011; Rai & Daume, 2009; Sun et al., 2011), which incorporate class information in
various ways to learn projections that are informative for discrimination. The usefulness of
these approaches have been demonstrated in various modern pattern recognition problems
such as multi-label classification (Rai & Daume, 2009; Sun et al., 2011) that utilizes
correlations among labels for improving classification performance.

However, since classical CCA only captures correlations under linear projections, it
is often insufficient to analyze complex real-world data that contain higher-order corre-
lations. To be more flexible, non-linear CCA methods have been developed. A simple
approach uses neural networks for handling non-linear projection (Becker, 1996; Becker &
Hinton, 1992; Favorov & Ryder, 2004; Fyfe & Lai, 2000), but neural networks are prone
to local optima. Another approach first non-linearly transforms data samples into feature
spaces and then apply linear CCA (Akaho, 2001; Gestel et al., 2001; Melzer et al., 2001).
Given that the non-linear transformation is fixed, this two-step approach allows analytic
computation of the global optimal solution via a generalized eigenvalue problem in the
same way as linear CCA. Since reproducing kernel Hilbert spaces (RKHSs) (Aronszajn,
1950) are used as feature spaces, this approach is called kernel CCA (KCCA). Alter-
nating regression is another possible way of flexibly finding dependency, which is closely
related to CCA (Branco et al., 2005; Breiman & Friedman, 1985; Kursun & Favorov,
2010; Wold, 1966). A typical approach is Alternating Conditional Expectation (ACE)
(Breiman & Friedman, 1985), which estimates transformations for two variables alter-
nately by minimizing the squared error between transformed variables. These non-linear
variants of CCA are highly flexible, but obtained results are often difficult to interpret
due to non-linearity.

The above non-linear CCA approaches can be regarded as capturing correlations along
non-linear projection directions. Another extension of CCA, which we call canonical
dependency analysis (CDA), captures higher-order correlations under linear projections.
It was shown in Bach & Jordan (2002) that KCCA with a universal RKHS (Steinwart,
2001) such as the Gaussian RKHS allows efficient detection of higher-order correlations.
However, the choice of universal RKHSs affects the practical performance, and there
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is no systematic method to choose a suitable RKHS (Fukumizu et al., 2009). Another
approach to higher-order CCA called informational CCA (ICCA) (Yin, 2004) uses mutual
information (MI) (Cover & Thomas, 2006; Shannon, 1948) as a dependency measure,
where MI is estimated via kernel density estimation (KDE) (Silverman, 1986). Since
KDE is equipped with systematic model selection strategies (Härdle et al., 2004; Scott,
1992; Silverman, 1986), ICCA is practically more preferable than the KCCA-based CDA
method.

In the ICCA method, one-dimensional projection directions are found in an iterative
manner. However, it would be more powerful if multi-dimensional projection directions
(i.e., subspaces) were directly found in CDA. In the experiments in Section 4, we show
that directly estimating multi-dimensional projections compares favorably with iteratively
estimating one-dimensional projection directions, because the iterative approach often
gets trapped into poor local optima. However, ICCA may not be reliable in such a
multi-dimensional scenario since it involves the ratio of estimated densities which tends
to produce large estimation error.

The purpose of this paper is to give a novel CDA method that is equipped with
model selection and that is reliable even when multi-dimensional projection directions
are searched. Our method, which we call least-squares CDA (LSCDA), uses a squared-
loss MI (SMI) as a dependency measure. As ordinary MI, SMI also includes the ratio
of probability densities and thus its accurate estimation is challenging. In LSCDA, we
use an analytic SMI estimator called least-squares MI (LSMI) (Suzuki et al., 2009) that
directly estimates the density ratio without going through density estimation (Kanamori
et al., 2009). Thus, LSMI is more reliable than an estimator based on KDE (see Suzuki
& Sugiyama (2010) for theoretical convergence analysis of the LSMI estimator). Possible
benefits of our approach can be summarized as follows:

• It can capture higher-order correlations under linear projection.

• It can accurately estimate multi-dimensional projection matrices.

• It does not involve density estimation.

• It is equipped with a model selection strategy.

As examples of real-world applications, we apply our approach to multi-label classi-
fication problems in image annotation and audio tagging. In multi-label classification,
extracting features that have strong dependency on labels and that incorporate correla-
tions among labels is desirable. Through experiments, we demonstrate that the proposed
method improves prediction performance of a subsequent classifier in practical multi-label
classification scenarios.

The remainder of this paper is structured as follows: In Section 2, we formulate our
LSCDA algorithm using SMI as a dependency measure. Section 3 describes relationships
with several existing approaches. In Section 4, we present our experimental results ob-
tained by a variety of datasets including artificial and real-world datasets, demonstrating
advantages of the proposed approach over other methods. Finally, Section 5 concludes
the paper.
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2 Canonical Dependency Analysis via SMI Estima-

tion

In this section, we describe our novel algorithm for finding statistical dependency between
a pair of variables.

2.1 Problem Formulation

Let X ⊂ Rm be the domain of x and Y ⊂ Rn be the domain of y. Suppose we are given
ℓ independent and identically distributed (i.i.d.) paired samples,

S = {(xi,yi) | xi ∈ X ,yi ∈ Y , i = 1, . . . , ℓ},

drawn from a joint distribution with density pxy(x,y).
In this paper, we would like to find the low-dimensional subspaces of x and y in which

projections are maximally dependent on each other. Here, we focus on linear dimension
reduction:

u = Ux and v = V y,

where U ∈ Rp×m and V ∈ Rq×n are transformation matrices with p and q being the
projection dimensions for u and v, respectively. We assume that U and V belong to the
Stiefel manifolds Sm

p (R) and Sn
q (R), respectively:

Sm
p (R) = {U ∈ Rp×m | UU⊤ = Ip},
Sn
q (R) = {V ∈ Rq×n | V V ⊤ = Iq},

where Ip is the p-dimensional identity matrix and Iq is the q-dimensional identity matrix.
Hereafter, we assume that the projection dimensions p and q are known; practically, p and
q may be chosen by cross-validation. We write ui = Uxi and vi = V yi for i = 1, . . . , ℓ.

Our goal is to find the transformation matrices U and V such that the dependency
between u and v is maximized. To this end, we employ squared-loss mutual information
(SMI) as our dependency measure:

SMI :=
1

2

∫∫ (
pvu(u,v)

pu(u)pv(v)
− 1

)2

pu(u)pv(v)dudv,

where puv(u,v) is the joint density of u and v, and pu(u) and pv(v) are the marginal
densities of u and v, respectively. SMI is the Pearson divergence (Pearson, 1900) from
puv(u,v) to pu(u)pv(v), while the ordinary MI is the Kullback-Leibler divergence (Kull-
back & Leibler, 1951) from puv(u,v) to pu(u)pv(v):

MI :=

∫∫
puv(u,v) log

puv(u,v)

pu(u)pv(v)
dudv.
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Both of the Pearson divergence and the Kullback-Leibler divergence belong to the class of
f -divergences (Ali & Silvey, 1966; Csiszár, 1967) and they share similar properties. For
example, SMI and MI are nonnegative and take 0 if and only if puv(u,v) = pu(u)pv(v).
Therefore, SMI allows us to evaluate the statistical independence between u and v.

Now we want to find matrices U and V that maximize SMI. However, we can not di-
rectly maximize SMI since densities pvu(u,v), pu(u), and pv(v) are usually unknown. Be-
low, we utilize an SMI estimator called least-squares mutual information (LSMI) (Suzuki
et al., 2009), which involves direct density-ratio estimation (Kanamori et al., 2009) in-
stead of density estimation. LSMI was shown to possesses superior convergence properties
(Suzuki & Sugiyama, 2010).

2.2 SMI Approximation via Direct Density-ratio Estimation

Here, we review LSMI (Suzuki et al., 2009). A key idea of LSMI is to directly estimate
the density ratio,

g∗(u,v) :=
puv(u,v)

pu(u)pv(v)
,

without estimating each density. We model the density ratio function g∗(u,v) using the
following linear model:

g(u,v) := α⊤φ(u,v),

where ⊤ denotes the transpose of a matrix or a vector,

α := (α1, . . . , αb)
⊤

are parameters to be learned from samples, and

φ(u,v) := (φ1(u,v), . . . , φb(u,v))
⊤

is a basis function such that φ(u,v) ≥ 0b for all u and v. 0b denotes the b-dimensional
vector with all zeros, and the inequality for a vector is applied in the element-wise manner.

Note that the number of basis functions b is not necessarily a constant; it can depend
on the number of samples ℓ. Similarly, the basis function φ(u,v) could be dependent on
the samples S. This means that the kernel models (i.e., b = ℓ and φi(u,v) is a kernel
function “centered” at {(ui,vi)}ℓi=1) are also included in the above formulation. In Section
2.3, we explain how the basis functions φ(u,v) are practically chosen.

We estimate the parameter α in g(u,v) so that the following squared error J0 is
minimized:

J0(α) :=
1

2

∫∫
(g(u,v)− g∗(u,v))2pu(u)pv(v)dudv

=
1

2

∫∫
g(u,v)2pu(u)pv(v)dudv −

∫∫
g(u,v)puv(u,v)dudv + C, (1)
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where

C :=
1

2

∫∫
g∗(u,v)2pu(u)pv(v)dudv

is a constant and therefore can be safely ignored by assuming C <∞. Let us denote the
first two terms of (1) by J :

J(α) := J0(α)− C =
1

2
α⊤Hα− h⊤α, (2)

where

H :=

∫∫
φ(u,v)φ(u,v)⊤pu(u)pv(v)dudv,

h :=

∫∫
φ(u,v)puv(u,v)dudv.

Approximating the expectations inH and h by empirical averages, we obtain the following
optimization problem:

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ⊤α+

λ

2
α⊤α

]
,

where we included λ
2
α⊤α (λ > 0) for regularization purposes, and

Ĥ :=
1

ℓ2

ℓ∑
i,i′=1

φ(ui,vi′)φ(ui,vi′)
⊤,

ĥ :=
1

ℓ

ℓ∑
i=1

φ(ui,vi).

Taking the derivative of the above objective function and set it as zero, we obtain:

α̂ = (Ĥ + λIb)
−1ĥ,

where Ib is the b-dimensional identity matrix. Thus, the solution can be computed an-
alytically by solving a system of linear equations. Then an analytical approximation of
SMI called least-squares mutual information (LSMI) is given as

ŜMI := ĥ⊤α̂− 1

2
α̂⊤Ĥα̂− 1

2
,

which is obtained based on the following expression of SMI (Suzuki & Sugiyama, 2010):

SMI =

∫∫
g∗(u,v)puv(u,v)dudv −

1

2

∫∫
g∗(u,v)2pu(u)pv(v)dudv −

1

2
.

Using J(α), SMI can be written as follows:

SMI =− infαJ(α)− 1

2
Here, we assume that the true density ratio g∗ is contained in the model, i.e., g∗ ∈
{g(u,v) | α ∈ Rb}. Therefore, computing SMI is reduced to finding minimizer of J(α)
(see Suzuki & Sugiyama, 2010, for detail).
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2.3 Model Selection and Basis Function Design

The performance of LSMI depends on the choice of basis functions and the regularization
parameter. We can choose them based on cross-validation (CV) with respect to the
error criterion (2). For example, in the case of K-fold CV, we divide the samples S =
{(xi,yi)}ℓi=1 into K disjoint subsets {Sk}Kk=1 of (approximately) the same size. Then, an
estimator α̂k is obtained using {Sj}j ̸=k (i.e., without Sk) and the approximation error for
the hold-out samples Sk is obtained as

Ĵ (K−CV) :=
1

K

K∑
k=1

(
1

2
α̂⊤

k Ĥkα̂k − ĥ⊤
k α̂k

)
, (3)

where, for the set Sk = {(xsi , ysi)}
ℓk
i=1,

Ĥk :=
1

ℓ2k

ℓk∑
i,i′=1

φ(usi ,vsi′
)φ(usi ,vsi′

)⊤,

ĥk :=
1

ℓk

ℓk∑
i=1

φ(usi ,vsi).

We compute Ĵ (K−CV) for each model candidate, and then choose the best one that mini-
mizes Ĵ (K−CV).

To exploit the above CV procedure, we have to prepare candidates of basis functions.
Here, we use the following product kernel as basis functions:

φk(u,v) = ϕu
k(u)ϕ

v
k(v),

since the number of kernel evaluation when computing Ĥk,k′ is reduced from ℓ2 to 2ℓ:

Ĥk,k′ =
1

ℓ2

(
ℓ∑

i=1

ϕu
k(ui)ϕ

u
k′(ui)

)(
ℓ∑

i=1

ϕv
k(vi)ϕ

v
k′(vi)

)
.

We use the Gaussian kernel as the “base” kernels:

ϕu
k(u) := exp

(
−∥u− uk∥22

2σ2

)
,

ϕv
k(v) := exp

(
−∥v − vk∥22

2σ2

)
,

where {(uk,vk)}bk=1 are Gaussian centers randomly chosen from {(ui,vi)}ℓi=1 and ∥ · ∥2
denotes the ℓ2-norm.

In the experiments, we fix the number of basis functions at

b = min(200, ℓ), (4)

and choose the Gaussian width σ and the regularization parameter λ by CV with grid
search.
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1: Initialize U and V .
2: Optimize Gaussian width σ and regularization parameter λ by CV (explained in

Section 2.3).

3: Update U and V such that ŜMI is maximized.
4: Repeat 2. and 3. until U and V converge.

Figure 1: The LSCDA algorithm.

2.4 Least-squares Canonical Dependency Analysis (LSCDA)

Given the SMI estimator ŜMI, we maximize it with respect to U and V :

argmax
U∈Rp×m,V ∈Rq×n

ŜMI(U ,V )

s.t. UU⊤ = Ip and V V ⊤ = Iq.
(5)

We call this approach to finding U and V least-squares canonical dependency analysis
(LSCDA). The entire algorithm of LSCDA is summarized in Figure 1. We can employ
various optimization techniques to obtain a solution of the above optimization problem.
Below, we show several possibilities.

2.4.1 Plain Gradient Algorithm

A plain gradient ascent technique updates U and V by the following forms:

U ← U + t
∂ŜMI

∂U
and V ← V + t

∂ŜMI

∂V
,

where t > 0 is a step size chosen by a line search method such as Armijo’s rule (Nocedal
& Wright, 1999). The gradients are given by

∂ŜMI

∂Uk,k′
=

∂ĥ

∂Uk,k′
(2α̂− β̂)− α̂⊤ ∂Ĥ

∂Uk,k′
(
3

2
α̂− β̂),

∂ŜMI

∂Vk,k′
=

∂ĥ

∂Vk,k′
(2α̂− β̂)− α̂⊤ ∂Ĥ

∂Vk,k′
(
3

2
α̂− β̂),

where β̂ := (Ĥ+λIb)
−1Ĥα̂. A naive gradient ascent approach does not take into account

the orthonormality constraints UU⊤ = Ip and V V ⊤ = Iq. Thus, we orthonormalize U
and V after each update, e.g., using the Gram-Schmidt process (Golub & Van Loan,
1996). However, this may be rather time-consuming.

2.4.2 Sequential Quadratic Programming

We can use a sequential quadratic programming (SQP) (Nocedal & Wright, 1999) tech-
nique to efficiently handle the orthonormality constraints. SQP is one of the standard
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optimization techniques for a non-linear objective function and nonlinear constraints. In
the MI-based CCA method (Yin, 2004), SQP is used to optimize MI under similar con-
straints to (5). This approach is also applicable to our optimization problem (5). The
SQP method iteratively solves a quadratic programming subproblem which locally ap-
proximates the true optimization problem.

Let

z =

[
vec(U⊤)
vec(V ⊤)

]
,

where the “vec” operator vectorizes a matrix by concatenating all of its columns. At the
k-th iteration, we “model” problem (5) as the following quadratic program:

(U ′(k+1),V ′(k+1)) := argmax
U∈Rp×m,V ∈Rq×n

z⊤W (k)z +
∂ŜMI

∂z

∣∣∣∣∣
⊤

z=z(k)

z

s.t. U (k)U⊤ = Ip and V (k)V ⊤ = Iq,

where z(k), U (k), and V (k) are the estimates obtained at the k-th iteration and W (k) is
a (usually negative semi-definite) approximation of the Hessian matrix of the Lagrangian
function of (5). The solution of this problem provides search directions for the (k+ 1)-th
iteration:

U (k+1) ← U (k) + t
(
U ′(k+1) −U (k)

)
,

V (k+1) ← V (k) + t
(
V ′(k+1) − V (k)

)
,

where t is a step size. t is chosen so that the following merit function is maximized:

ŜMI− µ
(
∥UU⊤ − Ip∥1,1 + ∥V V ⊤ − Iq∥1,1

)
,

where ∥ · ∥1,1 denotes the sum of absolute values of all elements of a matrix and µ > 0 is
the penalty parameter which penalizes deviations from the feasible region of the original
problem (5). We can easily determine µ so that the increase of the merit function is
guaranteed (Nocedal & Wright, 1999). An implementation of SQP is available, e.g.,
“fmincon” in the MATLABR⃝ optimization toolbox. However, since this is a general-
purpose optimizer, it is sometimes inefficient in solving a problem with specific structure.

2.4.3 Natural Gradient Algorithm

Another approach to efficiently handling the orthonormality constraints in (5) is a natural
gradient algorithm (Amari, 1998). Due to the orthonormality constraints UU⊤ = Ip and
V V ⊤ = Iq, the matrices U and V should belong to the Stiefel manifolds Sm

p (R) and
Sn
q (R), respectively. The ordinary gradient gives the steepest direction in the Euclidean

space, whereas the natural gradient gives the steepest direction on a manifold. The natural
gradient is the projection of the ordinary gradient to the tangent space of its manifold.
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If the tangent space is equipped with the canonical metric ⟨G1,G2⟩ = 1
2
tr(G⊤

1 G2), the
natural gradients for U and V are given by

∇U ŜMI =
1

2

(
∂ŜMI

∂U
−U

∂ŜMI

∂U

⊤

U

)
,

∇V ŜMI =
1

2

(
∂ŜMI

∂V
− V

∂ŜMI

∂V

⊤

V

)
.

Then the geodesics from U and V to the directions of the natural gradients ∇U ŜMI and
∇V ŜMI over Sm

p (R) and Sn
q (R) can be represented as

Ut := U exp

(
t(U⊤∂ŜMI

∂U
− ∂ŜMI

∂U

⊤

U )

)
,

Vt := V exp

(
t(V ⊤∂ŜMI

∂V
− ∂ŜMI

∂V

⊤

V )

)
,

where “exp” for a matrix denotes the matrix exponential and t > 0 is a step size which
can be chosen by a line search method such as Armijo’s rule. See (Nishimori & Akaho,
2005) for more details of geometric structure of the Stiefel manifold.

In the experiments, we use the natural gradient method for optimization.
Our MATLABR⃝ is available from http://www.bic.kyoto-u.ac.jp/pathway/krsym/

software/LSCDA/index.html.

3 Relation to Existing Methods

In this section, we review existing methods for analyzing paired samples {(xi,yi)}ℓi=1, and
discuss the relationship to the proposed method.

3.1 Canonical Correlation Analysis (CCA)

CCA iteratively finds projection directions g and h so that the correlation between g⊤x
and h⊤y is maximized (Hotelling, 1936).

More formally, given the first k solutions g1, . . . , gk and h1, . . . ,hk, the (k + 1)-st
solution gk+1,hk+1 of CCA is given as

argmax
g∈Rm,h∈Rn

g⊤Σ̂XYh√
g⊤Σ̂XXg

√
h⊤Σ̂YYh

,

s.t. g⊤
j Σ̂XXg = 0 and h⊤

j Σ̂YYh = 0, j = 1, . . . , k.

Σ̂XX and Σ̂YY are the sample covariance matrices of x and y, respectively, and Σ̂XY is
the sample cross-covariance matrix of x and y.
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The CCA solution g1, . . . , gd and h1, . . . ,hd for d ≤ min(m,n) is given analytically by
the generalized eigenvectors associated with the d largest generalized eigenvalues of the
following generalized eigenvalue problem:[

O Σ̂XY

Σ̂⊤
XY O

][
g
h

]
= η

[
Σ̂XX O

O Σ̂YY

] [
g
h

]
,

where O is the zero matrix. Finally, CCA projection matrices are constructed as

U = (g1 | · · · | gd)
⊤ and V = (h1 | · · · | hd)

⊤ . (6)

Although the classical CCA has been widely used in a variety of fields, it can only
capture correlations under linear projections. Thus, it is often insufficient to analyze
complex real-world data. If pxy(x,y) is jointly normal, MI can be computed as a function
of canonical correlations (Bach & Jordan, 2002; Kay, 1992; Kullback, 1959). Although this
implies that CCA is closely related to MI under the Gaussian assumption, such relation
to MI does not hold in general since CCA only evaluates the second-order correlation.
On the other hand, our proposed approach can capture statistical dependency for any
distribution, which is a strong advantage in real-world complex data analysis.

3.2 Kernel Canonical Correlation Analysis (KCCA)

KCCA (Akaho, 2001; Gestel et al., 2001; Melzer et al., 2001) could be a more flexible
alternative to the classical CCA.

The basic idea of KCCA is to first non-linearly transform data samples into feature
spaces by reproducing kernels (Aronszajn, 1950), and then apply ordinary CCA in the
feature spaces. This corresponds to considering non-linear projections in the original
spaces. Thanks to the reproducing property of the kernel functions, the global optimal
solution of KCCA can be computed efficiently even when the dimensionality of the feature
spaces is very high. This is a significant advantage over general non-linear approaches
such as a method based on neural networks which suffers from local optimality (Fyfe &
Lai, 2000). However, the result of KCCA is often difficult to interpret because projections
are non-linear in the original space.

Bach & Jordan (2002) proposed a method that learns linear projection matrices using
a KCCA-based dependence measure in the context of independent component analysis.
They also proposed another kernel-based dependency measure called the kernel generalized
variance (KGV) that is closely related to mutual information. Gretton et al. (2005) also
proposed another kernel-based dependency measure called the Hilbert-Schmidt indepen-
dence criterion (HSIC). These dependency measures can be directly applied to the CDA
problem by maximizing each dependency measure with respect to the linear projection
matrices (in the experiments shown later, we call these methods KCCA-CDA, KGV-CDA,
and HSIC-CDA, respectively). Since these methods learn linear projection matrices in
the original space, we can interpret the results easily. However, a critical limitation of
these kernel-based approaches is that it contains free parameters to be tuned such as the
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regularization parameter and the kernel parameter. Although practical heuristics were
suggested for tuning parameter choice (Bach & Jordan, 2002; Gretton et al., 2005), there
seems no theoretical justification and thus it is not clear whether such heuristics are al-
ways reliable. In a related context, cross-validation was used to choose the regularization
parameter so that the first canonical correlation is maximized (Leurgans et al., 1993).
However, this approach was shown not to work well for subsequent projection vectors.

On the other hand, LSCDA is equipped with cross-validation (3) and thus all tun-
ing parameters can be objectively determined in a data-dependent manner, which is a
significant advantage.

3.3 Informational Canonical Correlation Analysis (ICCA)

ICCA (Yin, 2004) shares the same goal as the proposed LSCDA, i.e., it obtains linear
projections that maximize the dependency between two projected variables. However, in
ICCA, the dependency is measured by MI,

MI :=

∫∫
puv(u,v) log

puv(u,v)

pu(u)pv(v)
dudv,

which is estimated using kernel density estimation (KDE).
ICCA iteratively finds projection directions g and h so that the KDE-based MI es-

timate between g⊤x and h⊤y is maximized. Let p̂uv(u,v), p̂u(u), and p̂v(v) be density
estimators obtained by KDE. Then, given the first k solutions g1, . . . , gk and h1, . . . ,hk,
the (k + 1)-st solution gk+1,hk+1 of ICCA is given as

argmax
g∈Rm,h∈Rn

1

ℓ

ℓ∑
i=1

log
p̂uv(g

⊤xi,h
⊤yi)

p̂u(g⊤xi)p̂v(h⊤yi)

s.t. g⊤Σ̂XXg = h⊤Σ̂YYh = 1,

g⊤
j Σ̂XXg = h⊤

j Σ̂YYh = 0, j = 1, . . . , k.

Although bandwidths of KDE were chosen based on Silverman’s rule (Scott, 1992; Sil-
verman, 1986) in the original ICCA paper (Yin, 2004), we found in our preliminary
experiments that likelihood cross-validation (LCV) (Härdle et al., 2004) tends to perform
better. For this reason, we decided to use LCV in our experiments.

ICCA iteratively estimates pairs of projection vectors {(gi,hi)}di=1 for d ≤ min(n,m),
and then projection matrices are constructed by (6). This means that only one or two-
dimensional density estimation is involved in ICCA, and thus KDE-based MI estimation
would be reasonable. However, this approach corresponds to estimating rows of U and
V one by one in a greedy manner. Although greedy optimization was shown to give
the global optimal solution in the case of classical CCA (Izenman, 2008), it usually leads
to a local optimal solution in ICCA. Indeed, as we will show experimentally, directly
estimating multi-dimensional projections (i.e., global optimization) is potentially more
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powerful. We can easily extend ICCA so that entire projection matrices U and V are
estimated at once:

argmax
U∈Rp×m,V ∈Rq×n

1

ℓ

ℓ∑
i=1

log
p̂uv(U

⊤xi,V
⊤yi)

p̂u(U⊤xi)p̂v(V ⊤yi)
.

However, this formulation involves higher-dimensional density estimation (e.g., puv is now
defined on the (p + q)-dimensional space), which tends to be inaccurate. Furthermore,
taking the ratio of estimated densities tends to magnify the estimation error. For this
reason, multi-dimensional ICCA may not be reliable in practice.

On the other hand, our proposed approach mitigates this difficulty by directly esti-
mating the density ratio without going through density estimation, which tends to give
more reliable solutions.

4 Experiments

In this section, we experimentally evaluate the performance of the proposed LSCDA and
existing methods. In the proposed method, we used the Gaussian kernel and fixed the
number of basis functions by (4). The Gaussian width σ and regularization parameter
λ were chosen based on 5-fold CV with grid search. We employed the natural gradient
method as an optimization strategy for LSCDA. We restarted the gradient procedure 10
times with random initial points and chose the one having the minimum CV score (3).

4.1 Artificial Datasets

Here, we compared the performance of the LSCDA algorithm with classical CCA
(Hotelling, 1936), KCCA-CDA (Bach & Jordan, 2002), KGV-CDA (Bach & Jordan, 2002),
HSIC-CDA (Gretton et al., 2005), and ICCA (Yin, 2004) using artificial datasets. For
classical CCA, we used the “canoncorr” function in the MATLAB R⃝ Statistics Toolbox. In
ICCA, we estimated densities in MI using KDE following the original paper (Yin, 2004).
We optimized the bandwidth parameters of KDE based on likelihood cross-validation
(LCV), as mentioned in Section 3.3. In KCCA-CDA and KGV-CDA, the Gaussian width
and the regularization parameter were set by the heuristics suggested in the original pa-
per (Bach & Jordan, 2002). In HSIC-CDA, the Gaussian width was set to the median of
sample distances, following the suggestions of the original paper (Gretton et al., 2005).
We evaluated the performance of each method by

1

2

{
1√
2p
∥Û⊤Û −U ∗⊤U ∗∥Fro +

1√
2q
∥V̂ ⊤V̂ − V ∗⊤V ∗∥Fro

}
,

where ∥ · ∥Fro denotes the Frobenius norm, Û and V̂ are estimated projection matrices,
and U ∗ and V ∗ are the optimal projection matrices. Note that the above measure takes
its value in [0, 1], and smaller is better.
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Figure 2: Artificial datasets. We generated four types of artificial datasets which have
linear and/or nonlinear dependencies. The definitions of x and y are in Section 4.1. In
Data 3, although we have x ∈ R5 and y ∈ R5, we only plot the relationships between
y1 and (x1, x2), and y2 and (x1, x2), respectively. For Data 4, we plot the relationships
between y1 and (x1, x2), and y2 and (x3, x4), respectively.
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Let U(D) denote the uniform distribution on D, and let N(µ, σ2) denote the normal
distribution with mean µ and variance σ2. We used the following 4 datasets (see Figure 2)
for performance comparison, where the reduced dimensions of x and y were set to be the
same number d ≤ min(m,n).

(a) Data 1: x = (x1, x2)
⊤, y = (y1, y2)

⊤, and d = 1, where

y1 =x1 + ε,

x1, x2 ∼ U([−1, 1]2), y2 ∼ U([−1, 1]), ε ∼ N(0, 0.1), and ℓ = 100.

(b) Data 2: x = (x1, x2)
⊤, y = (y1, y2)

⊤, and d = 1, where

y1 =x2
1 + ε,

x1, x2 ∼ N(0, 0.25), y2 ∼ N(0, 0.25), ε ∼ N(0, 0.1), and ℓ = 200.

(c) Data 3: x = (x1, . . . , x5)
⊤, y = (y1, . . . , y5)

⊤, and d = 2, where

y1 = x1 + x2 + ε,

y2 = x2
1 + ε,

x1, . . . , x5 ∼ N(0, 0.25), y3, . . . , y5 ∼ N(0, 0.25), ε ∼ N(0, 0.1), and ℓ = 200.

(d) Data 4: x = (x1, . . . , x8)
⊤, y = (y1, . . . , y8)

⊤, and d = 5, where

y1 = x2
1 + x2

2 + ε,

y2 = x2
3 + x4 + ε,

y3 = x2
1 + x2

3 + ε,

y4 = x2
4 + x2 + ε,

y5 = x2
5 + x3 + ε,

x1, . . . , x8 ∼ N(0, 0.25), y6, . . . , y8 ∼ N(0, 0.25), ε ∼ N(0, 0.1), and ℓ = 200.

The performance of each method is summarized in Table 1, which shows the mean
and standard deviation of the Frobenius-norm error over 10 trials. For both of the ICCA
and LSCDA methods, we evaluated the following two types of optimization strategies:

• Directly estimate d-dimensional projection matrices using the natural gradient
method. In the table, ICCA and LSCDA indicate ICCA and LSCDA with this
approach.

• Iteratively estimate pairs of projection vectors {(gi,hi)}di=1 using the SQP method.
ICCA’ and LSCDA’ in the table indicate the methods where projection matrices are
optimized by this greedy approach. The original paper of ICCA (Yin, 2004) takes
this approach.
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Table 1: Mean and standard deviation of the Frobenius norm error for artificial datasets.
The best method in terms of the mean error and comparable ones according to the t-test
at the significance level 1 % are specified by boldface. In the table, ICCA’ and LSCDA’
indicate that projection matrices are optimized by one-dimensional greedy approach, while
ICCA and LSCDA estimate d-dimensional projection matrices directly. Since LSCDA and
LSCDA’ (and also ICCA and ICCA’) are equivalent in the case of d = 1, for datasets (a)
and (b), we only reported results of LSCDA (and ICCA).

Dataset CCA KCCA-CDA KGV-CDA HSIC-CDA ICCA’ ICCA LSCDA’ LSCDA

(a) .05(.03) .06(.03) .05(.03) .05(.03) - .07(.04) - .05(.03)
(b) .54(.28) .06(.05) .06(.04) .08(.06) - .08(.04) - .07(.04)
(c) .56(.13) .59(.16) .20(.06) .27(.17) .56(.15) .42(.19) .46(.17) .16(.06)
(d) .51(.05) .49(.08) .30(.06) .22(.09) .41(.05) .53(.04) .40(.06) .23(.07)

Note that the above two approaches are equivalent for the datasets (a) and (b) where
d = 1.

In Table 1, we can see that the proposed LSCDA has better or comparable performance
to other methods. Although KGV-CDA and HSIC-CDA also tend to work reasonably well,
LSCDA outperforms them for some datasets. These differences of performance seem to
come from inappropriate choices of tuning parameters in KGV-CDA and HSIC-CDA.

For the dataset (a) having simple linear dependency, most of the methods have com-
parable performance. For the dataset (b) having dependency but no correlation, the
classical CCA did not work well, whereas other methods more successfully captured the
dependency of variables.

For the dataset (c), LSCDA performed well compared with LSCDA’. The reason why
LSCDA’ failed to estimate projection matrices for this dataset may be explained as follows.
In the first iteration, g1 ∝ (1, 1, 0, 0, 0)⊤ and h1 ∝ (1, 0, 0, 0, 0)⊤ are typically obtained.
Let gij be the jth component of gi and hij be the jth component of hi. Then, in the second
iteration, g23, . . . , g25 must be 0 because x3, x4, and x5 are irrelevant to y. Therefore,
due to the orthogonality g⊤

1 g2 = 0, g2 ∝ (1,−1, 0, 0, 0)⊤ should be obtained. Similarly,
since h23, . . . , h25 must be 0, h2 ∝ (0, 1, 0, 0, 0)⊤ should be obtained. However, since there
seems no strong dependency between g⊤

2 x = (x1 − x2)/
√
2 and h⊤

2 y = y2 (see Figure 3),
it is difficult to find this solution by the iterative approach.

The dataset (d) contains rather complicated dependencies of variables in higher-
dimensional subspaces. Due to the same reason as the dataset (c), the one-dimensional
greedy strategy did not work well for the dataset (d). Furthermore, since ICCA in-
volved higher-dimensional density estimation (10- and 5-dimensional density estimations
are needed for the dataset (c)), it did not perform well compared with LSCDA. On the
other hand, LSCDA mitigated this difficulty thanks to the direct density-ratio estimation
approach.
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Figure 3: Relationship between (x1−x2)/
√
2 and y2 in dataset (c). There seems no strong

dependency between these two quantities.

4.2 Application to Real-world Multi-label Classification Prob-
lem

Finally, we evaluate the performance of the proposed method in real-world multi-label
classification problems. Here, the proposed LSCDA is compared to the classical CCA,
HSIC-CDA, and ICCA. We used a real-world image dataset called the PASCAL Visual
Object Classes (VOC) 2010 dataset (Everingham et al., 2010) and a real-world audio
dataset called the Freesound dataset (Akkermans et al., 2011). In both of the datasets,
we consider a set of binary classification problems that is to predict a binary label vec-
tor y ∈ {−1,+1}n from an input vector x ∈ Rm. In these problems, the labels in
each dimension are not independent of each other, but often have strong correlations.
Then, extracting informative features while incorporating co-occurrence patterns among
labels y is important for better prediction. Therefore, here we compared each method by
prediction performance of subsequent classifier.

To evaluate each method, the one nearest-neighbor classifier was applied to trans-
formed samples. We employed the receiver operating characteristic (ROC) analysis
(Fawcett, 2006) and calculated the area under the ROC curve (AUC) as a performance
measure of each method. The AUC corresponds to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
instance. The AUC is often calculated through varying a threshold of a classifier. Since
the usual nearest-neighbor classifier does not have a threshold, we decided to use weighted
distances to neighboring instances of each class. More specifically, we used the following
distance function dist : Rm × Rm → R for the nearest-neighbor classifier:

dist(x,xi) =

{
α∥U(x− xi)∥22 for yi = 1,
(1− α)∥U(x− xi)∥22 for yi = −1,

where x is a test data point, xi is a training data point, and α ∈ [0, 1] is a weight
parameter that corresponds to a threshold of the classifier. For instance, when α is set
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as 0, the classifier always outputs y = 1. On the other hand, it always outputs y = −1
when α = 1. Changing α from 0 to 1, we calculate the AUC for each element of y and
show their average.

4.2.1 PASCAL VOC 2010 Dataset

The PASCAL VOC 2010 dataset consists of 20 binary classification tasks of identifying
the existence of objects in given images such as a person and an aeroplane. The total
number of images in the dataset is 11319 and we randomly divided it into training and
test dataset 10 times. The number of training instances is 500 and the rest are used for
testing.

In this experiment, we first extracted visual features from each image using the speed
up robust features (SURF) algorithm (Bay et al., 2008), and obtained 500 visual words
as the cluster centers in the SURF space. Then, we computed a 500-dimensional bag-of-
feature vector by counting the number of visual words in each image.

We reduced the dimensionalities of x and y from m = 500 and n = 20 to p ∈
{15, 10, 5, 1} and q = 10, and observed performance for each p. In this setting, except
for the classical CCA, we have to run each method 4 times for p ∈ {15, 10, 5, 1}.
For computational efficiency, we employed the following re-starting strategy in HSIC-
CDA, ICCA, and LSCDA. Let Û (1) ∈ R15×500 be an estimated projection matrix for
p = 15 and û(1) := Û (1)x. Using this, we further reduce the dimensionality from û(1) by
estimating an “additional” projection matrix Û (2) ∈ R10×15. Thus, the 10-dimensional
projected vector is written as Û (2)û(1). Note that Û (2)Û (1) lies also in the Stiefel manifold:
Û (2)Û (1)Û (1)⊤Û (2)⊤ = I10. Since this strategy reduces the size of projection matrices, we
can save the computation cost for large dimensional problems. The same technique can
also be applied to the projection matrix for y.

The results are plotted in Figure 4. In the plot, “NDR” (no dimension reduction)
corresponds to the one nearest-neighbor classification in the original space. The results
show that the classical CCA has the worst performance and its AUC value is close to
the chance level. Therefore, more flexible approaches seem to be required for this prob-
lem. Although ICCA and HSIC-CDA had better performance compared to the classical
CCA, the proposed LSCDA outperformed all of them. LSCDA achieved almost the same
performance as “NDR” with only a 5-dimensional subspace.

Figure 5 is CPU time comparison of each dimensionality reduction method. For clas-
sical CCA, we can obtain projection matrices for every dimension by only solving an
eigenvalue problem once. On the other hand, HSIC, ICCA and LSCDA needed relatively
large computational costs to maximize their dependency measures. Since HSIC, ICCA
and LSCDA employed re-start strategy from a solution of large p to small p, their CPU
time decreased with the increase of p.

4.2.2 Freesound Dataset

The Freesound dataset (Akkermans et al., 2011) consists of various audio files annotated
with word tags such as “people”, “noisy”, and “restaurant”. We used 230 tags in this
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Figure 4: Comparison of the average AUC score for the PASCAL VOC 2010 dataset. The
best method and comparable methods according to the t-test at the significance level 1%
are specified by “◦”. “NDR” denotes the original data without dimension reduction. The
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Figure 5: CPU time comparison of dimensionality reduction. The horizontal axis is
corresponding to projected dimensionality of x (i.e., dimensionality of u). Since HSIC,
ICCA and LSCDA employed re-start strategy from solution of large p to small p, the
CPU time is decreasing with increase of p. For CCA, we can obtain projections for every
dimension by performing the eigenvalue decomposition only once.
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experiment. The total number of audio files in the dataset is 5905 and we used 500
randomly chosen audio files for training and the rest for testing.

We first extracted the mel-frequency cepstrum coefficient (MFCC) (Rabiner & Juang,
1993) from each audio file, and obtained 1024 audio features as the cluster centers in the
MFCC space. Then, we computed a 1024-dimensional bag-of-feature vector by counting
the number of audio features in each audio file. We randomly chose the training and test
datasets 10 times.

We reduced the dimensionalities of x and y from m = 500 and n = 230 to p =
{15, 10, 5, 1} and q = 30. As in the case of the PASCAL VOC dataset, we employed the
same re-starting strategy for efficient computations.

The results are plotted in Figure 6, showing again that LSCDA outperformed the
existing methods and it had comparable performance to “NDR” with only p = 5.

Figure 7 is CPU time comparison of each dimensionality reduction method. Here
again, HSIC, ICCA and LSCDA were computationally expensive compared to classical
CCA.

5 Conclusions

In this paper, we proposed a novel dimensionality reduction method for paired data,
called least-squares canonical dependency analysis (LSCDA), that maximizes dependency
between two projected variables. The proposed LSCDA can capture higher-order corre-
lations which can not be detected by classical canonical correlation analysis (CCA). As a
criterion of dependency, we employed squared-loss mutual information (SMI) which can be
accurately and analytically estimated by least-squares mutual information (LSMI). Our
method does not involve density estimation which is often difficult in higher-dimensional
problems, but we estimate the ratio of densities directly. Through experiments, we demon-
strated the effectiveness of our LSCDA method using artificial datasets and real-world im-
age and audio datasets. In our future work, we will improve the computational efficiency
of LSCDA.
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