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Abstract

The ratio of two probability densities can be used for solving various machine learn-
ing tasks such as covariate shift adaptation (importance sampling), outlier detection
(likelihood-ratio test), feature selection (mutual information), and conditional prob-
ability estimation. Several methods of directly estimating the density ratio have
recently been developed, e.g., moment matching estimation, maximum-likelihood
density-ratio estimation, and least-squares density-ratio fitting. In this paper, we
propose a kernelized variant of the least-squares method for density-ratio estimation,
which is called kernel unconstrained least-squares importance fitting (KuLSIF). We
investigate its fundamental statistical properties including a non-parametric con-
vergence rate, an analytic-form solution, and a leave-one-out cross-validation score.
We further study its relation to other kernel-based density-ratio estimators. In ex-
periments, we numerically compare various kernel-based density-ratio estimation
methods, and show that KuLSIF compares favorably with other approaches.
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1 Introduction

The problem of estimating the ratio of two probability densities is attracting a great deal
of attention these days, since the density ratio can be used for various purposes (Sugiyama
et al., 2009; Sugiyama et al., 2012), such as covariate shift adaptation (Shimodaira, 2000;
Zadrozny, 2004; Sugiyama & Müller, 2005; Huang et al., 2007; Sugiyama et al., 2007;
Bickel et al., 2009; Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe, 2011), outlier
detection (Hido et al., 2008; Smola et al., 2009; Kawahara & Sugiyama, 2011; Hido et al.,
2011), divergence estimation (Nguyen et al., 2010; Suzuki et al., 2008; Suzuki et al., 2009),
and conditional probability estimation (Sugiyama et al., 2010; Sugiyama, 2010).

A naive approach to density-ratio estimation is to first separately estimate two prob-
ability densities (corresponding to the numerator and the denominator of the ratio), and
then take the ratio of the estimated densities. However, density estimation is known to
be a hard problem particularly in high-dimensional cases unless we have simple and good
parametric density models (Vapnik, 1998; Härdle et al., 2004; Kanamori et al., 2010),
which may not be the case in practice.

For reliable statistical inference, it is important to develop methods of directly esti-
mating the density ratio without going through density estimation. In the context of
case-control studies, Qin (1998) has proposed a direct method of estimating the density
ratio by matching moments of the two distributions. Another density-ratio estimation
approach uses the M-estimator (Nguyen et al., 2010) based on non-asymptotic variational
characterization of the f -divergence (Ali & Silvey, 1966; Csiszár, 1967). See also Sugiyama
et al. (2008a) for a similar algorithm using the Kullback-Leibler divergence. Kanamori
et al. (2009) have developed a squared-loss version of the M-estimator for linear density-
ratio models called unconstrained Least-Squares Importance Fitting (uLSIF), and have
shown that uLSIF possesses superior computational properties. That is, a closed-form
solution is available and the leave-one-out cross-validation score can be analytically com-
puted. As another approach, one can use logistic regression for the inference of density
ratios, since the ratio of two probability densities is directly connected to the posterior
probability of labels in classification problems. Using the Bayes formula, the estimated
posterior probability can be transformed to an estimator of density ratios (Bickel et al.,
2007).

Various kernel-based approaches are also available for density-ratio estimation. The
kernel mean matching (KMM) method (Gretton et al., 2009) directly gives estimates of
the density ratio by matching the two distributions using universal reproducing kernel
Hilbert spaces (Steinwart, 2001). KMM can be regarded as a kernelized variant of Qin’s
moment matching estimator (Qin, 1998). Nguyen’s approach based on the M-estimator
(Nguyen et al., 2010) also has a kernelized variant. Non-parametric convergence proper-
ties of the M-estimator in reproducing kernel Hilbert spaces have been elucidated under
the Kullback-Leibler divergence (Nguyen et al., 2010; Sugiyama et al., 2008b). For the
density-ratio estimation, one can also apply kernel logistic regression (Wahba et al., 1993;
Zhu & Hastie, 2001), instead of conventional linear logistic models for the inference of the
posterior distribution in classification problems.
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In this paper, we first propose a kernelized variant of uLSIF (called KuLSIF), and
show that the solution of KuLSIF as well as its leave-out-out cross-validation score can
be computed analytically, as the original uLSIF for linear models. We then elucidate the
statistical consistency and convergence rate of KuLSIF based on the argument on non-
parametric bounds (van de Geer, 2000; Nguyen et al., 2010). We further study the rela-
tion between KuLSIF and other kernel-based density-ratio estimators. Finally, statistical
performance of KuLSIF is numerically compared with other kernel-based density-ratio
estimators in experiments.

The rest of this paper is organized as follows. In Section 2, we formulate the prob-
lem of density-ratio estimation and briefly review the existing least-squares method. In
Section 3, we describe the kernelized variant of uLSIF, and show its statistical proper-
ties such as the convergence rate and availability of the analytic-form solution and the
analytic-form leave-one-out cross-validation score. In Section 4, we investigate the rela-
tion between KuLSIF and other kernel-based density-ratio estimators. In Section 5, we
experimentally investigate computational efficiency and statistical performance of KuL-
SIF. Finally, in Section 6, we conclude by summarizing our contributions and showing
possible future directions. Detailed proofs and calculations are deferred to Appendix.
In a companion paper (Kanamori et al., 2011), computational properties of the KuLSIF
method are further investigated from the viewpoint of condition numbers.

2 Estimation of Density Ratios

In this section, we formulate the problem of density-ratio estimation and briefly review
the least-squares density-ratio estimator.

2.1 Formulation and Notations

Consider two probability distributions P and Q on a probability space Z. Assume that
the distributions P and Q have the probability densities p and q, respectively. We assume
p(x) > 0 for all x ∈ Z. Suppose that we are given two sets of independent and identically
distributed (i.i.d.) samples,

X1, . . . , Xn
i.i.d.∼ P, Y1, . . . , Ym

i.i.d.∼ Q. (1)

Our goal is to estimate the density ratio

w0(x) =
q(x)

p(x)
(≥ 0)

based on the observed samples.
We summarize some notations to be used throughout the paper. For two integers n

and m, n ∧ m denotes min{m,n}. For a vector a in the Euclidean space, ∥a∥ denotes
the Euclidean norm. Given a probability distribution P and a random variable h(X), we
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denote the expectation of h(X) under P by
∫
hdP or

∫
h(x)P (dx). Let ∥ · ∥∞ be the

infinity norm, and ∥ · ∥P be the L2-norm under the probability P , i.e., ∥h∥2P =
∫
|h|2dP .

For a reproducing kernel Hilbert space (RKHS) H (Aronszajn, 1950), the inner product
and the norm on H are denoted as ⟨·, ·⟩H and ∥ · ∥H, respectively.

Below we review the least-squares approach to density-ratio estimation proposed by
Kanamori et al. (2009).

2.2 Least-Squares Approach

The linear model

ŵ(x) =
B∑
i=1

αihi(x) (2)

is assumed for the estimation of the density ratio w0, where the coefficients α1, . . . , αB are
the parameters of the model. The basis functions hi, i = 1, . . . , B are chosen so that the
non-negativity condition hi(x) ≥ 0 is satisfied. A practical choice would be the Gaussian
kernel function hi(x) = e−∥x−ci∥2/2σ2

with appropriate kernel center ci ∈ Z and kernel
width σ (Sugiyama et al., 2008a).

The unconstrained least-squares importance fitting (uLSIF) (Kanamori et al., 2009)
estimates the parameter α based on the squared error:

1

2

∫
(ŵ − w0)

2dP =
1

2

∫
ŵ2dP −

∫
ŵdQ+

1

2

∫
w2

0dP.

The last term in the above expression is a constant and can be safely ignored when
minimizing the squared error of the estimator ŵ. Therefore, the solution of the following
minimization problem over the linear model (2),

min
w

1

2n

n∑
i=1

(w(Xi))
2 − 1

m

m∑
j=1

w(Yj) + λ · Reg(α), (3)

is expected to approximate the true density-ratio w0, where the regularization term Reg(α)
with the regularization parameter λ is introduced to avoid overfitting. Let α̂ be the
optimal solution of (3) under the linear model (2). Then the estimator of w0 is given
as ŵ(x) =

∑B
i=1 α̂ihi(x). There are several ways to impose the non-negativity condition

ŵ(x) ≥ 0 (Kanamori et al., 2009). Here, truncation of ŵ defined as

ŵ+(x) = max{ŵ(x), 0}

is used to ensure the non-negativity of the estimator.
It is worthwhile to point out that uLSIF can be regarded as an example of the M-

estimator (Nguyen et al., 2010) with the quadratic loss function, i.e., ϕ∗(f) = f 2/2 in
Nguyen’s notation. Nguyen’s M-estimator is constructed based on the f -divergence from
Q and P . Due to the asymmetry of f -divergence, the estimation error evaluated with
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respect to P rather than Q is obtained in uLSIF. uLSIF has an advantage in computa-
tion over other M-estimators: When Reg(α) = ∥α∥2/2, the estimator α̂ can be obtained
in an analytic form. As a result, the leave-one-out cross-validation (LOOCV) score can
also be computed in a closed form (Kanamori et al., 2009), which allows us to compute
the LOOCV score very efficiently. LOOCV is an (almost) unbiased estimator of the
prediction error and can be used for determining hyper-parameters such as the regular-
ization parameter and the Gaussian kernel width. In addition, for the L1-regularization
Reg(α) =

∑B
i=1 |αi|, Kanamori et al. (2009) applied the path-following algorithm to regu-

larization parameter estimation, which highly contributes to reducing the computational
cost in the model selection phase.

3 Kernel uLSIF

The purpose of this paper is to show that a kernelized variant of uLSIF (which we refer to
as kernel uLSIF ; KuLSIF) has good theoretical properties and thus useful. In this section,
we formalize the KuLSIF algorithm and show its fundamental statistical properties.

3.1 uLSIF on RKHS

We assume that the model for the density ratio is an RKHS H endowed with a kernel
function k on Z × Z, and we consider the optimization problem (3) on H. Then, the
estimator ŵ is obtained as an optimal solution of

min
w

1

2n

n∑
i=1

(w(Xi))
2 − 1

m

m∑
j=1

w(Yj) +
λ

2
∥w∥2H, s. t. w ∈ H, (4)

where the regularization term λ
2
∥w∥2H with the regularization parameter λ (≥ 0) is in-

troduced to avoid overfitting. We may also consider the truncated estimator ŵ+ =
max{ŵ, 0}. The estimator based on the loss function (4) is called KuLSIF.

The computation of KuLSIF is efficiently conducted. For infinite-dimensional H, the
problem (4) is an infinite-dimensional optimization problem. The representer theorem
(Kimeldorf & Wahba, 1971), however, is applicable to RKHSs, which allows us to trans-
form the infinite-dimensional optimization problem to a finite-dimensional one. Let K11,
K12, and K21 be the sub-matrices of the Gram matrix:

(K11)ii′ = k(Xi, Xi′), (K12)ij = k(Xi, Yj), K21 = K⊤
12,

where i, i′ = 1, . . . , n, j, j′ = 1, . . . ,m. Then, detailed analysis leads us to the specific
form of the solution as follows.

Theorem 1 (Analytic Solution of KuLSIF). Suppose λ > 0. Then, the KuLSIF estimator
is given as

ŵ(z) =
n∑

i=1

ᾱik(z,Xi) +
1

mλ

m∑
j=1

k(z, Yj).
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The coefficients ᾱ = (ᾱ1, . . . , ᾱn)
⊤ are given by the solution of the linear equation(

1

n
K11 + λIn

)
α = − 1

nmλ
K121m, (5)

where In is the n by n identity matrix and 1m is the column vector defined as 1m =
(1, . . . , 1)⊤ ∈ ℜm.

The proof is deferred to Appendix A. Theorem 1 implies that it is sufficient to find n
variables ᾱ1, . . . , ᾱn to obtain the estimator ŵ and that the estimator has the analytic-
form solution.

Theorem 1 also guarantees that the parameters in the KuLSIF estimator are obtained
by the solution of the following optimization problem:

min
α

1

2
α⊤
(
1

n
K11 + λIn

)
α +

1

nmλ
1⊤
mK21α, α ∈ ℜn, (6)

where we used the fact that the solution of Ax = b is given as the minimizer of
1
2
x⊤Ax−b⊤x, when A is positive-semidefinite. When the sample size of n is large, numer-

ically optimizing the quadratic function in (6) can be computationally more efficient than
directly solving the linear equation (5). In Section 5, numerical experiments are carried
out to investigate the computational efficiency of KuLSIF.

3.2 Leave-One-Out Cross-Validation

The leave-one-out cross-validation (LOOCV) score for the KuLSIF estimator can also be
obtained analytically as well as the coefficient parameters of the kernel model. Let us
measure the accuracy of the KuLSIF estimator, ŵ+ = max{ŵ, 0}, by

1

2

∫
ŵ2

+dP −
∫

ŵ+dQ,

which is equal to the squared error of ŵ+ up to a constant term. Then the LOOCV score
of ŵ+ under the squared error is defined as

LOOCV =
1

n ∧m

n∧m∑
ℓ=1

{
1

2
(ŵ

(ℓ)
+ (xℓ))

2 − ŵ
(ℓ)
+ (yℓ)

}
, (7)

where ŵ
(ℓ)
+ = max{ŵ(ℓ), 0} is the estimator based on training samples except1 xℓ and yℓ.

The hyper-parameters achieving the minimum value of LOOCV are chosen.
Thanks to the analytic-form solution shown in Theorem 1, the leave-one-out solution

ŵ(ℓ) can be computed efficiently from ŵ by the use of the Sherman-Woodbury-Morrison
formula (Golub & Loan, 1996). Details of the analytic LOOCV expression are presented
in Appendix B.

1The index of removed samples can be different for x and y, i.e., xℓ1 and yℓ2 (ℓ1 ̸= ℓ2) can be removed.
For the sake of simplicity, however, we suppose that the samples xℓ and yℓ are removed in the computation
of LOOCV.
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3.3 Statistical Consistency of KuLSIF

The following theorem reveals the convergence rate of the KuLSIF estimator.

Theorem 2 (Convergence Rate of KuLSIF). Let Z be a probability space, and H be the
RKHS endowed with the kernel function k defined on Z×Z. Suppose that supx∈Z k(x, x) <
∞, and that the bracketing entropy HB(δ,HM , P ) is bounded above by O(M/δ)γ, where γ
is a constant satisfying 0 < γ < 2 (see Appendix C for the detailed definition). Set the
regularization parameter λ = λn,m so that2

lim
n,m→∞

λn,m = 0, λ−1
n,m = O((n ∧m)1−δ), (n,m → ∞),

where n∧m = min{n,m} and δ is an arbitrary number satisfying 1− 2/(2 + γ) < δ < 1.
Then, for q/p = w0 ∈ H, we have

∥ŵ+ − w0∥P ≤ ∥ŵ − w0∥P = Op(λ
1/2
n,m),

where ∥ · ∥P is the L2-norm under the probability P .

The proof is available in Appendix C. See Nguyen et al. (2010) and Sugiyama et al.
(2008b) for similar convergence analysis for the logarithmic loss function. The condition
limn,m→∞ λn,m = 0 means that the regularization parameter λn,m should vanish asymp-
totically, but the condition λ−1

n,m = O((n∧m)1−δ) means that the regularization parameter
λn,m should not vanish too fast. As shown in the proof of the theorem, the assumption

w0 ∈ H imposes supx∈Z w0(x) ≤ ∥w0∥H supx∈Z
√
k(x, x) < ∞. For example, the ra-

tio of two Gaussian distributions with different means or variances does not satisfy this
condition (see Yamada et al., 2011 for how to handle such a situation).

Remark 1. Suppose that Z is a compact set and k is the Gaussian kernel. Then, for any
small γ > 0, the condition

HB(δ,HM , P ) = O

(
M

δ

)γ

, (M/δ → ∞) (8)

holds (Cucker & Smale, 2002, Theorem D in Chap III, Section 5). More precisely, Cucker
and Smale (2002) proved that the entropy number with the supremum norm is bounded
above by c(M/δ)γ for M, δ > 0, where c is a positive constant. In addition, the bracketing
entropy HB(δ,HM , P ) is bounded above by the entropy number with the supremum norm
due to the second inequality of Lemma 2.1 in van de Geer (2000). As a result, the

convergence rate in Theorem 2 is given as Op(λ
1/2
n,m) = Op(1/(n∧m)(1−δ)/2) for 0 < δ < 1.

By choosing small δ > 0 (i.e., λn,m vanishes fast), the convergence rate will get close to
that for parametric models, i.e., Op(1/

√
n ∧m).

2The multivariate big-O notation f(n,m) = O(g(n,m)), (n,m → ∞) implies that there exist C > 0,
n0 > 0, and m0 > 0 such that the inequality |f(n,m)| ≤ C|g(n,m)| holds for all n > n0 and all m > m0.
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Table 1: Summary of density ratio estimators. “#parameters” is the number of parame-
ters other than regularization parameters.

Estimator loss function #parameters
estimates of
density ratio

model
selection

KuLSIF quadratic loss n max{ŵ, 0}, ŵ ∈ H possible
KMM quadratic loss n max{ŵ, 0}, ŵ ∈ H not possible
KL-div conjugate of log loss m max{ŵ, 0}, ŵ ∈ H possible

KLR log-likelihood loss n+m n
m
e−f̂ , f̂ ∈ H possible

RKDE log-likelihood loss 0 ratio of KDEs possible

Remark 2. In the KuLSIF estimator, we do not need the assumption that the target
density-ratio w0 is bounded below by a positive constant. In the M-estimator with the
Kullback-Leibler divergence proposed by Nguyen et al. (2010), the function defined by

f(w) = log
w + w0

w0

is considered. The boundedness condition of w0 such that w0 ≥ c > 0 with some constant
c leads to the fact that f(w) is Lipschitz in w, which is a crucial property in the proof of
Nguyen et al. (2010). In our proof in Appendix C, we use different transformation of w,
and thus, the boundedness condition is not needed.

4 Relation to Existing Kernel-Based Estimators

In this section, we discuss the relation between KuLSIF and other kernel-based density-
ratio estimators. Properties of density-ratio estimation methods are summarized in Table
1.

4.1 Kernel Mean Matching (KMM)

The kernel mean matching (KMM) method allows us to directly obtain an estimate of
w0(x) at X1, . . . , Xn without going through density estimation (Gretton et al., 2009).

The basic idea of KMM is to find w0(x) such that the mean discrepancy between non-
linearly transformed samples drawn from P and Q is minimized in a universal reproducing
kernel Hilbert space (Steinwart, 2001). We introduce the definition of universal kernels
below.

Definition 1 (Definition 4.52 in Steinwart, 2001). A continuous kernel k on a compact
metric space Z is called universal if the RKHS H of k is dense in the set of all continuous
functions on Z, that is, for every continuous function g on Z and all ε > 0, there exists
an f ∈ H such that ∥f − g∥∞ < ε. The corresponding RKHS is called a universal RKHS.
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The Gaussian kernel on a compact set Z is an example of universal kernels. Let H be
a universal RKHS endowed with a universal kernel function k : Z × Z → ℜ. Then, one
can infer the density ratio w0 by solving the following minimization problem:

min
w

1

2

∥∥∥∥∫ w(x)k(·, x)P (dx)−
∫

k(·, y)Q(dy)

∥∥∥∥2
H
,

s.t.

∫
wdP = 1 and w ≥ 0.

(9)

Huang et al. (2007) proved that the solution of (9) is given as w = w0, when Q is
absolutely continuous with respect to P .

An empirical version of the above problem is reduced to the following convex quadratic
program:

min
w1,...,wn

1

2n

n∑
i,j=1

wiwjk(Xi, Xj)−
1

m

m∑
j=1

n∑
i=1

wik(Xi, Yj),

s.t.

∣∣∣∣ 1n
n∑

i=1

wi − 1

∣∣∣∣ ≤ ϵ and 0 ≤ w1, w2, . . . , wn ≤ B.

(10)

The tuning parameters, B ≥ 0 and ϵ ≥ 0, control the regularization effects. The optimal
solution (ŵ1, . . . , ŵn) is an estimate of the density ratio at the samples from P , i.e.,
w0(X1), . . . , w0(Xn). KMM does not estimate the function w0 on Z but the values on
sample points, while the assumption that w0 ∈ H is not required.

We study the relation between KuLSIF and KMM. Below, we assume that the true
density-ratio w0 = q/p is included in the RKHS H. Let Φ(w) be

Φ(w) =

∫
k(·, x)w(x)P (dx)−

∫
k(·, y)Q(dy). (11)

Then the loss function of KMM on H under the population distribution is written as

LKMM(w) =
1

2
∥Φ(w)∥2H.

In the estimation phase, an empirical approximation of LKMM is optimized in the KMM
algorithm. On the other hand, the (unregularized) loss function of KuLSIF is given by

LKuLSIF(w) =
1

2

∫
w2dP −

∫
wdQ.

Both LKMM and LKuLSIF are minimized at the true density-ratio w0 ∈ H. Although some
linear constraints may be introduced in the optimization phase, we study the optimization
problems of LKMM and LKuLSIF without constraints. This is because when the sample
size tends to infinity, the optimal solutions of LKMM and LKuLSIF without constraints
automatically satisfy the required constraints such as

∫
wdP = 1 and w ≥ 0.
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We consider the extremal condition of LKuLSIF(w) at w0. Substituting

w = w0 + δ · v, (δ ∈ ℜ, v ∈ H)

into LKuLSIF(w), we have

LKuLSIF(w0 + δv)− LKuLSIF(w0) = δ

{∫
w0vdP −

∫
vdQ

}
+

δ2

2

∫
v2dP.

Since LKuLSIF(w0 + δv) is minimized at δ = 0, the derivative of LKuLSIF(w0 + δv) at δ = 0
vanishes, i.e., ∫

w0vdP −
∫

vdQ = 0. (12)

The equality (12) holds for arbitrary v ∈ H. Using the reproducing property of the kernel
function k, we can derive another expression of (12) as follows∫

w0vdP −
∫

vdQ =

∫
w0(x)⟨k(·, x), v⟩HP (dx)−

∫
⟨k(·, y), v⟩HQ(dy)

=

⟨∫
k(·, x)w0(x)P (dx)−

∫
k(·, y)Q(dy), v

⟩
H

=
⟨
Φ(w0), v

⟩
H = 0, ∀v ∈ H. (13)

Rigorous proof of the above formula is shown in Appendix D. As a result, we obtain
Φ(w0) = 0. The above expression implies that Φ(w) is the Gâteaux derivative (Zeidler,
1986, Section 4.2) of LKuLSIF at w ∈ H, that is,

d

dδ
LKuLSIF(w + δ · v)

∣∣∣
δ=0

= ⟨Φ(w), v⟩H (14)

holds for all v ∈ H. Let DLKuLSIF be the Gâteaux derivative of LKuLSIF over the RKHS
H. Then we have DLKuLSIF = Φ, and the equality

LKMM(w) =
1

2
∥DLKuLSIF(w)∥2H (15)

holds. Tsuboi et al. (2008) have pointed out a similar relation for the M-estimator based
on the Kullback-Leibler divergence.

Now we give an interpretation of (15) through an analogous optimization example
in the Euclidean space. Let f : ℜd → ℜ be a differentiable function, and consider
the optimization problem minx f(x). At an optimal solution x0, the extremal condition
∇f(x0) = 0 should hold, where ∇f is the gradient of f with respect to x. Thus, in-
stead of minimizing f , minimization of ∥∇f(x)∥2 also provides the minimizer of f . This
corresponds to the relation between KuLSIF and KMM:

KuLSIF ⇐⇒ min
x

f(x),

KMM ⇐⇒ min
x

1

2
∥∇f(x)∥2.



Statistical Analysis of Kernel-Based Least-Squares Density-Ratio Estimation 11

In other words, in order to find the solution of the equation

Φ(w) = 0, (16)

KMM tries to minimize the norm of Φ(w). The “dual” expression of (16) is given as

⟨Φ(w), v⟩H = 0, ∀v ∈ H. (17)

By “integrating” ⟨Φ(w), v⟩H, we obtain the loss function LKuLSIF.

Remark 3. Gretton et al. (2006) proposed the maximum mean discrepancy (MMD) cri-
terion to measure the discrepancy between two probability distributions P and Q. When
the constant function 1 is included in the RKHS H, MMD between P and Q is equal
to 2 × LKMM(1). Due to the equality (15), we find that MMD is also expressed as
∥DLKuLSIF(1)∥2H, that is, the squared norm of the derivative of LKuLSIF at 1 ∈ H. This
quantity will be related to the discrepancy between the constant function 1 and the true
density-ratio w0 = q/p.

In the original KMM method, the density-ratio values on training samples X1, . . . , Xn

are estimated (Gretton et al., 2009). Here, we consider its inductive variant, i.e., esti-
mating the function w0 on Z using the loss function of KMM. Given samples (1), the
empirical loss function of inductive KMM is defined as

min
w

1

2

∥∥Φ̂(w) + λw
∥∥2
H, w ∈ H, (18)

where Φ̂(w) is defined as

Φ̂(w) =
1

n

n∑
i=1

k(· , Xi)w(Xi)−
1

m

m∑
j=1

k(· , Yj).

Note that Φ̂(w) + λw in (18) is the Gâteaux derivative of the empirical loss function of
KuLSIF in (4) including the regularization term. The optimal solution of (18) is the same
as that of KuLSIF, and hence, the same results as Theorem 1 and Theorem 2 hold for the
inductive version of the KMM estimator. The computational efficiency, however, could
be different. We show numerical examples of the computational cost in Section 5.

In a companion paper (Kanamori et al., 2011), we further investigate the computa-
tional properties of the KuLSIF method from the viewpoint of condition numbers (see
Section 8.7 of Luenberger & Ye, 2008), and reveal that KuLSIF is computationally more
efficient than KMM.

Another difference between KuLSIF and the inductive variant of KMM lies in model
selection. As shown in Section 3.2, KuLSIF is equipped with cross-validation, and thus
model selection can be performed systematically. On the other hand, the KMM objective
function (9) is defined in terms of the RKHS norm. This implies that once kernel pa-
rameters (such as the Gaussian kernel width) are changed, the definition of the objective
function is also changed and therefore naively performing cross-validation may not be valid
in KMM. The regularization parameter in KMM may be optimized by cross-validation
for a fixed RKHS.
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4.2 M-Estimator with the Kullback-Leibler Divergence (KL-
div)

The M-estimator based on the Kullback-Leibler (KL) divergence (Nguyen et al., 2010) also
directly gives an estimate of the density ratio without going through density estimation.
The KL divergence I(Q,P ) is defined as

I(Q,P ) = −
∫

log
p(z)

q(z)
dQ(z)

= − inf
w

[
−
∫

log(w(z))dQ(z) +

∫
w(z)dP (z)− 1

]
, (19)

where the second equality follows from the conjugate dual function of the logarithmic
function and the infimum is taken over all measurable functions. Detailed derivation is
shown in Nguyen et al. (2010). The optimal solution of (19) is given as w(z) = q(z)/p(z),
and thus, the empirical approximation of (19) leads to the loss function for the estimation
of density ratios.

The kernel-based estimator ŵ(z) is defined as an optimal solution of

min
w

− 1

m

m∑
j=1

log(w(Yj)) +
1

n

n∑
i=1

w(Xi) +
λ

2
∥w∥2H, w ∈ H,

where H is an RKHS. We may also use the truncated one ŵ = max{w, 0} as the estimator
of the density ratio. Nguyen et al. (2010) proved that the RKHS H endowed with the
Gaussian kernel and regularization parameter λ = (m ∧ m)δ−1, (0 < δ < 1) leads to a
consistent estimator under a boundedness assumption on w0 = q/p. Due to the repre-
senter theorem (Kimeldorf & Wahba, 1971), we see that the above infinite-dimensional
optimization problem is reduced to a finite-dimensional one.

Furthermore, the optimal solution of KL-div has a similar form to that shown in
Theorem 1, and one needs to estimate only m parameters when samples (1) are observed
(Nguyen et al., 2010). Actually, this property holds for general M-estimators with all
f -divergences (Ali & Silvey, 1966; Csiszár, 1967); see Kanamori et al. (2011) for details.

Note that model selection of the KL-div method can be systematically carried out
based on cross-validation in terms of the KL-divergence (Sugiyama et al., 2008b).

4.3 Kernel Logistic Regression (KLR)

Another approach to directly estimating the density ratio is to use a probabilistic classifier.
Let b be a binary random variable. For the conditional probability p(z|b), we assume that

p(z) = p(z|b = +1),

q(z) = p(z|b = −1),
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hold. That is, b plays a role as a ‘class label’ for discriminating ‘numerator’ and ‘denomi-
nator’. An application of the Bayes theorem yields that the density ratio can be expressed
in terms of the class label b as

w0(z) =
q(z)

p(z)
=

p(b = +1)

p(b = −1)

p(b = −1|z)
p(b = +1|z)

.

The ratio of class-prior probabilities, p(b = +1)/p(b = −1), can be simply estimated from
the numbers of samples from P and Q, and the class-posterior probability p(b|z) can be
estimated by discrimination methods such as logistic regression. Below we briefly explain
the kernel logistic regression method (Wahba et al., 1993; Zhu & Hastie, 2001).

The kernel logistic regression method employs a model of the following form for ex-
pressing the class-posterior probability p(b|z):

p(b|z) = 1

1 + exp (−bf(z))
, f ∈ H,

whereH is an RKHS on Z. The function f ∈ H is learned so that the negative regularized
log-likelihood based on training samples (1) is minimized:

min
f

1

n+m

[ n∑
i=1

log(1 + e−f(Xi)) +
m∑
j=1

log(1 + ef(Yj))

]
+

λ

2
∥f∥2H, f ∈ H,

where λ is the regularization parameter. Let f̂ be an optimal solution. Then the density
ratio can be estimated by

ŵ(z) =
n

m
e−f̂(z).

Note that we do not need to truncate the negative part of ŵ(z), since the estimator ŵ
takes only positive values by construction.

Model selection of the KLR-based density-ratio estimator is performed by cross-
validation in terms of the classification accuracy measured by the log-likelihood of the
logistic model.

4.4 Ratio of Kernel Density Estimators (RKDE)

The kernel density estimator (KDE) is a non-parametric technique to estimate a prob-
ability density function p(x) from its i.i.d. samples {xk}nk=1. For the Gaussian kernel
kσ(x, x

′) = exp{−∥x− x′∥2/(2σ2)}, KDE is expressed as

p̂(x) =
1

n(2πσ2)d/2

n∑
k=1

kσ(x, xk).

The accuracy of KDE heavily depends on the choice of the kernel width σ, which can be
optimized by cross-validation in terms of the log-likelihood. See Härdle et al. (2004) for
details.
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KDE can be used for density-ratio estimation by first obtaining density estimators
p̂(x) and q̂(y) separately from X1, . . . , Xn and Y1, . . . , Ym, and then estimating the density
ratio by q̂(z)/p̂(z). This estimator is referred to as the ratio of kernel density estimators
(RKDE). A potential limitation of RKDE is that division by an estimated density p̂(z) is
involved, which tends to magnify the estimation error of q(z). This is critical when the
number of available samples is limited. Therefore, the KDE-based approach may not be
reliable in high-dimensional problems.

5 Simulation Studies

In this section, we numerically compare the computational cost and the statistical per-
formance of proposed and existing density-ratio estimators.

5.1 Computational Costs

First, we experimentally investigate the computational cost of KuLSIF and KMM. The
IDA data sets (Rätsch et al., 2001) are used, which are binary classification data sets
consisting of positive/negative and training/test samples (see Table 3). We use large
data sets in IDA: titanic, waveform, banana, ringnorm, and twonorm, and compare the
computation time of KuLSIF (6) with that of the inductive KMM (18). The solutions
are numerically computed by minimizing the objective functions using the BFGS quasi-
Newton method implemented in the optim function in the R environment (R Development
Core Team, 2009). For KuLSIF, we also investigate the computation time for directly
solving the linear equation (5) by the function solve in R. Note that theoretically all
methods share the same solution (see Section 4.1).

In the first experiments, the data set corresponding to the distribution P consists of
all positive test samples, and all negative test samples are assigned to the other data set
corresponding to Q. Therefore, the target density-ratio may be far from the constant
function w0(x) = 1. Table 2(a) shows the average computation time over 20 runs. In
the table, ‘KuLSIF(numerical)’, ‘KuLSIF(direct)’, and ‘KMM’ denote KuLSIF numeri-
cally minimizing the loss function, KuLSIF directly solving the linear equation, and the
inductive variant of KMM (numerically minimizing the loss function), respectively. In the
second experiments, samples X1, . . . , Xn and Y1, . . . , Ym are both randomly taken from all
(i.e., both positive and negative) test samples. Hence, the target density-ratio is almost
equal to the constant function w0(x) = 1. Table 2(b) shows the average computation time
over 20 runs.

The results show that, for large data sets, KuLSIF(numerical) is computationally
more efficient than KuLSIF(direct). Experimentally, the computational cost of KuL-
SIF(numerical) is approximately proportional to n2, while that of KuLSIF(direct) takes
the order of n3. Thus, for large data sets, computing the solution by numerically min-
imizing the quadratic loss function will be more advantageous than directly solving the
linear equation. KMM is computationally highly demanding for all cases.
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Table 2: The averaged computation time (sec.) of KuLSIF(numerical), KuLSIF(direct),
and KMM are presented. (a) The data set from P is randomly taken from positive test
samples, and that from Q is randomly taken from negative test samples. (b) Two data
sets X1, . . . , Xn and Y1, . . . , Ym are both randomly taken from all (i.e., both positive and
negative) test samples. The data sets are arranged in ascending order of the sample size
n. Results of the method having the lowest mean are described by bold face.

(a) The true density-ratio is far from a constant

data set n m
KuLSIF

(numerical)
KuLSIF
(direct)

KMM

titanic 1327 2775 6.11 1.45 57.96
waveform 3032 6168 52.74 16.96 1713.71
banana 4383 5417 97.64 52.97 1539.65
ringnorm 6933 7067 145.37 177.96 4346.32
twonorm 7002 6998 145.61 226.20 1944.79

(b) The true density-ratio is close to a constant

data set n m
KuLSIF

(numerical)
KuLSIF
(direct)

KMM

titanic 2052 2050 10.20 5.13 91.97
waveform 4600 4600 63.55 58.55 3078.64
banana 4900 4900 112.21 78.08 1408.91
ringnorm 7000 7000 135.70 258.03 3201.78
twonorm 7000 7000 133.44 243.46 3584.25

5.2 Stability of Estimators

By using synthetic data, we study how the dimension of the data affects the estimation
accuracy. The probabilities P and Q are defined as the Gaussian distribution with in-
creasing dimension ranges from 1 to 10, and the sample size is set to m = n = 500.
The covariance matrix of both distributions is given as the identity matrix. The mean
vector of P is the null vector, and that of Q is equal to µe1, where e1 is the standard
unit vector with only the first component being 1. Then, the density ratio is equal to
w0(x) = exp{x1µ− µ2/2} for x = (x1, . . . , xd).

For each case of µ = 0 and µ = 1, we compare four kernel-based estimators: KuLSIF,
the M-estimator with the Kullback-Leibler divergence (KL-div), kernel logistic regression
(KLR), and the ratio of kernel density estimators (RKDE). See Section 4 for details of each
estimator. The solve function in R is used for computing the KuLSIF solution, and the
optim function in R is used for computing the KL-div solution. For computing the KLR
solution, we use the myKLR package (Rüping, 2003), which is a C++ implementation of
the algorithm proposed by Keerthi et al. (2005) to solve the dual problem. For computing
the RKDE, we use our own implementation in R.

In all estimators, the Gaussian kernel is used. Except RKDE, the kernel width σ is
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Figure 1: The median of NMSEs is depicted as functions of the input dimensionality. Left
panel: the case of w0(x) = 1 (i.e., µ = 0). Right panel: the case of w0(x) = exp{x1−1/2}
(i.e., µ = 1).

set to the median of ∥z − z′∥ among all pairs of distinct training points, z and z′. This
is a standard heuristic for the choice of the Gaussian kernel width (Schölkopf & Smola,
2002). For RKDE, the kernel width is chosen by using CV among 20 candidates around
the value determined by the above median heuristics. The regularization parameter λ is
set to λ = 1/(n ∧m)0.9. The estimation accuracy of the density-ratio estimator ŵ(z) is
evaluated by the normalized mean squared error (NMSE) over the test points z̃1, . . . , z̃N :

NMSE =
1

N

N∑
i=1

(
ŵ(z̃i)

1
N

∑N
k=1 ŵ(z̃k)

− w0(z̃i)
1
N

∑N
k=1w0(z̃k)

)2

. (20)

In many applications of density ratios, only the relative size of the density ratio is required
and the normalization factor is not essential (Sugiyama et al., 2009; Sugiyama et al., 2012).
On the other hand, the target of the current experiment is density ratio estimation itself.
Thus, evaluating the error under normalization would be reasonable.

Figure 1 presents the median NMSE for each estimator as functions of the input
dimensionality. Since the average NMSE of the RKDE took extremely large values high-
dimensional data, we decided to use the median NMSE for evaluation. We see that the
RKDE immediately gets unstable for multi-dimensional data, whereas the other three
estimators provide stable prediction for all data sets.

5.3 Statistical Performance

Finally, we experimentally compare the statistical performance of four kernel-based esti-
mators: KuLSIF, the M-estimator with the Kullback-Leibler divergence (KL-div), kernel
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logistic regression (KLR), and the ratio of kernel density estimators (RKDE).
We again use the IDA data sets (see Table 3 for details). Bayes error in Table 3 denotes

the test error of the best classifier reported in Rätsch et al. (2001). First, we explain
how to prepare the training data set using the IDA data sets. Given the training data
for binary classification, (z1, b1), . . . , (zt, bt) ∈ Z × {+1,−1}, the posterior probability
of binary labels is estimated by the support vector machine with the Gaussian kernel,
where Platt’s approach (Platt, 2000) is used.3 The estimated class-posterior probability

is denoted as P̂ (b|z), and let P̂η(b|z) be

P̂η(b|z) = (1− η)P̂ (b|z) + η

2
, 0 ≤ η ≤ 1,

for z ∈ Z and b ∈ {+1,−1}. The probability P̂0(b|z) will lead to the Bayes error close

to the values described in Table 3, whereas P̂1(b|z) indicates the uniform probability on

the binary labels. Hence, the Bayes error of P̂1(b|z) is equal to 0.5. Then, the label of

the training input zi is reassigned according to the conditional probability P̂η(b|zi). The
input points with the reassigned label +1 are regarded as samples from the probability
distribution P , and those with the label −1 are regarded as samples from the probability
distribution Q. As such, we have the training data set (1), and the density ratio is
estimated based on these training samples. Thus, the true density-ratio is approximately
given by

w̃0(z) =
n

m
· P̂η(b = −1|z)
P̂η(b = +1|z)

.

Note that w̃0 is close to the constant function 1, when η is close to 1. The estimation
accuracy of the estimator ŵ(z) is evaluated by the NMSE (20). Here the test points in
the NMSE are uniformly sampled from all the test input vectors of the classification data
set. Hence, the distribution of z̃i is not the same as the probability distribution P , unless
η = 1.

Some examples of estimated density-ratios are depicted in Figure 2 and Figure 3.
The training samples are generated from the data set banana or german with the mixing
parameter η = 0.01. In these figures, the index of test samples z̃i is arranged in the
ascending order of the density-ratio values w̃0(z̃i). The solid increasing line denotes w̃0(z̃i)
for each test point, and ◦’s in the plots are estimated values. When the input dimension
is low (see Figure 2), all the methods including RKDE perform reasonably well. However,
for the high-dimensional data (see Figure 3), RKDE severely overfits due to division by an
estimated density. As illustrated in Section 5.2, this leads to the instability of estimation
by RKDE, and the prediction ability becomes poor. The other three direct density-ratio
estimators provide reasonably stable prediction even when the dimension is high.

3In the Platt’s approach, the conditional probability is estimated by the model P̂ (b|z) = 1/{1 +

exp(−b(αĥ(z) + β))}, α, β ∈ ℜ, where ĥ : Z → ℜ is the decision function estimated by support vector
machine. Maximum likelihood estimation is used to estimate the parameter α, β.
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Table 3: The dimension of the data domain and the Bayes error are shown. The Bayes
error denotes the lowest test error reported in the original paper (Rätsch et al., 2001).
The data sets are arranged in the ascending order of the Bayes error. “#samples” is the
total sample size, i.e., n +m. “Iterations” denotes the number of trials of estimation to
compute the average performance of estimators.

data set dimension Bayes error (%) #samples (n+m) iterations
ringnorm 20 1.5 7000 20
twonorm 20 2.6 7000 20
image 18 2.7 1010 20
thyroid 5 4.2 75 50
splice 60 9.5 2175 20

waveform 21 9.8 4600 20
banana 2 10.7 4900 20
heart 13 16.0 100 50
titanic 3 22.4 2051 20
diabetes 8 23.2 300 50
german 20 23.6 300 50

breast-cancer 9 24.8 77 50
flare-solar 9 32.4 400 50

Next, we compare the following methods: KuLSIF, KuLSIF with leave-one-out cross-
validation (LOOCV), KL-div, KL-div with 5-fold cross-validation (CV), KLR, KLR with
CV, and RKDE with CV. For KuLSIF, KL-div, and KLR, LOOCV or CV is used to
choose the regularization parameter λ from 2k/(n ∧m)0.9, k = −5,−4, . . . , 4, 5. We also
test a fixed value λ = (m ∧ n)−0.9 for KuLSIF, KL-div, and KLR. As shown in Section
3, the regularization parameter λ = (m ∧ n)−0.9 guarantees the statistical consistency of
KuLSIF and KL-div under mild assumptions. Statistical properties of KLR have been
studied by Bartlett et al. (2006), Bartlett and Tewari (2007), Steinwart (2005), and Park
(2009). Especially, Steinwart (2005) has proved that, under mild assumptions, KLR with
λ = (m+ n)−0.9 has the statistical consistency. When the training samples are balanced,
i.e., the ratio of sample size m/n converges to a positive constant, the regularization
parameter λ = (m∧n)−0.9 guarantees the statistical consistency of KLR. In all estimators,
the Gaussian kernel is used. Except RKDE, the kernel width σ is set by using the standard
heuristic introduced in Section 5.2. For RKDE, the kernel width is chosen by using CV
among 20 candidates around the value determined by the above median heuristics.

For each data set, training samples generated by setting η = 0.01, 0.1, 0.5 or 1 in Pη(b|z)
are respectively prepared. For each training set, the NMSE of each estimator is computed.
By using the NMSE over the uniformly distributed test samples, the estimation accuracy
on the whole data domain is evaluated, while Theorem 2 does not guarantee the statistical
consistency for that test distribution. To compute the average performance, the above
experiments are repeated multiple times as described in Table 3. The numerical results
are presented in Tables 4–7 and Figure 4. In the tables, data sets are arranged in the
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ascending order of the Bayes error shown in Table 3. In Table 4, the NMSEs under η = 1
are presented. In this case, the class-posterior probability satisfies P̂1(b|z) = 0.5, and
hence, the density ratio is close to the constant function. Then, estimators with strong
regularization will provide good results. Indeed, methods using LOOCV or CV such as
KuLSIF(LOOCV), KL-div(CV), and KLR(CV) achieve the lowest NMSEs. Especially,
KLR(CV) is significantly better than the others. For small η, other estimators except
RKDE also present good statistical performance (see Tables 5–7).

At the bottom of each table, the relative computational costs are also described. The
computation time depends on parameters included in the optimization algorithm. In order
to reduce the computation time of KL-div and KL-div(CV), we used the optim function
with the stopping criterion reltol=0.5×10−3, instead of the default value reltol=10−8.
On the other hand, KuLSIF using the solve function is numerically accurate. From
the experimental results, we see that KuLSIF dominates the other methods in terms
of the computational efficiency. KuLSIF(LOOCV) with the analytic-form expression of
the LOOCV score also has a computational advantage over KL-div(CV), KLR(CV), and
RKDE(CV). Note that the relative computational cost of KL-div is large for small η. This
phenomenon is theoretically studied in a companion paper (Kanamori et al., 2011).

In Figure 4, the NMSEs of estimators described in these tables are plotted as functions
of η. The NMSEs of RKDE are not shown since they are much larger than the others.
We see that KLR and KLR(CV) are sensitive to η for the data set with low Bayes error
such as ringnorm, twonorm, image, thyroid, splice, waveform, and banana. On the
other hand, KuLSIF, KuLSIF(LOOCV), and KL-div(CV) present moderate NMSEs for
a wide range of η. See Tables 4–7 for more details.

6 Conclusions

In this paper, we addressed the problem of estimating the ratio of two probability densities.
We proposed a kernel-based least-squares density-ratio estimator called KuLSIF, and
investigated its statistical properties such as consistency and the rate of convergence.
We also showed that, not only the estimator, but also the leave-one-out cross-validation
score can be analytically obtained for KuLSIF. This highly contributes to reducing the
computational cost. Then we pointed out that KuLSIF and an inductive variant of
kernel mean matching (KMM) actually share the same solution. Hence, the statistical
properties of KuLSIF are inherited to KMM. However, we showed through numerical
experiments that KuLSIF is computationally much more efficient than KMM. We further
experimentally showed that KuLSIF overall compares favorably with other density-ratio
estimators such as the M-estimator with the Kullback-Leibler divergence, kernel logistic
regression, and the ratio of kernel density estimators.

Our definition of KuLSIF (see Eq.(4)) does not contain a non-negativity constraint
on the learned density-ratio function. We may add a non-negativity constraint w ≥ 0
to (4) as Kanamori et al. (2009) did. However, by the additional constraint, we can no
longer obtain the solution analytically. When the sample size is large, the estimator ŵ
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(a) KuLSIF: NMSE= 0.634
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(d) RKDE: NMSE= 0.960

Figure 2: Estimation of density ratios for the data set banana is shown. The dimension
of the data is 2. The solid line is the true density-ratio w̃0 with η = 0.01, and ◦’s are
predicted values of the density ratio. The data index is arranged in the ascending order
of the density ratio, and thus the solid line is an increasing function.
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(a) KuLSIF: NMSE= 0.432
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(b) KL-div: NMSE= 0.397
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(c) KLR: NMSE= 0.372
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(d) RKDE: NMSE= 7.435

Figure 3: Estimation of density ratios for the data set german is shown. The dimension
of the data is 20. The solid line is the true density-ratio w̃0 with η = 0.01, and ◦’s are
predicted values of the density ratio. The data index is arranged in the ascending order
of the density ratio, and thus the solid line is an increasing function.
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Figure 4: The NMSEs are depicted as functions of η.
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obtained by (4) will be a non-negative function without additional constraints. Thus,
the estimator ŵ (and its cut-off version ŵ+) will be asymptotically the same as the one
obtained by imposing the nonnegative constraint on (4). For the small sample size,
however, the estimator ŵ can take negative values, and the cut-off estimator ŵ+ may
have statistical bias. Thus, we need careful treatment to obtain a good estimator in
practice. In nonparametric density estimation, it was shown that nonnegative estimators
cannot be unbiased (Rosenblatt, 1956). We conjecture that a similar result also holds in
the inference of density ratios, which needs to be investigated in our future work.
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A Proof of Theorem 1

Proof. Applying the representer theorem (Kimeldorf & Wahba, 1971), we see that an
optimal solution of (4) has the form of

w =
n∑

j=1

αjk(·, Xj) +
m∑
ℓ=1

βℓk(·, Yℓ). (21)

Let K11, K12, K21, and K22 be the sub-matrices of the Gram matrix:

(K11)ii′ = k(Xi, Xi′), (K12)ij = k(Xi, Yj), K21 = K⊤
12, (K22)jj′ = k(Yj, Yj′),

where i, i′ = 1, . . . , n, j, j′ = 1, . . . ,m. Then, the extremal condition of (4) with respect
to parameters α = (α1, . . . , αn)

⊤ and β = (β1, . . . , βn)
⊤ is given as

1

n
K11(K11α +K12β)−

1

m
K121m + λK11α + λK12β = 0, and

1

n
K21(K11α +K12β)−

1

m
K221m + λK22β + λK21α = 0.

An easy computation shows that the above extremal condition is satisfied at the parameter
α which is defined as the solution of the linear equation (5) and β = 1

mλ
(1, . . . , 1)⊤.

B Leave-One-Out Cross-Validation of KuLSIF

The procedure to compute the leave-one-out cross-validation score of KuLSIF is presented
here. Let K

(ℓ)
11 ∈ ℜ(n−1)×(n−1) and K

(ℓ)
12 = K

(ℓ)⊤
21 ∈ ℜ(n−1)×(m−1) be the Gram matrices of
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samples except xℓ and yℓ, respectively. According to Theorem 1, the estimated parameters
α̃(ℓ) and β̃(ℓ) of

ŵ(ℓ)(z) =
∑
i̸=ℓ

αik(z,Xi) +
∑
j ̸=ℓ

βjk(z, Yj)

is equal to

α̃(ℓ) = − 1

(m− 1)λ
(K

(ℓ)
11 + (n− 1)λIn−1)

−1K
(ℓ)
12 1m−1, β̃(ℓ) =

1

(m− 1)λ
1m−1,

where In−1 denotes the (n − 1) by (n − 1) identity matrix. Hence, the parameter α̃(ℓ) is
the solution of the following convex quadratic problem,

min
α

1

2
α⊤(K

(ℓ)
11 + (n− 1)λIn−1)α +

1

(m− 1)λ
1⊤
m−1K

(ℓ)
21 α, α ∈ ℜn−1.

The same solution can be obtained by solving

min
α

1

2
α⊤(K11 + (n− 1)λIn)α+

1

(m− 1)λ
(1m − em,ℓ)

⊤K21α,

s. t. α ∈ ℜn, αℓ = 0,
(22)

where em,ℓ ∈ ℜm is the standard unit vector with only the ℓ-th component being 1. The
optimal solution of (22) denoted by α(ℓ) is equal to

α(ℓ) = (K11 + (n− 1)λIn)
−1

(
− 1

(m− 1)λ
K12(1m − em,ℓ)− cℓen,ℓ

)
,

where cℓ is determined so that α
(ℓ)
ℓ = 0. The estimator α̃(ℓ) ∈ ℜn−1 is equal to the

(n − 1)-dimensional vector consisting of α(ℓ) except the ℓ-th component, i.e., α̃(ℓ) =

(α
(ℓ)
1 , . . . , α

(ℓ)
ℓ−1, α

(ℓ)
ℓ+1, . . . , α

(ℓ)
n )⊤. Let β̂(ℓ) be

β̂(ℓ) =
1

(m− 1)λ
(1m − em,ℓ),

then we have

ŵ(ℓ)(z) =
n∑

i=1

α
(ℓ)
i k(z,Xi) +

m∑
j=1

β̂
(ℓ)
j k(z, Yj).

We consider an analytic expression of the leave-one-out score. Let the matrices A and
B be the parameters of the leave-one-out estimator,

A = (α(1), . . . , α(n∧m)) ∈ ℜn×(n∧m), B = (β(1), . . . , β(n∧m)) ∈ ℜm×(n∧m),

the matrix G ∈ ℜn×n be G = (K11 + (n − 1)λIn)
−1, and E ∈ ℜm×(n∧m) be the matrix

defined as

Eij =

{
1 i ̸= j,

0 i = j.
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Let S ∈ ℜn×(n∧m) be

S = − 1

(m− 1)λ
K12E,

and T ∈ ℜn×(n∧m) be

Tij =


(GS)ii
Gii

i = j,

0 i ̸= j.

Then, we obtain

A = G(S − T ), B =
1

(m− 1)λ
E.

Let KX ∈ ℜ(n∧m)×(n+m) be the sub-matrix of (K11K12) formed by the first n ∧ m rows
and all columns. Similarly, let KY ∈ ℜ(n∧m)×(n+m) be the sub-matrix of (K21K22) formed
by the first n ∧ m rows and all columns. Let the product U ∗ U ′ be the element-wise
multiplication of matrices U and U ′ of the same size, i.e., the (i, j) element is given by
UijU

′
ij. Then, we have

ŵX = (ŵ(1)(X1), . . . , ŵ
(n∧m)(Xn∧m))

⊤ = (KX ∗ (A⊤ B⊤))1n+m,

ŵY = (ŵ(1)(Y1), . . . , ŵ
(n∧m)(Yn∧m))

⊤ = (KY ∗ (A⊤ B⊤))1n+m,

ŵX+ = (ŵ
(1)
+ (X1), . . . , ŵ

(n∧m)
+ (Xn∧m))

⊤ = max{ŵX , 0},
ŵY+ = (ŵ

(1)
+ (Y1), . . . , ŵ

(n∧m)
+ (Yn∧m))

⊤ = max{ŵY , 0},

where the max operation for a vector is applied in the element-wise manner. As a result,
LOOCV (7) is equal to

LOOCV =
1

n ∧m

{
1

2
ŵ⊤

X+ŵX+ − 1⊤
n∧mŵY+

}
.

C Proof of Theorem 2

We summarize some notations to be used in the proof. Given a probability distribution
P and a random variable h(X), we denote the expectation of h(X) under P by

∫
hdP .

Given samples X1, . . . , Xn from P , the empirical distribution is denoted by Pn. The
expectation

∫
hdPn denotes the empirical means of h(X), that is, 1

n

∑n
i=1 h(Xi). We also

use the notation
∫
h d(P − Pn) to represent

∫
hdP − 1

n

∑n
i=1 h(Xi). Let H be the RKHS

endowed with the kernel k. The norm and inner product on H are denoted by ∥ · ∥H and
⟨·, ·⟩H, respectively. Let ∥·∥∞ be the infinity norm, and for distribution function P , define
the L2 norm by

∥g∥P =

(∫
|g|2dP

)1/2

,

and let L2(P ) be the metric space defined by this distance.
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Since supx∈Z k(x, x) is assumed to be bounded above, without loss of generality we
assume supx∈Z k(x, x) ≤ 1. The constant factor of the kernel function does not affect the
following proof.

We now define the bracketing entropy of the set of functions. For any fixed δ >
0, a covering for function class F using the metric L2(P ) is a collection of functions
which allows F to be covered using L2(P ) balls of radius δ centered at these functions.
Let NB(δ,F , P ) be the smallest number of N for which there exist pairs of functions
{(gLj , gUj ) ∈ L2(P )× L2(P ) | j = 1, . . . , N} such that ∥gLj − gUj ∥P ≤ δ, and such that for
each f ∈ F , there exists j satisfying gLj ≤ f ≤ gUj . Then, HB(δ,F , P ) = logNB(δ,F , P )
is called the bracketing entropy of F (van de Geer, 2000, Definition 2.2).

For w ∈ H, we have ∥w∥P ≤ ∥w∥∞ ≤ ∥w∥H, because for any x ∈ Z, the inequalities

|w(x)| = |⟨w, k(·, x)⟩H| ≤ ∥w∥H sup
x

√
k(x, x) ≤ ∥w∥H

hold. Let G = {v2 | v ∈ H} and we define a measure of complexity J : G → ℜ by

J(g) = inf { ∥v∥2H | g = v2, v ∈ H}.

Let HM and GM be

HM = {v ∈ H | ∥v∥H < M},
GM = {v2 | v ∈ H√

M} = {g ∈ G | J(g) < M}. (23)

It is straightforward to verify the second equality of (23).
The following proposition is crucial to prove the convergence property of KuLSIF.

Proposition 1 (Lemma 5.14 in van de Geer (2000)). Let F ⊂ L2(P ) be a function
class, and the map I(f) be a measure of complexity of f ∈ F , where I is a non-negative
functional on F and I(f0) < ∞ for a fixed f0 ∈ F . We now define FM = {f ∈ F | I(f) <
M} satisfying F = ∪M≥1FM . Suppose that there exist c0 > 0 and 0 < γ < 2 such that

sup
f∈FM

∥f − f0∥P ≤ c0M, sup
f∈FM

∥f−f0∥P≤δ

∥f − f0∥∞ ≤ c0M, for all δ > 0,

and that HB(δ,FM , P ) = O (M/δ)γ. Then, we have

sup
f∈F

∣∣∣∣ ∫ (f − f0)d(P − Pn)

∣∣∣∣
D(f)

= Op(1), (n → ∞),

where D(f) is defined by

D(f) =
∥f − f0∥1−γ/2

P I(f)γ/2√
n

∨ I(f)

n2/(2+γ)

and a ∨ b denotes max{a, b}.
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In van de Geer (2000), the probabilistic order is evaluated for each case of ∥f −
f0∥ ≤ n−1/(2+γ)I(f) and ∥f − f0∥ > n−1/(2+γ)I(f), respectively. When the supremum is
taken over {f ∈ F | ∥f − f0∥ ≤ n−1/(2+γ)I(f)}, D(f) is equal to I(f)/n2/(2+γ), and the
probabilistic order above is obtained from the first formula of Lemma 5.14 (van de Geer,
2000). In the same way, we obtain the probabilistic order for ∥f − f0∥ > n−1/(2+γ)I(f).
The sum of the probabilistic upper bounds for these two cases provides the result in the
above proposition.

We use Proposition 1 to derive an upper bound of∫
(ŵ − w0)d(Q−Qm), and

∫
(ŵ2 − w2

0)d(P − Pn).

Lemma 1. The bracketing entropy of GM is bounded above by

HB(δ,GM , P ) = O

(
M

δ

)γ

.

Proof. Let vL1 , v
U
1 , v

L
2 , v

U
2 , . . . , v

L
N , v

U
N ∈ L2(P ) be coverings of H√

M in the sense of bracket-
ing, such that ∥vLi −vUi ∥P ≤ δ holds for i = 1, . . . , N . Then, for any v ∈ H√

M there exists i

such that vLi ≤ v ≤ vUi holds. We can choose these functions such that ∥vL(U)
i ∥∞ ≤

√
M is

satisfied for all i = 1, . . . , N , since for any v ∈ H√
M , the inequality ∥v∥∞ ≤ ∥v∥H <

√
M

holds. For example, replace v
L(U)
i with min{

√
M ,max{−

√
M, v

L(U)
i }} ∈ L2(P ). Let v̄Li

and v̄Ui be

v̄Li (x) =


(vLi (x))

2, vLi (x) ≥ 0,

(vUi (x))
2, vUi (x) ≤ 0,

0, vLi (x) < 0 < vUi (x),

v̄Ui = max{(vLi )2, (vUi )2},

for i = 1, . . . , N . Then, v̄Li ≤ v̄Ui holds. Moreover, for any v ∈ H√
M satisfying vLi ≤ v ≤

vUi , we have v̄Li ≤ v2 ≤ v̄Ui . By definition, we also have

0 ≤ v̄Ui (x)− v̄Li (x) ≤ max{|vUi (x)2 − vLi (x)
2|, |vUi (x)− vLi (x)|2}

≤ (|vUi (x)|+ |vLi (x)|) · |vUi (x)− vLi (x)| ≤ 2
√
M |vUi (x)− vLi (x)|,

and thus, ∥v̄Ui − v̄Li ∥P ≤ 2
√
M∥vUi − vLi ∥P holds. Due to (8), we obtain

HB(2
√
Mδ,GM , P ) ≤ HB(δ,H√

M , P ) = O

(√
M

δ

)γ

.

Hence, HB(δ,GM , P ) = O (M/δ)γ holds.
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Lemma 2. Assume the condition of Theorem 2. Then, for the KuLSIF estimator ŵ, we
have ∣∣∣∣ ∫ (ŵ − w0)d(Q−Qm)

∣∣∣∣ = Op

(
∥w0 − ŵ∥1−γ/2

P ∥ŵ∥γ/2H√
m

∨ ∥ŵ∥H
m2/(2+γ)

)
,

∣∣∣∣ ∫ (ŵ2 − w2
0)d(P − Pn)

∣∣∣∣ = Op

(
∥ŵ − w0∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

√
n

∨ ∥ŵ∥2H
n2/(2+γ)

)
.

Proof. There exists c0 > 0 such that

sup
w∈HM

∥w − w0∥P ≤ c0M, sup
w∈HM

∥w−w0∥P≤δ

∥w − w0∥∞ ≤ c0M, (24)

sup
g∈GM

∥g − w2
0∥P ≤ c0M, sup

g∈GM

∥g−w2
0∥P≤δ

∥g − w2
0∥∞ ≤ c0M. (25)

The inequalities in (25) are derived as follows. For g ∈ GM , there exists v ∈ H such that
v2 = g and ∥v∥2H < M , and then, we have

∥g − w2
0∥P ≤ ∥g − w2

0∥∞ ≤ ∥v∥2∞ + ∥w0∥2∞
≤ ∥v∥2H + ∥w0∥2∞ ≤ M + ∥w0∥2∞ ≤ c0M, (M ≥ 1).

In the same way, (24) also holds.
Set F be H and I(w) = ∥w∥H in Proposition 1. Taking (24) into account, we have

sup
w∈H

∣∣∣∣∫ (w0 − w)d(Q−Qm)

∣∣∣∣
D(w)

= Op(1),

where D(w) is defined as

D(w) =
∥w0 − w∥1−γ/2

P ∥w∥γ/2H√
m

∨ ∥w∥H
m2/(2+γ)

.

In the same way, by setting F be G and I(g) = J(g) in Proposition 1, we have

sup
w∈H

∣∣∣∣ ∫ (w2 − w2
0)d(P − Pn)

∣∣∣∣
E(w)

= Op(1),

where E(w) is defined as

E(w) =
∥w2 − w2

0∥
1−γ/2
P J(w2)γ/2√
n

∨ J(w2)

n2/(2+γ)
.
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Note that ∥w2 −w2
0∥P ≤ (∥w0∥∞ + ∥w∥H)∥w−w0∥P = O((1 + ∥w∥H)∥w−w0∥P ) and

J(w2) ≤ ∥w∥2H. Then, we obtain

E(w) ≤ ∥w − w0∥1−γ/2
P (1 + ∥w∥H)1+γ/2

√
n

∨ ∥w∥2H
n2/(2+γ)

.

Now we show the proof of Theorem 2.

Proof. The estimator ŵ satisfies the inequality

1

2

∫
ŵ2dPn −

∫
ŵdQm +

λ

2
∥ŵ∥2H ≤ 1

2

∫
w2

0dPn −
∫

w0dQm +
λ

2
∥w0∥2H.

Then, we have

1

2
∥ŵ − w0∥2P =

∫
(w0 − ŵ)dQ+

1

2

∫
(ŵ2 − w2

0)dP

≤
∫

(w0 − ŵ)dQ+
1

2

∫
(ŵ2 − w2

0)dP

+

∫
(ŵ − w0)dQm +

1

2

∫
(w2

0 − ŵ2)dPn +
λ

2
∥w0∥2H − λ

2
∥ŵ∥2H.

As a result, we have

1

2
∥ŵ − w0∥2P +

λ

2
∥ŵ∥2H

≤
∣∣∣∣ ∫ (ŵ − w0)d(Q−Qm)

∣∣∣∣+ 1

2

∣∣∣∣ ∫ (ŵ2 − w2
0)d(P − Pn)

∣∣∣∣+ λ

2
∥w0∥2H

≤ λ

2
∥w0∥2H +Op

(
∥w0 − ŵ∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

√
n ∧m

∨ (1 + ∥ŵ∥H)2

(n ∧m)2/(2+γ)

)
,

where Lemma 2 is used.
We need to study three possibilities:

1

2
∥w0 − ŵ∥2P +

λ

2
∥ŵ∥2H ≤ Op(λ), (26)

1

2
∥w0 − ŵ∥2P +

λ

2
∥ŵ∥2H ≤ Op

(
∥w0 − ŵ∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

√
n ∧m

)
, (27)

1

2
∥w0 − ŵ∥2P +

λ

2
∥ŵ∥2H ≤ Op

(
(1 + ∥ŵ∥H)2

(n ∧m)2/(2+γ)

)
. (28)

One of the above inequalities should be satisfied. We study each inequality below.
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Case (26): we have

1

2
∥w0 − ŵ∥2P ≤ Op(λ),

λ

2
∥ŵ∥2H ≤ Op(λ),

and hence the inequalities ∥w0 − ŵ∥P ≤ Op(λ
1/2) and ∥ŵ∥H ≤ Op(1) hold.

Case (27): we have

∥w0 − ŵ∥2P ≤ Op

(
∥w0 − ŵ∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

(n ∧m)1/2

)
,

λ∥ŵ∥2H ≤ Op

(
∥w0 − ŵ∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

(n ∧m)1/2

)
.

The first inequality provides

∥w0 − ŵ∥P ≤ Op

(
1 + ∥ŵ∥H

(n ∧m)1/(2+γ)

)
.

Thus, the second inequality leads to

λ∥ŵ∥2H ≤ Op

(
∥w0 − ŵ∥1−γ/2

P (1 + ∥ŵ∥H)1+γ/2

(n ∧m)1/2

)

≤ Op

((
1 + ∥ŵ∥H

(n ∧m)1/(2+γ)

)1−γ/2
(1 + ∥ŵ∥H)1+γ/2

(n ∧m)1/2

)

= Op

(
(1 + ∥ŵ∥H)2

(n ∧m)2/(2+γ)

)
.

Hence, we have

∥ŵ∥H ≤ Op

(
1

λ1/2(n ∧m)1/(2+γ)

)
= op(1).

Then, we obtain

∥w0 − ŵ∥P ≤ Op

(
1

(n ∧m)1/(2+γ)

)
≤ Op(λ

1/2).

Case (28): we have

∥w0 − ŵ∥2P ≤ Op

(
(1 + ∥ŵ∥H)2

(n ∧m)2/(2+γ)

)
, λ∥ŵ∥2H ≤ Op

(
(1 + ∥ŵ∥H)2

(n ∧m)2/(2+γ)

)
.

Then, as shown in the case (27), we have ∥ŵ∥H = op(1). Hence, we obtain

∥w0 − ŵ∥P ≤ Op

(
1

(n ∧m)1/(2+γ)

)
≤ Op(λ

1/2).
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D Proof of (13)

Theorem 3. Let H be the reproducing kernel Hilbert space endowed with the kernel func-
tion k on Z × Z, and suppose supx∈Z k(x, x) < ∞. Then, for w, v ∈ H, the equality∫

wvdP −
∫

vdQ = ⟨Φ(w), v⟩H

holds, where Φ(w) is defined by (11).

Proof. For all w ∈ H, supx∈Z |w(x)| is bounded. This is because |w(x)| = |⟨w, k(·, x)⟩H| ≤
∥w∥H

√
k(x, x) < ∞. For a fixed w ∈ H, the function

∫
wvdP −

∫
vdQ is linear and

bounded as the function of v ∈ H. Indeed, the linearity is clear, and the boundedness is
shown by∣∣∣∣∫ wvdP −

∫
vdQ

∣∣∣∣ ≤ ∫ |v(x)||w(x)|P (dx) +

∫
|v(y)|Q(dy)

=

∫
|⟨v, k(·, x)⟩H||w(x)|P (dx) +

∫
|⟨v, k(·, y)⟩H|Q(dy)

≤ sup
x∈Z

√
k(x, x)

(∫
|w(x)|P (dx) + 1

)
∥v∥H.

Since |w(x)| is bounded, the integral above is finite. Then, by the Riesz representation
theorem (Reed & Simon, 1972, Theorem II.4), there exists Ψ : H → H such that∫

wvdP −
∫

vdQ = ⟨Ψ(w), v⟩H

holds for all w, v ∈ H. For v = k(·, x0) ∈ H, we have

(Ψ(w))(x0) =

∫
k(x0, x)w(x)P (dx)−

∫
k(x0, y)Q(dy),

where we used the symmetry of the kernel function. We see that the function Ψ is the
same as the function Φ defined by (11).
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