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ABSTRACT a linear combination of kernel functions and learns its pa-
o B ) rameters by regularized least-squares fitting of the true class-
The least-squares probabilistic classifigt SPC) is a com-  hgterior probability. Thanks to this simple formulation, the
putationally efficient alternative to kernel logistic regressiongqtion of LSPC can be computed analytically in a class-
(KLR). A key idea for the speedup is that, unlike KLR that yise manner just by solving a regularized system of linear
uses maximum likelihood estimation for a log-linear mOdel’equations.

LSPC uses least-squares estimation for a linear model. This So far, LSPC has been successfully applied to image clas-

allows us to obtain a global solution analytically in a Class'sification [4, 5], audio tagging [4, 6], accelerometer-based hu-

wise manner. In exchange for the speedup, however, thig,, 5 ivity recognition [7], and face-based age prediction
linear least-squares formulation does not necessarily produ

a non-negative estimate. Nevertheless, consistency of LS
is guaranteed in the large sample limit, and rounding up
negative estimate to zero in finite sample cases was dem
strated not to degrade the classification performance in ex-

periments. Thus, LSPC is a practically useful probabilistic 2. PROBABILISTIC CLASSIFICATION BY LSPC
classifier. In this paper, we give an overview of LSPC and

its extentions to covariate Shlft, mUlti-taSk, and multi'labe“n this section, we review tHeast-squareS probabi”stic clas-
scenarios. A MATLAB implementation of LSPC is avalil- sifier (LSPC) [3].

able from http://sugiyama-www.cs.titech.ac.

jp! ~ sugi/software/LSPC/ .

In this paper, we review LSPC and its extentions to co-
O?griate shift [7], multi-task [5], and multi-label [6] scenarios.

S . 2.1. Formulation
Index Terms— Least-squares probabilistic classifier, ker-

nel logistic regression, covariate shift, multi-task learning,Suppose that we are given a set of training samples
multi-label classification
{(mmyn)}ﬁlzl

drawn independently from a joint probability distribution with

o , , ... densityp(x,y), wherez,, € RP is a feature vector) is the
Kernel logistic regressioKLR) is a popular probabilistic dimensionality of feature vectar

classification method for estimating class-posterior probabil-

iFies. KLR r_nod_els the cIass—posFerior probability by a log- yn € {1,...,Y}

linear combination of kernel functions and learns its parame-

ters by penalized maximum likelihood via, e.g., (quasi-) New-g g class label, an¥f is the number of classes.

ton methods [1, 2]. However, training of KLR models is often The objective of probabilistic classification is to learn the

time-consuming and is not scalable to large datasets. class-posterior probability(y|x) from the training samples.

~ To cope with this problem, we introduced an altema-gageq on the class-posterior probability, classification of a
tive method called théeast-squares probabilistic classifier o, samplez can be carried out by

(LSPC) [3]. LSPC models the class-posterior probability by

1. INTRODUCTION
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2.2. Least-Squares Fitting of Class-Posterior Probabili-
ties

Foreachy € {1,...,Y}, we modelp(y|x) by

B
(y|x; 0,) = Z%,b%(ﬂ?) =0, d(x),
b=1

whereB denotes the number of parameters,

0,=(0y1,...,0,) €RP

is the parameter vector, and

o(z) = (1(2), ..., op(x))" €R” (1)

whereI g denotes theB-dimensional identity matrix. Note
that this is essentially the same formulationriage regres-
sion(i.e., »-regularized least-squares) [9] with target.

As the number of training samples increases, the solution
q(y|x; @,) was shown to converge to the true class-posterior
probabilityp(y|x) with the optimal convergence rate [3]. For
a finite sample size, we obtain the final solution by rounding
up a negative output to zero and normalization as follows [4]:

N max(0, gy w;@
Plyfe) = 0 0012:0))
>y =1 max(0,q(y'|@; 0,))
This method is called LSPC.
Thanks to the analytic solution, LSPC was demonstrated

is the basis function vector. In practice, we may use a kerneb be computationally much more efficient than kernel logistic

model, i.e., we seB = N and¢,(x) =
K(x,2’) is a kernel function.

K(x,x), where

We fit the above model to the true class-posterior proba-

bility p(y|x) under the following squared loss:

1

L / (a(vla: 8,) — plyle))? pla)de,

Jy(gy) = 9

wherep(x) denotes the marginal density of feature veator
Expanding the squared term, we can exprgsas

1,06, = 5 [ atvia:6,p(e)de
- / a(vla; 0,)p(|y)p(y)de + C,

wherep(y|x) = p(z|y)p(y)/p(x) is used and’ is a constant
independent of,,.

Approximating the expectations overby sample aver-
ages and the class-prior probabilityy) by sample ratios,
ignoring constanC' and factorl/N, and including ar¢s-
regularizer, we have the following training criterion:

J,(0,) == %Z W0 0,)> = a(ylwn; 0,) + H6’y||2
n=1 n:Yn=yY
- 10T<1>T<1>0y —0,@"m,+ )0, (2)
wherep > 0 is the regularization parameter,
® = ($(z1),...,p(an)) € RN*P 3)

is the design matrix, aner, is the N-dimensional class-

indicator vector defined as
(yn = y)»

- _ 1
P00 (e # )

Taking the derivative ofy with respect t@,, and setting
it to zero, we can obtain the minimiz@y, analytically as

(4)

éy = (<I>T<£- + pIB) <I>T7ry,

regression, whereas the classification accuracy is kept compa-
rable [3, 4].
A possible variation is to use thg-regularizer,

B
Z |9y,b|7
b=1

instead of theé/s-regularizer| 6, ||> = Zb 1 y »- Thenthisis
essentially the same formulation as thast absolute shrink-
age and selection operatgtasso) [10] with targetr,. Be-
cause Lasso tends to produce a sparse solution, its solution
can be computed efficiently [11, 12, 13, 14, 15, 16, 17]. Fur-
thermore, solutions for all regularization parameters can be
computed efficiently byparametric programmingl8].

3. COMPARISON WITH KERNEL LOGISTIC
REGRESSION

In this section, we methodologically and experimentally com-
pare LSPC wittkernel logistic regressio(KLR).
3.1. Methodological Comparison

KLR models the class-posterior probabiljiyy|x) by a log-
linear combination of kernel functions:

1
q(ylz;01,...,0y):= 2(91,7,9 exp (Z 0y.b05(x )

b=1

whereZ (64, ...,0y) is the normalization factor defined by
Y B
Z(61,...,0y) =) exp (Z 9y,b¢b(w)> :
y=1 b=1

Then the parametetl, . . ., 8y are learned so that the penal-
ized log-likelihood is maximized:

N
Zlogq (Yn|an; 01,...,0y) —

Y
ZnyHByHZ] )
y=1

917 ;Y



wheren, > 0 is the penalty parameter for clags LAB implementatiod. For KLR, we use the MATLAB im-
In the maximum likelihood formulation, the likelihood di- plementation included in the ‘minFunc’ package [19].
verges to infinity if the normalization factéf(0, ..., 60y ) is We compare the classification performance and computa-
omitted. Thus, the normalization factor needs to be includedion time of LSPC and KLR. When evaluating the classifica-
However, becausZ (6, ..., 0y) depends on parameters of tion performance, it is important to take into account both the
all classes, training of KLR needs to be carried out simultafalse positive rate and the true positive rate. Here we adopt the
neously for all classes. This involvégY parameters, which area under the ROC cur{@UC) as our error metric [20]. For
can be cumbersome in multi-class problems. computation time, we evaluate the CPU computation time re-
On the other hand, the consistency of LSPC (i.e., converquired for training each classifier after the Gaussian width and
gence of the LSPC solution to the true class-posterior proldhe regularization parameter are chosen by cross-validation.
ability in the large sample limit) is theoretically guaranteed
;/wthout normallzanon.' This is a notgble advantage of the&zlz PASCAL VOC 2010 Datasets
east-squares formulation because this allows us to solve thé

LSPC optimization problem separately in a class-wise mange yse thePASCAL Visual Object Classes (VOC) 2010
ner. Then the optimization problem for each class involvegjataset [21] for image classification experiments, which con-
only N parameters. Thus, LSPC is computationally highlysists of 20 binary classification tasks of identifying the exis-
efficient in multi-class scenarios. tence of a person, aeroplane, etc. in each image. The total
The penalized log-likelihood in KLR does not possessnumber of images in the dataset is 11319, and we use 1000
useful structure to speed up optimization. Thus, we need teandomly chosen images for training and the rest for testing.
simply use a generic non-linear optimization technique such Feature extraction from images is carried out as follows.
as (quasi-) Newton methods, which is practically convenienfye first extract visual features from each image by3peed
but not necessarily computationally efficient. When the KLRup Robust Feature§SURF) algorithm [22]. We then run the
optimization problem is solved by the Newton method, the-meanslustering algorithm in the SURF space and obtained
optimization procedure is reduced iteratively-reweighted 500 cluster centers agsual words Finally, we construct a
least-squareq1], which requires to solve a system of lin- 500-dimensionabag-of-featurevector by counting the num-
ear equations (of siz&/Y’) in each iteration. On the other per of visual words in each image, which is used as feature
hand, LSPC requires to solve a system of linear equations (§&ctorz in LSPC and KLR.
sizeN) only once for each clags which provides significant Table 1 shows the mean AUC values (with standard devia-
speedup in practice. tions in parentheses) over 50 trials. Average computation time
However, a potential weakness of LSPC is that, solutionss also included at the bottom of the table. The results show

can be negative particularly in small sample cases. In praghat LSPC is slightly more accurate than KLR with much less
tice, such negative outputs are merely rounded-up to zer@gomputational cost.

which was demonstrated not to degrade the classification per-

formance severely [3, 4] 3.2.3. Freesound Datasets
.2.3. u

3.2. Experimental Comparison For audio-tagging experiments, we use the data collected by
the Freesoundproject [23], which consists of various audio
Next, we experimentally compare the performance of LSPGiles annotated with word tags such as ‘people’, ‘noisy’, and
and KLR on real-world image classification and audio tag-restaurant’. The goal is to predict the existence of each tag
ging. for a new audio file.
We extract audio files from among all files in the dataset
containing any of the 50 most used tags and between 3-

3.2.1. Setup 60 seconds in length. We then use 180 randomly selected

For both LSPC and KLR. we use the Gaussian kernel modevncompressed audio files with a sampling rate greater than
e wesel3 — N and ' 44.1kHz as our training set, and 1500 randomly selected au-

dio files that are stored in a compressed format for testing.
We use thénidden Markov kerngl24], instead of the simple
) ; Gaussian kernel due to the sequential nature of audio files.
We compute the AUC value over all test samples for each

where o is the Gaussian width. We determine the kernel@d, and this is averaged over all tags. Table 2 summarizes the
width o and regularization parametiibased on 2-fold cross- accuracy and computation time of LSPC and KLR over 50

validation. ) ) 1The software is publicly available fronfttp:/sugiyama-www.
For computing LSPC solutions, we use our own MAT- cs.titech.ac.jp/ ~ sugi/software/LSPC/
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posterior probability remains unchangedere, we review

Table tr11. Mean Agg ¢ \_/allu:zs t(r\1NIt2 Asst?:rfl_a\r/doge&/latltlonf _'I_r;]an extention of LSPC to the covariate shift scenario called the
parentheses) over 50 trials for the ataset. IMinportance-weighted LSPEW-LSPC) [7].

best method in terms of the mean AUC and comparable meth-
ods according to thétestat the significance level% are
specified by bold face. Average computation time is also in4.1.1. Formulation
cluded at the bottom.

Let us consider aemi-supervised learningetup [27], where

| | LSPC | KIR | unlabeled samplega/,}, are given in addition to la-

Aeroplane 82.61.0) | 83.0(1.3) beled sampleg(x,,, y,)}Y_,. Suppose unlabeled samples
Bicycle 77.01.7) | 76.6(3.4) {«/ }N" are drawn independently from a distribution with
Bird 68.7(2.0)| 70.8(2.2) densityp’ (), which can be generally different fropfz) that
Boat 74.42.0) | 72.8(2.6) {a,,}_, follow. Under this covariate shift setup, naively es-
Bottle 65.41.8) | 62.1(4.3) timating a class-posterior probability by LSPC causes a bias
Bus 85.41.4) | 85.6(1.4) due to the distribution difference. Below, we explain how this
Car 73.00.8) | 72.1(1.2) bias can be reduced.
Cat 73.61.4) | 74.1(1.7)
Chair 71.9(1.0) | 70.5(1.0)
Cow 71.73.2) | 69.3(3.6) 4.1.2. Importance-Weighted Least-Squares Fitting of Class-
Diningtable 75.01.6) | 71.4(2.7) Posterior Probabilities
Dog 69.41.0) | 69.4(1.8) The key technique for covariate shift adaptatioimiportance
Horse 64.42.5) | 61.2(3.2) ; . o

. sampling [28]—the expectation of a loss functidoss(x)
Motorbike 77.01.7) | 75.9(3.3) test input density’ (x) can be consistently estimated b
Person 67.60.9) | 67.0(0.8) oo AN draon ey y
Pottedplant 66.22.6) | 61.9(3.2) samplegx,, }.'_, drawn from training input density(x) as
Sheep 77.91.6) | 74.0(3.8)
Sofa 67.42.7) | 65.4(4.6) / loss(z)p' (z)dz = / loss(z)w(z)p(x)dz
Train 79.21.3) | 78.4(3.0) N
Tvmonitor 76.12.2) | 76.6(2.3) ~ L Zloss(:c Yu(z)
Average AUC 73.2 71.9 N &~ " "

| Average training time [sec] 0.7 | 24.6 \
wherew(x) is called themportance weightlefined by
Table 2. Mean AUC values (with standard deviations in P (x)
parentheses) over all audio files for the Freesound dataset. w(®) := plx)

The t-testat the significance level% says that there is no

significant difference in AUC obtained by LSPC and KLR. Because various methods to estimate the importance weight
Computation time is also included at the bottom. from samples{x,,}_, and {z/,}\, are available [29, 30,

31, 32, 33, 34, 35], we treat the importance weigtit:) as

| | LSPC | KIR | known below
AUC 70.1(9.6) | 66.7 (10.3) i . . o
Training tme [sec]|  0.005 0612 Under the covariate shift, the least-squares criterion is de-

fined as

1
runs, showing that LSPC provides comparable classification  J;(8,) := / (q(y|x; 0,) — p(ylx))? p' (z)dx

performance to KLR with significantly less computation time. f
=5 /q(y|w; Hy)2w(w)p(:v)dm

4. EXTENSIONS OF LSPC
- /q(y\w;Gy)w(w)p(w\y)p(y)dw +C,

In this section, we review extentions of LSPC to covariate

shift [7], multi-task [5], and multi-label [6] scenarios. whereC” is a constant independent®f. Approximating the

expectations ovex by sample averages and the class-prior
4.1. Probabilistic Classification under Covariate Shift probabmtyp(y) by Samp'e ratiOS, ignoring Constm‘l‘ and

The 90variate shiff25, 26] _iS a Situa_tio_” W_here training and  27he term ‘covariate’ refers to feature vectorThus, the ‘covariate shift
test input samples follow different distributions, but the classindicates the fact that the distribution of covariates ‘shifts’.




factor1/N, and including arf»-regularizer, we have the fol- 4.2.2. MT-LSPC

lowing training criterion:
g g Let us modelp;(y|z) for eacht € {1,...,T} andy €

LN {1,...,Y}as
Jg,/(ey) = 5 Z q(y‘mn; oy)Qw(mn)
n=1
o , q(ylz; 0y,t) Z%,b 1op(x) = 0, ,B(),
- Z q(ylen; Oy)w(e,) + 5”01/”
1":%:3/ , where¢(x) is the B-dimensional basis function vector de-
= 50;<I>TW<I>0y —-0,% W, + %HeyH?, fined by Eq.(1) and

e T B
wherep’ > 0 is the regularization parameter,, is defined Oy =0y, 0y 50) €RT.

by Eq.(4),® is defined by Eq.(3), and The basic idea of MT-LSPC follows the line of [40], i.e., solu-

tions of all tasks are imposed to be close to each other in terms

W = diag (w(z1), ..., w(@n)) - of the /,-norm. More specifically, let us decompa®g; as

Taking the derivative 0173’/ with respect t@, and setting

N 0yt =08By0+ By
it to zero, we can obtain the minimiz@y, analytically as

whereg, , is the common part of solutions for all tasks and

~ -1 is the individual part of solutions for tagk Then, for
b,= ("W +pIz) & Wn, By P

o T T T B(T+1)
Thanks to importance sampling, this importance- By = (ﬂ%o’ﬁyvl’ e ’ﬂ%T) €R ’
weighted LSPC solution is less biased than the plain LSPC
solution. However, it tends to have a larger variance [26]the training criterion of MT-LSPC is given by
To optimally control the bias-variance trade-off, it is effective

N
to slightly flatten the importance weights [25, 36]. The level jMT(ﬁ )= 1 qWlzn: B, 0+ B, )?
of flattening may be controlled by a model selection method Y Y 2 ,; v0 .
[25, 37, 38]. B )
As experimentally demonstrated in [7], IW-LSPC can Z 4(Y[@n; B0+ By.r,)

nYyn=Y

T
wo 1
+ Byl + 5 D w8
t=1

successfully mitigate the influence of covariate shift in a com-
putationally efficient manner.

4.2. Multi-Task Probabilistic Classification wherewy > 0 is the regularization parameter for the task-

When multiple related learning tasks exist, solving them siindependent partand, > 0 (¢t = 1,...,T) is the regulariza-
multaneously by sharing some common information behindion parameter for the task-dependent parts.

the tasks is expected to be more promising than solving them Let

separately. This is the idea aofulti-task learning[39]. A T
computationally efficient multi-task learning method can be &,(z) := (¢>(sc)T,Og(t_l)@(w)T,O;(T_t)) e RE(TH),
developed by combining multiple LSPCs. Here, we first re-

= . T NxB(T+1)
view multi-task LSPC (MT-LSPC) [5] in a slightly gener- 2= (&, (@), &y (@n)) €RTE ’
alized way, and then we derive another formulation of MT-  Q := diag (wo,w1,-..,wr) € RTHDX(T+1)
LSPC.

where0p denotes theB-dimensional vector with all zeros.

, Then the MT-LSPC training criterion can be compactly ex-
4.2.1. Formulation

pressed as
Suppose that we are given a set of training samples
{(®n, Yn,tn) }N_,, wheret,, € {1,...,T} denotes the task @WT(B )= BT“T“B ~-B,E'm,
index. We assume thaf(x,,y,)})_, are drawn inde-
pendently from a joint probability distribution with density + 5,5'7, (Q®IB)B,, (5)

pt, (x,y). The objective of multi-task probabilistic classifi-
cation is to learn the class-posterior probabilife§y|x) for ~ wherer, is defined by Eq.(4) ane denotes th&ronecker
te{l,...,T}. producti.e., forE € R™*" andF' € RP*4, E® F'is defined



as to impose such a multi-task penalty is to consider pairwise
similarities between tasks [43].

EinF o By F More specifically, for
E®F = : : € R™MPX", 0, — (0] 07 ,)7 € RET
B, F - B, F S e et ’

let us consider the following training criterion.
Note that Eq.(5) is essentially the same form as the origi-

. .. . . . N
nal single-task LSPC training criterion (2). Thus, taking the ~ ;1 1 9
derivative of this training criterion with respect &), and set- v (y) =3 Z:l Q(Yln:0y.0,) = D a(yln;Oy.r,)
. . . . . n= nYn=yY
ting it to zero, we have the minimiz¢r, analytically as L L
_ S + 3 2 l0yel + 7 D rrll6ys — 0|2
B, = (ETE +O® IB> E'm,. =1 =1

®)

Suppose that we use a kernel model (i2 N). Then,  \herey < ( is the regularization parameter for tasknd

the size of the matrix to be inverted in the above equation |s7 » > 0 is the similarity between tasksand’ (large ;..

N(T 4+ 1) x N(T + 1). Thus, the computational complexity cgrresponds to similar tasks).

for naively computing the solutioﬁly is O(N3T?), which Let

can be expensive. However, because the rar OE is at T

most.V, the solution can be computed more efficiently. P, (x) = (Og(t_l), o(x) ", OE(T_t)) e RBT,
Specifically,q(y|x; 8, +) can be expressed as follows (see a T NxBT

Eq(147) of [41]) U= (wtl(ml)w"th]v(mN)) eER .

R T T Then j}/‘“/ can be compactly expressed as
q(ylx;0,4) = ay,td)(w) = ﬁy & () 1
— ] A b, (6) Ty (6,) = 56,2 0, — 6T m,
1
where A is the N x N matrix andb, is the N-dimensional + 50;(0 ®1Ip)0,,

vector defined as
where, is defined by Eq.(4) and’ is theT x T matrix

App = [EQTQIRE" + In|nnw defined as
1 6tn,tn/ T T
~ \wo * wfﬂ) H@n) G@n) +on, Crp = 0p <)‘t + Z ’Yt,t”> s )
— _ =1
be,n = [E(Q '® Ip)¢(x)ln

Gt 01+ is the Kronecker deltagefined by Eq.(7).
= ( + ’”) o(x,) o(z). Taking the derivative off)'™ with respect to,, and set-
ting it to zero, we have the minimiz@ry analytically as
;¢ is the Kronecker delta defined as

0,= (¥'w+Calp) ‘9T,
ER ) (t £ 1) Using the same trick as Eq.(G)y|z; 6, +) can be efficiently
computed based on the following expression:
The computational complexity for computing the solution . T T
based on Eq.(6) is reduced @(N3), which is independent q(ylw; 0y,) = 0, ,0(x) =6, P, (x)
of T. =m, A7'b}, (10)

As experimentally demonstrated in [5], MT-LSPC is com- . _ . _ _
putationally much more efficient than an alternative multi-where A" is the N x N matrix andb; is the N-dimensional
task approach based on kernel logistic regression [42], witMector defined as

comparable accuracy. 1 V(C @IV + Iy

n,n' -

o . b, = [¥(C~' @ Ip)th,(z)]n
The above MT-LSPC formulation imposes solutions to be ’

=
_ —1 T
4.2.3. Pairwise Formulation of MT-LSPC =[C et #(@n) G(@w) +Onnr,
[
-1 T
close to each other via the common pajt,. Another way =[C7 i1, d(@n) d().



The computational complexity for computing the solution  However, a notable difference between the multi-task and

based on Eq.(10) is reduced @ N? + 7). Note that the multi-label formulations is that the number of training sam-

factor T'® comes from the computation @ ~'; if the task  ples isN in the multi-task formulation (see Section 4.2.1),

similarity matrixI' (with I'; »+ = ~; +) enjoys nice structure whereas that in the multi-label formulation is essentially'.

such as being low-rank or sparse, it may be computed morghus, if we naively apply MT-LSPC to the multi-label prob-

efficiently. lem, the computational complexity &(N3T?) for a kernel
When the task similarity matriX’ is unknown, we may model (i.e..B = N), which is expensive. Below, we explain

jointly learnT" and®@,, as follows: Starting from the uniform how this computational bottleneck can be overcome.

task similaritiesy,,, = v > Oforall ¢,¢' = 1,...,T, learn

0, based on the curredt, learn~; » based on the distance 4.3.3. Training ML-LSPC via Sylvester Equation

between currenf, ; and@, /, and iterate this until conver-

gence. Let ®, be the matrix of parameteé, ,...,0, r:
0, :=(0y1,...,0,1) € RP*T.
4.3. Multi-Label Probabilistic Classification Let 7w, ; be theN-dimensional class-indicator vector for the
t-th label:

Multi-label classificationallows a sample to belong to mul-

tiple classes simultaneously [44], which is often the case in T = L (Yt =), (11)

real-world applications such as audio tagging and image an- v 0 (Yni #Y),

notation. In such a multi-label scenario, taking into account . I
. : . and let IT, be the matrix of class-indicator vectors

correlation between multiple labels can boost the cIaSS|f|ca7-r

tion accuracy. However, this makes classifier training more ¥'**

challenging because handling multiple labels tends to induce IL, .= (wy1,..., Ty 1) € RN*T,

a high-dimensional optimization problem. Here, we review a M

sy Ty T

IL
computationally efficient multi-task classifier based on LSPCThenJy can be compactly expressed as
calledmulti-label LSPQML-LSPC) [6]. 1
Je,) = §tr(@,jqﬁ¢@y) —tr(©, ®'II,)
. 1
4.3.1. Formulation + §tr(®yC®;),
Suppose that we are given a set of training samplewhere ® is defined by Eq.(3) and is defined by Eq.(9).
{(xn,y,)}N_;, where Taking the derivative of the above equation with respect to
®, and setting it to zero, we obtain

T T
= n,ly+++9s9n 6 1,...,Y
Yo = Wnts- Y1) € } 3 90, +0,C =o', (12)

is the class-label vector for the-th sample andl’ is the  This is called thecontinuous Sylvester equatierith respect
number of labels. Input vectoe is assumed to be drawn to ®,,, which often arises in control theory [45].

independently fromp(z), and thet-th elementy, of y — Various algorithms for solving the Sylvester equation

(y1,...,y¢)" is assumed to be drawn fropa(y|x). The ob-  have been developed. One of the simplest methods is based

jective of multi-label probabilistic classification is to learn the on the eigenvalue decompositions ®f' ® and C as fol-

class-posterior probabilitigs (y|x) for t € {1,...,T}. lows: Let f,,...,fp be eigenvectors o' & associated
with eigenvaluedi, ..., fg, and letg,, ..., g be eigenvec-

432 ML-LSPC tors Qf C associated vylth.elgenvalugis, ...,gr. Then the
solution®,, of Eq.(12) is given analytically as

Requiring that similar labels should have similar classifica- ~ T
tion solutions, we can employ a multi-task learning method to Oy =(f1,- Fp)QRG1,- -, 97) (13)
solve the multi-label learning problem. Indeed, from the MT-whereQ is the B x T matrix defined as

LSPC training criterion (8), we immediately have the training e m,g
criterion for ML-LSPC: Qp s = =k
fo+ g
N . . .
1 If a kernel model is used (i.eB = N), the computational

M — ) ) . . . .
T 0,) = (2 > a(yl@n;0,0)* = a(ylza;0,0)  complexity for solving Eq.(12) via Eq.(13) 8(N3+ N2T+

t=1 \" n=1 Y, =y NT? + T3). Note that the term&/3 and7® come from the

1 ) 1 L ) eigenvalue decompositions®f' ® andC, which can be per-
+ 5)\t||9y7t|| + 1 Z Ve |0y — Oy |” formed more efficiently if they enjoy nice structure such as
tt'=1 being low-rank or sparse.



4.3.4. Training ML-LSPC via Conjugate Gradient samples are provided by multiple (possibly unreliable) label-

ers. In a such scenario, a multi-task formulation was shown to

For Iargejscale Qa'ga, Eq.(12) may be solved more efficientlge useful [50]. We expect that high computational efficiency
by numerical optimization. Lel, be the vector of parameters of LSPC will play a key role in the crowdsourcing era.

0‘%1, ey Oy_,T:
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