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ABSTRACT

The least-squares probabilistic classifier(LSPC) is a com-
putationally efficient alternative to kernel logistic regression
(KLR). A key idea for the speedup is that, unlike KLR that
uses maximum likelihood estimation for a log-linear model,
LSPC uses least-squares estimation for a linear model. This
allows us to obtain a global solution analytically in a class-
wise manner. In exchange for the speedup, however, this
linear least-squares formulation does not necessarily produce
a non-negative estimate. Nevertheless, consistency of LSPC
is guaranteed in the large sample limit, and rounding up a
negative estimate to zero in finite sample cases was demon-
strated not to degrade the classification performance in ex-
periments. Thus, LSPC is a practically useful probabilistic
classifier. In this paper, we give an overview of LSPC and
its extentions to covariate shift, multi-task, and multi-label
scenarios. A MATLAB implementation of LSPC is avail-
able from ‘http://sugiyama-www.cs.titech.ac.
jp/ ˜ sugi/software/LSPC/ ’.

Index Terms— Least-squares probabilistic classifier, ker-
nel logistic regression, covariate shift, multi-task learning,
multi-label classification

1. INTRODUCTION

Kernel logistic regression(KLR) is a popular probabilistic
classification method for estimating class-posterior probabil-
ities. KLR models the class-posterior probability by a log-
linear combination of kernel functions and learns its parame-
ters by penalized maximum likelihood via, e.g., (quasi-) New-
ton methods [1, 2]. However, training of KLR models is often
time-consuming and is not scalable to large datasets.

To cope with this problem, we introduced an alterna-
tive method called theleast-squares probabilistic classifier
(LSPC) [3]. LSPC models the class-posterior probability by
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a linear combination of kernel functions and learns its pa-
rameters by regularized least-squares fitting of the true class-
posterior probability. Thanks to this simple formulation, the
solution of LSPC can be computed analytically in a class-
wise manner just by solving a regularized system of linear
equations.

So far, LSPC has been successfully applied to image clas-
sification [4, 5], audio tagging [4, 6], accelerometer-based hu-
man activity recognition [7], and face-based age prediction
[8].

In this paper, we review LSPC and its extentions to co-
variate shift [7], multi-task [5], and multi-label [6] scenarios.

2. PROBABILISTIC CLASSIFICATION BY LSPC

In this section, we review theleast-squares probabilistic clas-
sifier (LSPC) [3].

2.1. Formulation

Suppose that we are given a set of training samples

{(xn, yn)}Nn=1

drawn independently from a joint probability distribution with
densityp(x, y), wherexn ∈ RD is a feature vector,D is the
dimensionality of feature vectorx,

yn ∈ {1, . . . , Y }

is a class label, andY is the number of classes.
The objective of probabilistic classification is to learn the

class-posterior probabilityp(y|x) from the training samples.
Based on the class-posterior probability, classification of a
new samplex can be carried out by

ŷ := argmax
y∈{1,...,Y }

p(y|x),

with confidencep(ŷ|x).



2.2. Least-Squares Fitting of Class-Posterior Probabili-
ties

For eachy ∈ {1, . . . , Y }, we modelp(y|x) by

q(y|x;θy) :=
B∑

b=1

θy,bϕb(x) = θ
⊤
y ϕ(x),

whereB denotes the number of parameters,

θy = (θy,1, . . . , θy,B)
⊤ ∈ RB

is the parameter vector, and

ϕ(x) = (ϕ1(x), . . . , ϕB(x))
⊤ ∈ RB (1)

is the basis function vector. In practice, we may use a kernel
model, i.e., we setB = N andϕb(x) = K(x,xb), where
K(x,x′) is a kernel function.

We fit the above model to the true class-posterior proba-
bility p(y|x) under the following squared loss:

Jy(θy) :=
1

2

∫
(q(y|x;θy)− p(y|x))2 p(x)dx,

wherep(x) denotes the marginal density of feature vectorx.
Expanding the squared term, we can expressJy as

Jy(θy) =
1

2

∫
q(y|x;θy)2p(x)dx

−
∫

q(y|x;θy)p(x|y)p(y)dx+ C,

wherep(y|x) = p(x|y)p(y)/p(x) is used andC is a constant
independent ofθy.

Approximating the expectations overx by sample aver-
ages and the class-prior probabilityp(y) by sample ratios,
ignoring constantC and factor1/N , and including anℓ2-
regularizer, we have the following training criterion:

Ĵy(θy) :=
1

2

N∑
n=1

q(y|xn;θy)
2−
∑

n:yn=y

q(y|xn;θy) +
ρ

2
∥θy∥2

=
1

2
θ⊤y Φ

⊤Φθy − θ⊤y Φ
⊤πy +

ρ

2
∥θy∥2, (2)

whereρ > 0 is the regularization parameter,

Φ = (ϕ(x1), . . . ,ϕ(xN ))⊤ ∈ RN×B (3)

is the design matrix, andπy is the N -dimensional class-
indicator vector defined as

πy,n =

{
1 (yn = y),

0 (yn ̸= y).
(4)

Taking the derivative of̂Jy with respect toθy and setting
it to zero, we can obtain the minimizerθ̂y analytically as

θ̂y =
(
Φ⊤Φ+ ρIB

)−1

Φ⊤πy,

whereIB denotes theB-dimensional identity matrix. Note
that this is essentially the same formulation asridge regres-
sion(i.e.,ℓ2-regularized least-squares) [9] with targetπy.

As the number of training samples increases, the solution
q(y|x; θ̂y) was shown to converge to the true class-posterior
probabilityp(y|x) with the optimal convergence rate [3]. For
a finite sample size, we obtain the final solution by rounding
up a negative output to zero and normalization as follows [4]:

p̂(y|x) = max(0, q(y|x; θ̂y))∑Y
y′=1 max(0, q(y′|x; θ̂y′))

.

This method is called LSPC.
Thanks to the analytic solution, LSPC was demonstrated

to be computationally much more efficient than kernel logistic
regression, whereas the classification accuracy is kept compa-
rable [3, 4].

A possible variation is to use theℓ1-regularizer,

B∑
b=1

|θy,b|,

instead of theℓ2-regularizer∥θy∥2 =
∑B

b=1 θ
2
y,b. Then this is

essentially the same formulation as theleast absolute shrink-
age and selection operator(Lasso) [10] with targetπy. Be-
cause Lasso tends to produce a sparse solution, its solution
can be computed efficiently [11, 12, 13, 14, 15, 16, 17]. Fur-
thermore, solutions for all regularization parameters can be
computed efficiently byparametric programming[18].

3. COMPARISON WITH KERNEL LOGISTIC
REGRESSION

In this section, we methodologically and experimentally com-
pare LSPC withkernel logistic regression(KLR).

3.1. Methodological Comparison

KLR models the class-posterior probabilityp(y|x) by a log-
linear combination of kernel functions:

q′(y|x;θ1, . . . ,θY ) :=
1

Z(θ1, . . . ,θY )
exp

(
B∑

b=1

θy,bϕb(x)

)
,

whereZ(θ1, . . . ,θY ) is the normalization factor defined by

Z(θ1, . . . ,θY ) :=
Y∑

y=1

exp

(
B∑

b=1

θy,bϕb(x)

)
.

Then the parametersθ1, . . . ,θY are learned so that the penal-
ized log-likelihood is maximized:

max
θ1,...,θY

[
N∑

n=1

log q′(yn|xn;θ1, . . . ,θY )−
Y∑

y=1

ηy∥θy∥2
]
,



whereηy > 0 is the penalty parameter for classy.
In the maximum likelihood formulation, the likelihood di-

verges to infinity if the normalization factorZ(θ1, . . . ,θY ) is
omitted. Thus, the normalization factor needs to be included.
However, becauseZ(θ1, . . . ,θY ) depends on parameters of
all classes, training of KLR needs to be carried out simulta-
neously for all classes. This involvesNY parameters, which
can be cumbersome in multi-class problems.

On the other hand, the consistency of LSPC (i.e., conver-
gence of the LSPC solution to the true class-posterior prob-
ability in the large sample limit) is theoretically guaranteed
without normalization. This is a notable advantage of the
least-squares formulation because this allows us to solve the
LSPC optimization problem separately in a class-wise man-
ner. Then the optimization problem for each class involves
only N parameters. Thus, LSPC is computationally highly
efficient in multi-class scenarios.

The penalized log-likelihood in KLR does not possess
useful structure to speed up optimization. Thus, we need to
simply use a generic non-linear optimization technique such
as (quasi-) Newton methods, which is practically convenient
but not necessarily computationally efficient. When the KLR
optimization problem is solved by the Newton method, the
optimization procedure is reduced toiteratively-reweighted
least-squares[1], which requires to solve a system of lin-
ear equations (of sizeNY ) in each iteration. On the other
hand, LSPC requires to solve a system of linear equations (of
sizeN ) only once for each classy, which provides significant
speedup in practice.

However, a potential weakness of LSPC is that, solutions
can be negative particularly in small sample cases. In prac-
tice, such negative outputs are merely rounded-up to zero,
which was demonstrated not to degrade the classification per-
formance severely [3, 4].

3.2. Experimental Comparison

Next, we experimentally compare the performance of LSPC
and KLR on real-world image classification and audio tag-
ging.

3.2.1. Setup

For both LSPC and KLR, we use the Gaussian kernel model,
i.e., we setB = N and

ϕb(x) = exp

(
−∥x− xb∥2

2σ2

)
,

whereσ is the Gaussian width. We determine the kernel
widthσ and regularization parameterλ based on 2-fold cross-
validation.

For computing LSPC solutions, we use our own MAT-

LAB implementation1. For KLR, we use the MATLAB im-
plementation included in the ‘minFunc’ package [19].

We compare the classification performance and computa-
tion time of LSPC and KLR. When evaluating the classifica-
tion performance, it is important to take into account both the
false positive rate and the true positive rate. Here we adopt the
area under the ROC curve(AUC) as our error metric [20]. For
computation time, we evaluate the CPU computation time re-
quired for training each classifier after the Gaussian width and
the regularization parameter are chosen by cross-validation.

3.2.2. PASCAL VOC 2010 Datasets

We use thePASCAL Visual Object Classes (VOC) 2010
dataset [21] for image classification experiments, which con-
sists of 20 binary classification tasks of identifying the exis-
tence of a person, aeroplane, etc. in each image. The total
number of images in the dataset is 11319, and we use 1000
randomly chosen images for training and the rest for testing.

Feature extraction from images is carried out as follows.
We first extract visual features from each image by theSpeed
Up Robust Features(SURF) algorithm [22]. We then run the
k-meansclustering algorithm in the SURF space and obtained
500 cluster centers asvisual words. Finally, we construct a
500-dimensionalbag-of-featurevector by counting the num-
ber of visual words in each image, which is used as feature
vectorx in LSPC and KLR.

Table 1 shows the mean AUC values (with standard devia-
tions in parentheses) over 50 trials. Average computation time
is also included at the bottom of the table. The results show
that LSPC is slightly more accurate than KLR with much less
computational cost.

3.2.3. Freesound Datasets

For audio-tagging experiments, we use the data collected by
the Freesoundproject [23], which consists of various audio
files annotated with word tags such as ‘people’, ‘noisy’, and
‘restaurant’. The goal is to predict the existence of each tag
for a new audio file.

We extract audio files from among all files in the dataset
containing any of the 50 most used tags and between 3–
60 seconds in length. We then use 180 randomly selected
uncompressed audio files with a sampling rate greater than
44.1kHz as our training set, and 1500 randomly selected au-
dio files that are stored in a compressed format for testing.
We use thehidden Markov kernel[24], instead of the simple
Gaussian kernel due to the sequential nature of audio files.

We compute the AUC value over all test samples for each
tag, and this is averaged over all tags. Table 2 summarizes the
accuracy and computation time of LSPC and KLR over 50

1The software is publicly available from ‘http://sugiyama-www.
cs.titech.ac.jp/ ˜ sugi/software/LSPC/ ’.



Table 1. Mean AUC values (with standard deviations in
parentheses) over 50 trials for the PASCAL VOC dataset. The
best method in terms of the mean AUC and comparable meth-
ods according to thet-test at the significance level5% are
specified by bold face. Average computation time is also in-
cluded at the bottom.

LSPC KLR

Aeroplane 82.6(1.0) 83.0(1.3)
Bicycle 77.7(1.7) 76.6(3.4)
Bird 68.7(2.0) 70.8(2.2)
Boat 74.4(2.0) 72.8(2.6)
Bottle 65.4(1.8) 62.1(4.3)
Bus 85.4(1.4) 85.6(1.4)
Car 73.0(0.8) 72.1(1.2)
Cat 73.6(1.4) 74.1(1.7)
Chair 71.0(1.0) 70.5(1.0)
Cow 71.7(3.2) 69.3(3.6)
Diningtable 75.0(1.6) 71.4(2.7)
Dog 69.6(1.0) 69.4(1.8)
Horse 64.4(2.5) 61.2(3.2)
Motorbike 77.0(1.7) 75.9(3.3)
Person 67.6(0.9) 67.0(0.8)
Pottedplant 66.2(2.6) 61.9(3.2)
Sheep 77.8(1.6) 74.0(3.8)
Sofa 67.4(2.7) 65.4(4.6)
Train 79.2(1.3) 78.4(3.0)
Tvmonitor 76.7(2.2) 76.6(2.3)
Average AUC 73.2 71.9

Average training time [sec] 0.7 24.6

Table 2. Mean AUC values (with standard deviations in
parentheses) over all audio files for the Freesound dataset.
The t-test at the significance level5% says that there is no
significant difference in AUC obtained by LSPC and KLR.
Computation time is also included at the bottom.

LSPC KLR

AUC 70.1 (9.6) 66.7 (10.3)
Training time [sec] 0.005 0.612

runs, showing that LSPC provides comparable classification
performance to KLR with significantly less computation time.

4. EXTENSIONS OF LSPC

In this section, we review extentions of LSPC to covariate
shift [7], multi-task [5], and multi-label [6] scenarios.

4.1. Probabilistic Classification under Covariate Shift

Thecovariate shift[25, 26] is a situation where training and
test input samples follow different distributions, but the class-

posterior probability remains unchanged2. Here, we review
an extention of LSPC to the covariate shift scenario called the
importance-weighted LSPC(IW-LSPC) [7].

4.1.1. Formulation

Let us consider asemi-supervised learningsetup [27], where
unlabeled samples{x′

n}N
′

n=1 are given in addition to la-
beled samples{(xn, yn)}Nn=1. Suppose unlabeled samples
{x′

n}N
′

n=1 are drawn independently from a distribution with
densityp′(x), which can be generally different fromp(x) that
{xn}Nn=1 follow. Under this covariate shift setup, naively es-
timating a class-posterior probability by LSPC causes a bias
due to the distribution difference. Below, we explain how this
bias can be reduced.

4.1.2. Importance-Weighted Least-Squares Fitting of Class-
Posterior Probabilities

The key technique for covariate shift adaptation isimportance
sampling [28]—the expectation of a loss functionloss(x)
over test input densityp′(x) can be consistently estimated by
samples{xn}Nn=1 drawn from training input densityp(x) as∫

loss(x)p′(x)dx =

∫
loss(x)w(x)p(x)dx

≈ 1

N

N∑
n=1

loss(xn)w(xn),

wherew(x) is called theimportance weightdefined by

w(x) :=
p′(x)

p(x)
.

Because various methods to estimate the importance weight
from samples{xn}Nn=1 and{x′

n}N
′

n=1 are available [29, 30,
31, 32, 33, 34, 35], we treat the importance weightw(x) as
known below.

Under the covariate shift, the least-squares criterion is de-
fined as

J ′
y(θy) :=

1

2

∫
(q(y|x;θy)− p(y|x))2 p′(x)dx

=
1

2

∫
q(y|x;θy)2w(x)p(x)dx

−
∫

q(y|x;θy)w(x)p(x|y)p(y)dx+ C ′,

whereC ′ is a constant independent ofθy. Approximating the
expectations overx by sample averages and the class-prior
probability p(y) by sample ratios, ignoring constantC ′ and

2The term ‘covariate’ refers to feature vectorx. Thus, the ‘covariate shift’
indicates the fact that the distribution of covariates ‘shifts’.



factor1/N , and including anℓ2-regularizer, we have the fol-
lowing training criterion:

Ĵ ′
y(θy) :=

1

2

N∑
n=1

q(y|xn;θy)
2w(xn)

−
∑

n:yn=y

q(y|xn;θy)w(xn) +
ρ′

2
∥θy∥2

=
1

2
θ⊤y Φ

⊤WΦθy − θ⊤y Φ
⊤Wπy +

ρ′

2
∥θy∥2,

whereρ′ > 0 is the regularization parameter,πy is defined
by Eq.(4),Φ is defined by Eq.(3), and

W := diag (w(x1), . . . , w(xN )) .

Taking the derivative of̂J ′
y with respect toθy and setting

it to zero, we can obtain the minimizerθ̂y analytically as

θ̂y =
(
Φ⊤WΦ+ ρIB

)−1

Φ⊤Wπy.

Thanks to importance sampling, this importance-
weighted LSPC solution is less biased than the plain LSPC
solution. However, it tends to have a larger variance [26].
To optimally control the bias-variance trade-off, it is effective
to slightly flatten the importance weights [25, 36]. The level
of flattening may be controlled by a model selection method
[25, 37, 38].

As experimentally demonstrated in [7], IW-LSPC can
successfully mitigate the influence of covariate shift in a com-
putationally efficient manner.

4.2. Multi-Task Probabilistic Classification

When multiple related learning tasks exist, solving them si-
multaneously by sharing some common information behind
the tasks is expected to be more promising than solving them
separately. This is the idea ofmulti-task learning[39]. A
computationally efficient multi-task learning method can be
developed by combining multiple LSPCs. Here, we first re-
view multi-task LSPC (MT-LSPC) [5] in a slightly gener-
alized way, and then we derive another formulation of MT-
LSPC.

4.2.1. Formulation

Suppose that we are given a set of training samples
{(xn, yn, tn)}Nn=1, wheretn ∈ {1, . . . , T} denotes the task
index. We assume that{(xn, yn)}Nn=1 are drawn inde-
pendently from a joint probability distribution with density
ptn(x, y). The objective of multi-task probabilistic classifi-
cation is to learn the class-posterior probabilitiespt(y|x) for
t ∈ {1, . . . , T}.

4.2.2. MT-LSPC

Let us modelpt(y|x) for each t ∈ {1, . . . , T} and y ∈
{1, . . . , Y } as

q(y|x;θy,t) :=
B∑

b=1

θy,b,tϕb(x) = θ
⊤
y,tϕ(x),

whereϕ(x) is theB-dimensional basis function vector de-
fined by Eq.(1) and

θy,t := (θy,1,t, . . . , θy,B,t)
⊤ ∈ RB .

The basic idea of MT-LSPC follows the line of [40], i.e., solu-
tions of all tasks are imposed to be close to each other in terms
of theℓ2-norm. More specifically, let us decomposeθy,t as

θy,t = βy,0 + βy,t,

whereβy,0 is the common part of solutions for all tasks and
βy,t is the individual part of solutions for taskt. Then, for

βy :=
(
β⊤
y,0,β

⊤
y,1, . . . ,β

⊤
y,T

)⊤
∈ RB(T+1),

the training criterion of MT-LSPC is given by

ĴMT
y (βy) :=

1

2

N∑
n=1

q(y|xn;βy,0 + βy,tn)
2

−
∑

n:yn=y

q(y|xn;βy,0 + βy,tn)

+
ω0

2
∥βy,0∥2 +

1

2

T∑
t=1

ωt∥βy,t∥2,

whereω0 > 0 is the regularization parameter for the task-
independent part andωt > 0 (t = 1, . . . , T ) is the regulariza-
tion parameter for the task-dependent parts.

Let

ξt(x) :=
(
ϕ(x)⊤,0⊤

B(t−1),ϕ(x)
⊤,0⊤

B(T−t)

)⊤
∈ RB(T+1),

Ξ := (ξt1(x1), . . . , ξtN (xN ))⊤ ∈ RN×B(T+1),

Ω := diag (ω0, ω1, . . . , ωT ) ∈ R(T+1)×(T+1),

where0B denotes theB-dimensional vector with all zeros.
Then the MT-LSPC training criterion can be compactly ex-
pressed as

ĴMT
y (βy) =

1

2
β⊤
y Ξ

⊤Ξβy − β
⊤
y Ξ

⊤πy

+
1

2
β⊤
y (Ω⊗ IB)βy, (5)

whereπy is defined by Eq.(4) and⊗ denotes theKronecker
product, i.e., forE ∈ Rm×n andF ∈ Rp×q,E⊗F is defined



as

E ⊗ F =

E1,1F · · · E1,nF
...

.. .
...

Em,1F · · · Em,nF

 ∈ Rmp×nq.

Note that Eq.(5) is essentially the same form as the origi-
nal single-task LSPC training criterion (2). Thus, taking the
derivative of this training criterion with respect toβy and set-

ting it to zero, we have the minimizer̂βy analytically as

β̂y =
(
Ξ⊤Ξ+Ω⊗ IB

)−1

Ξ⊤πy.

Suppose that we use a kernel model (i.e.,B = N ). Then,
the size of the matrix to be inverted in the above equation is
N(T + 1)×N(T + 1). Thus, the computational complexity
for naively computing the solution̂βy is O(N3T 3), which

can be expensive. However, because the rank ofΞ⊤Ξ is at
mostN , the solution can be computed more efficiently.

Specifically,q(y|x; θ̂y,t) can be expressed as follows (see
Eq.(147) of [41]):

q(y|x; θ̂y,t) = θ̂
⊤
y,tϕ(x) = β̂

⊤
y ξt(x)

= π⊤
y A

−1bt, (6)

whereA is theN × N matrix andbt is theN -dimensional
vector defined as

An,n′ := [Ξ(Ω−1 ⊗ IB)Ξ⊤ + IN ]n,n′

=

(
1

ω0
+

δtn,tn′

ωtn

)
ϕ(xn)

⊤ϕ(xn′) + δn,n′ ,

bt,n := [Ξ(Ω−1 ⊗ IB)ξt(x)]n

=

(
1

ω0
+

δt,tn
ωt

)
ϕ(xn)

⊤ϕ(x).

δt,t′ is the Kronecker delta defined as

δt,t′ =

{
1 (t = t′),

0 (t ̸= t′).
(7)

The computational complexity for computing the solution
based on Eq.(6) is reduced toO(N3), which is independent
of T .

As experimentally demonstrated in [5], MT-LSPC is com-
putationally much more efficient than an alternative multi-
task approach based on kernel logistic regression [42], with
comparable accuracy.

4.2.3. Pairwise Formulation of MT-LSPC

The above MT-LSPC formulation imposes solutions to be
close to each other via the common partβ0,y. Another way

to impose such a multi-task penalty is to consider pairwise
similarities between tasks [43].

More specifically, for

θy := (θ⊤y,1, . . . ,θ
⊤
y,T )

⊤ ∈ RBT ,

let us consider the following training criterion.

ĴMT′

y (θy) :=
1

2

N∑
n=1

q(y|xn;θy,tn)
2−
∑

n:yn=y

q(y|xn;θy,tn)

+
1

2

T∑
t=1

λt∥θy,t∥2 +
1

4

T∑
t,t′=1

γt,t′∥θy,t − θy,t′∥2,

(8)

whereλt > 0 is the regularization parameter for taskt and
γt,t′ > 0 is the similarity between taskst andt′ (largeγt,t′
corresponds to similar tasks).

Let

ψt(x) :=
(
0⊤
B(t−1),ϕ(x)

⊤,0⊤
B(T−t)

)⊤
∈ RBT ,

Ψ := (ψt1(x1), . . . ,ψtN (xN ))⊤ ∈ RN×BT .

ThenĴMT′

y can be compactly expressed as

ĴMT′

y (θy) =
1

2
θ⊤y Ψ

⊤Ψθy − θ⊤y Ψ
⊤πy

+
1

2
θ⊤y (C ⊗ IB)θy,

whereπy is defined by Eq.(4) andC is theT × T matrix
defined as

Ct,t′ := δt,t′

(
λt +

T∑
t′′=1

γt,t′′

)
− γt,t′ . (9)

δt,t′ is the Kronecker delta defined by Eq.(7).
Taking the derivative of̃JMT

y with respect toθy and set-

ting it to zero, we have the minimizer̂θy analytically as

θ̂y =
(
Ψ⊤Ψ+C ⊗ IB

)−1

Ψ⊤πy.

Using the same trick as Eq.(6),q(y|x; θ̂y,t) can be efficiently
computed based on the following expression:

q(y|x; θ̂y,t) = θ̂
⊤
y,tϕ(x) = θ̂

⊤
y ψt(x)

= π⊤
y A

′−1b′t, (10)

whereA′ is theN × N matrix andb′t is theN -dimensional
vector defined as

A′
n,n′ := [Ψ(C−1 ⊗ IB)Ψ⊤ + IN ]n,n′

= [C−1]tn,tn′ϕ(xn)
⊤ϕ(xn′) + δn,n′ ,

b′t,n := [Ψ(C−1 ⊗ IB)ψt(x)]n

= [C−1]t,tnϕ(xn)
⊤ϕ(x).



The computational complexity for computing the solution
based on Eq.(10) is reduced toO(N3 + T 3). Note that the
factor T 3 comes from the computation ofC−1; if the task
similarity matrixΓ (with Γt,t′ = γt,t′ ) enjoys nice structure
such as being low-rank or sparse, it may be computed more
efficiently.

When the task similarity matrixΓ is unknown, we may
jointly learnΓ andθy as follows: Starting from the uniform
task similaritiesγt,t′ = γ > 0 for all t, t′ = 1, . . . , T , learn
θy based on the currentΓ, learnγt,t′ based on the distance
between currentθy,t andθy,t′ , and iterate this until conver-
gence.

4.3. Multi-Label Probabilistic Classification

Multi-label classificationallows a sample to belong to mul-
tiple classes simultaneously [44], which is often the case in
real-world applications such as audio tagging and image an-
notation. In such a multi-label scenario, taking into account
correlation between multiple labels can boost the classifica-
tion accuracy. However, this makes classifier training more
challenging because handling multiple labels tends to induce
a high-dimensional optimization problem. Here, we review a
computationally efficient multi-task classifier based on LSPC
calledmulti-label LSPC(ML-LSPC) [6].

4.3.1. Formulation

Suppose that we are given a set of training samples
{(xn,yn)}Nn=1, where

yn = (yn,1, . . . , yn,T )
⊤ ∈ {1, . . . , Y }T

is the class-label vector for then-th sample andT is the
number of labels. Input vectorx is assumed to be drawn
independently fromp(x), and thet-th elementyt of y =
(y1, . . . , yt)

⊤ is assumed to be drawn frompt(y|x). The ob-
jective of multi-label probabilistic classification is to learn the
class-posterior probabilitiespt(y|x) for t ∈ {1, . . . , T}.

4.3.2. ML-LSPC

Requiring that similar labels should have similar classifica-
tion solutions, we can employ a multi-task learning method to
solve the multi-label learning problem. Indeed, from the MT-
LSPC training criterion (8), we immediately have the training
criterion for ML-LSPC:

ĴML
y (θy) :=

T∑
t=1

(
1

2

N∑
n=1

q(y|xn;θy,t)
2−
∑

n:yn,t=y

q(y|xn;θy,t)

+
1

2
λt∥θy,t∥2

)
+

1

4

T∑
t,t′=1

γt,t′∥θy,t − θy,t′∥2.

However, a notable difference between the multi-task and
multi-label formulations is that the number of training sam-
ples isN in the multi-task formulation (see Section 4.2.1),
whereas that in the multi-label formulation is essentiallyNT .
Thus, if we naively apply MT-LSPC to the multi-label prob-
lem, the computational complexity isO(N3T 3) for a kernel
model (i.e.,B = N ), which is expensive. Below, we explain
how this computational bottleneck can be overcome.

4.3.3. Training ML-LSPC via Sylvester Equation

LetΘy be the matrix of parametersθy,1, . . . ,θy,T :

Θy := (θy,1, . . . ,θy,T ) ∈ RB×T .

Let πy,t be theN -dimensional class-indicator vector for the
t-th label:

πy,t,n =

{
1 (yn,t = y),

0 (yn,t ̸= y),
(11)

and let Πy be the matrix of class-indicator vectors
πy,1, . . . ,πy,T :

Πy := (πy,1, . . . ,πy,T ) ∈ RN×T .

ThenĴML
y can be compactly expressed as

ĴML
y (θy) =

1

2
tr(Θ⊤

y Φ
⊤ΦΘy)− tr(Θ⊤

y Φ
⊤Πy)

+
1

2
tr(ΘyCΘ⊤

y ),

whereΦ is defined by Eq.(3) andC is defined by Eq.(9).
Taking the derivative of the above equation with respect to
Θy and setting it to zero, we obtain

Φ⊤ΦΘy +ΘyC = Φ⊤Πy. (12)

This is called thecontinuous Sylvester equationwith respect
toΘy, which often arises in control theory [45].

Various algorithms for solving the Sylvester equation
have been developed. One of the simplest methods is based
on the eigenvalue decompositions ofΦ⊤Φ andC as fol-
lows: Let f1, . . . ,fB be eigenvectors ofΦ⊤Φ associated
with eigenvaluesf1, . . . , fB , and letg1, . . . , gT be eigenvec-
tors ofC associated with eigenvaluesg1, . . . , gT . Then the
solutionΘ̂y of Eq.(12) is given analytically as

Θ̂y = (f1, . . . ,fB)Q(g1, . . . , gT )
⊤, (13)

whereQ is theB × T matrix defined as

Qb,t :=
f⊤
b Φ

⊤Πygt
fb + gt

.

If a kernel model is used (i.e.,B = N ), the computational
complexity for solving Eq.(12) via Eq.(13) isO(N3+N2T+
NT 2 + T 3). Note that the termsN3 andT 3 come from the
eigenvalue decompositions ofΦ⊤Φ andC, which can be per-
formed more efficiently if they enjoy nice structure such as
being low-rank or sparse.



4.3.4. Training ML-LSPC via Conjugate Gradient

For large-scale data, Eq.(12) may be solved more efficiently
by numerical optimization. Letθy be the vector of parameters
θy,1, . . . ,θy,T :

θy := (θ⊤y,1, . . . ,θ
⊤
y,T )

⊤ ∈ RBT .

Then Eq.(12) can be expressed as

Hθy = hy, (14)

where

H := IT ⊗ (Φ⊤Φ) +C ⊗ IB ∈ RBT×BT ,

hy := ((Φ⊤πy,1)
⊤, . . . , (Φ⊤πy,T )

⊤)⊤ ∈ RBT .

Φ is defined by Eq.(3),C is defined by Eq.(9), andπy,t is
defined by Eq.(11).

If a kernel model is used (i.e.,B = N ), naively solving
Eq.(14) takesO(N3T 3) time. Here, we take into account the
Kronecker structure ofH, and solve the equation numerically
by theconjugate gradientmethod. More specifically, we can
compute the matrix-vector productHθy as

Hθy =

Φ⊤Φθy,1 +
∑T

t=1 C1,tθy,t
...

Φ⊤Φθy,T +
∑T

t=1 CT,tθy,t

 .

Although the computational complexity for naively comput-
ing Hθy is O(N3 + N2T 2) including the computation of
Φ⊤Φ, that for computingHθy based on the above expres-
sion is reduced toO(N2T +NT 2). Note that the termN2T
comes from the computationΦ⊤Φθy,t and the termNT 2

comes from the computation
∑T

t′=1 Ct,t′θy,t′ . If Φ⊤Φ is
approximated by a low-rank matrix and the task similarity
matrix Γ enjoys nice structure such as being approximately
low-rank or sparse,Hθy may be approximately computed
even more efficiently.

As experimentally demonstrated in [6], ML-LSPC with
the above implementation contributes highly to reducing the
computation time.

5. CONCLUSIONS

In this paper, we reviewed a computationally efficient alter-
native to kernel logistic regression (KLR) called the least-
squares probabilistic classifier (LSPC), and its extentions to
covariate shift, multi-task, and multi-label scenarios. The
computational efficiency of LSPC is particularly useful in
multi-task and multi-label scenarios because a large number
of samples need to be processed.

Recently,learning from crowdshas gathered a great deal
of attention [46, 47, 48, 49], where a large number of training

samples are provided by multiple (possibly unreliable) label-
ers. In a such scenario, a multi-task formulation was shown to
be useful [50]. We expect that high computational efficiency
of LSPC will play a key role in the crowdsourcing era.
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