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Abstract

Human activity recognition from accelerometric data (e.g., obtained by smart phones)
is gathering a great deal of attention since it can be used for various purposes such
as remote health-care. However, since collecting labeled data is bothersome for new
users, it is desirable to utilize data obtained from existing users. In this paper, we
formulate this adaptation problem as learning under covariate shift, and propose
a computationally efficient probabilistic classification method based on adaptive
importance sampling. The usefulness of the proposed method is demonstrated in
real-world human activity recognition.

1 Introduction

Human activity recognition from accelerometric data (e.g., obtained by smart phones)
is gathering a great deal of attention recently [1, 2, 11], since it can be used for various
purposes such as remote health-care [10, 25, 17] and worker behavior monitoring [34]. To
construct a good classifier for activity recognition, users are required to prepare accelero-
metric data with activity labels for various types of actions such as walking, running, and
bicycle riding. However, since gathering labeled data is costly, this initial data-collection
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phase prevents new users from using the activity recognition system. Thus, overcoming
such a new user problem is an important challenge for increasing the practical usability
of the human activity recognition system.

Since unlabeled data are relatively easy to gather, we can typically use labeled data
obtained from existing users and unlabeled data obtained from a new user for developing
the new user’s activity classifier. Such a situation is commonly called semi-supervised
learning, and various learning methods that utilize unlabeled samples have been proposed
so far [5]. However, such semi-supervised learning methods tend to perform poorly if
unlabeled test data have a significantly different distribution from the labeled training
data. Unfortunately, this is a typical situation in human activity recognition since motion
patterns (and thus distributions of motion data) depend heavily on users.

To cope with the differing distributions, several approaches have been explored [21,
19]. Popular lines of research include re-weighting samples according to the importance
[23, 12, 30, 13, 6, 27] and learning feature representation that is common to training and
test data [4, 8, 3, 9, 18]. In this paper, we focus on the sample re-weighting approach, and
propose a new probabilistic classification method that is computationally very efficient.
Our proposed approach combines a probabilistic classification method called least-squares
probabilistic classifier [26, 33] with the sample re-weighting approach [23, 13]. Through
experiments on real-world human activity recognition, we demonstrate the usefulness of
our proposed approach.

The rest of this paper is organized as follows. In Section 2, we formulate a classification
problem, and describe our proposed method called the importance-weighted least-squares
probabilistic classifier (IWLSPC). In Section 3, we discuss the relation between proposed
and existing approaches. Experimental results are reported in Section 4, demonstrat-
ing the effectiveness of the proposed IWLSPC algorithm in real-world human activity
recognition. Finally, we conclude in Section 5 by summarizing our contributions.

2 Learning under Covariate Shift

In this paper, we consider the classification problem under covariate shift [23, 27], i.e.,
the distributions of input points change between the training and test phases, but the
conditional distribution of class labels given input points remains unchanged. In this
section, we first formulate the classification problem under covariate shift, and then give
our proposed method called the importance-weighted least-squares probabilistic classifier
(IWLSPC).

2.1 Problem Formulation

Suppose we are given labeled training samples {(xtr
n , y

tr
n )}Ntr

n=1, where xtr
n ∈ Rd (d denotes

the input dimensionality) is a training input point drawn independently from a probability
distribution with density ptr(x), and ytrn ∈ {1, . . . , c} (c denotes the number of classes) is
a training label following a conditional probability distribution with density p(y|x = xtr

n ).
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In addition to the labeled training samples, suppose we are given unlabeled test input
points {xte

n }Nte
n=1, where xte

n (∈ Rd) is a test input point drawn independently from a
probability distribution with density pte(x). Note that pte(x) ̸= ptr(x) in general, and
thus the input distributions are different between the training and test phases.

Our goal is to learn a classifier that predicts a class label yte for a test input point xte.

2.2 Importance-Weighted Least-Squares Probabilistic Classifier

Here, we describe our proposed method called the importance-weighted least-squares prob-
abilistic classifier (IWLSPC), which combines a probabilistic classification method called
least-squares probabilistic classifier [26, 33] with the covariate shift adaptation technique
[23, 13].

The goal of probabilistic classification is to estimate the class-posterior probability
p(y|x). Let us model the class-posterior probability p(y|x) by

p(y|x;θy) ≡
Nte∑
n=1

θy,nK(x,xte
n ),

where θy = (θy,1, . . . , θy,Nte)
⊤ is the parameter vector and K(x,x′) is a kernel function.

Below, we focus on the Gaussian kernel:

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
,

where σ denotes the Gaussian kernel width. We determine the parameter θy so that the
following squared error Jy is minimized:

Jy(θy) ≡
1

2

∫ (
p(y|x;θy)− p(y|x)

)2
pte(x)dx

=
1

2

∫
p(y|x;θy)

2pte(x)dx

−
∫

p(y|x;θy)p(y|x)pte(x)dx+ C

=
1

2
θ⊤
y Qθy − q⊤

y θy + C,

where C is a constant independent of the parameter θy, and Q is the Nte × Nte matrix
and qy = (qy,1, . . . , qy,Nte)

⊤ is the Nte-dimensional vector defined as

Qn,n′ ≡
∫

K(x,xte
n )K(x,xte

n′)pte(x)dx,

qy,n ≡
∫

K(x,xte
n )p(y|x)pte(x)dx.
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Here, we approximate Q and qy using the adaptive importance sampling technique [23]
as follows. First, using the importance weight defined as

w(x) ≡ pte(x)

ptr(x)
, (1)

we express Q and qy in terms of the training distribution as

Qn,n′ =

∫
K(x,xte

n )K(x,xte
n′)ptr(x)w(x)dx,

qy,n =

∫
K(x,xte

n )p(y|x)ptr(x)w(x)dx

= p(y)

∫
K(x,xte

n )ptr(x|y)w(x)dx,

where ptr(x|y) denotes the training input density for class y. Then, based on the above
expressions, Q and qy are approximated using the training samples {(xtr

n , y
tr
n )}Ntr

n=1 as
follows1:

Q̂n,n′ ≡ 1

Ntr

Ntr∑
n′′=1

K(xtr
n′′ ,xte

n )K(xte
n′′ ,xte

n′)w(xtr
n′′)ν ,

q̂y,n ≡ 1

Ntr

∑
n′:ytr

n′=y

K(xtr
n′ ,xte

n )w(x
tr
n′)ν ,

where the class-prior probability p(y) was estimated by N
(y)
tr /Ntr, and N

(y)
tr denotes the

number of training samples with label y. ν (0 ≤ ν ≤ 1) is the flattening parameter, which
controls the bias-variance trade-off in importance sampling [23]. More specifically, if ν is
close to 1, the importance weights are used as they are; then the bias gets smaller, but
the variance tends to be larger. On the other hand, if ν is close to 0, the importance
weights tend to be one (i.e., flat). Then the bias is larger, but the variance is smaller.

Consequently, we arrive at the following optimization problem:

θ̂y ≡ argmin
θy

[
1

2
θ⊤
y Q̂θy − q̂⊤

y θy +
λ

2
θ⊤
y θy

]
,

where λ
2
θ⊤
y θy is a regularization term to avoid over-fitting and λ (≥ 0) is the regularization

parameter. Then, the IWLSPC solution is given analytically as

θ̂y = (Q̂+ λINte)
−1q̂y,

1When ν = 1, Q may be approximated directly using the test input samples {xte
n }Nte

n=1 as

Q̂n,n′ ≡ 1

Nte

Nte∑
n′′=1

K(xte
n′′ ,xte

n )K(xte
n′′ ,xte

n′).
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where INte denotes the Nte-dimensional identity matrix. Since the class-posterior proba-
bility is non-negative by definition, we modify the solution as

p̂(y|x) ≡ 1

Z
max

(
0,

Nte∑
n=1

θ̂y,nK(x,xte
n )

)
,

if Z ≡
∑c

y=1max
(
0,
∑Nte

n=1 θ̂y,nK(x,xte
n )
)
> 0; otherwise, p̂(y|x) ≡ 1/c.

The learned class-posterior probability p̂(y|x) allows us to predict the class label yte

of a new test sample xte by
ŷte ≡ argmax

y
p̂(y|xte),

with confidence p̂(ŷte|xte).
When pte(x) = ptr(x), the above IWLSPC is reduced to the original LSPC [26, 33].

Thus, IWLSPC can be regarded as a natural extension of LSPC to covariate shift situa-
tions.

The performance of IWLSPC depends on the choice of the regularization parameter
λ, the Gaussian kernel width σ, and the flattening parameter ν. Thus, model selection is
critical in practice, and cross-validation (CV) is a popular choice for this purpose. How-
ever, under covariate shift, ordinary CV is highly biased due to the differing distributions.
To cope with this problem, a variant of CV called importance-weighted CV (IWCV) has
been proposed [28], which is still almost unbiased even under covariate shift. We will use
IWCV for model selection of IWLSPC in our experiments. A brief review of IWCV is
provided in A.

IWLSPC (and IWCV) requires the values of the importance {w(xtr
n )}Ntr

n=1, which are
unknown in practice. So far, various methods for estimating the importance has been
developed [24, 7, 20, 12, 30, 13, 29]. Among them, the method called unconstrained
least-squares importance fitting (uLSIF) [13] was shown to be superior since it achieves
the optimal convergence rate [14], it possesses the optimal numerical stability [15], and
its solution can be computed analytically. For this reason, we will employ uLSIF in our
experiments. A brief review of uLSIF is provided in B.

A MATLAB implementation of IWLSPC is available from

‘http://sugiyama-www.cs.titech.ac.jp/~hachiya/software/IWLSPC/’.

3 Related Works

In this section, we review two related works: Laplacian regularized least-squares (LapRLS)
and importance-weighted kernel logistic regression (IWKLR). These two methods will be
regarded as baselines for experimental performance comparison in Section 4.
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3.1 Laplacian Regularized Least-Squares

Laplacian regularized least-squares (LapRLS) is a standard semi-supervised learning
method which tries to impose smoothness over non-linear data manifold [5]. Let us con-
sider a binary classification problem where y ∈ {+1,−1}. LapRLS uses a kernel model
for class prediction2:

k(x;θ) ≡
Nte∑
n=1

θnK(x,xte
n ).

The parameter θ is determined as

min
θ

[
1

Ntr

Ntr∑
n=1

(
k(xtr

n ;θ)− ytrn

)2
+ λθ⊤θ + η

N∑
n,n′=1

Ln,n′k(xn;θ)k(xn′ ;θ)

]
,

where the first term is the goodness of fit, the second term is the ℓ2-regularizer to avoid
over-fitting, and the third term is the Laplacian regularizer to impose smoothness over
data manifold. N ≡ Ntr +Nte, L ≡ D−W is the N ×N graph Laplacian matrix, W is
an affinity matrix defined by

Wn,n′ ≡ exp

(
−∥xn − xn′∥2

2τ 2

)
,

(x1, . . . ,xN) ≡ (xtr
1 , . . . ,x

tr
Ntr

,xte
1 , . . . ,x

te
Nte

),

τ is an affinity-controlling parameter, and D is the diagonal matrix given by Dn,n ≡∑N
n′=1Wn,n′ .
The solution of LapRLS can be analytically computed since the optimization prob-

lem is an unconstrained quadratic program. However, covariate shift is not taken into
account in LapRLS, and thus it will not perform well if training and test distributions
are significantly different.

3.2 Importance-Weighted Kernel Logistic Regression

Kernel logistic regression (KLR) is a popular probabilistic classifier, which learns the
class-posterior probability p(y|x) by a kernel logistic model:

p(y|x;θ) ≡
exp

(∑Nte

n=1 θy,nK(x,xte
n )
)

∑c
y′=1 exp

(∑Nte

n=1 θy′,nK(x,xte
n )
) ,

where θ = (θ1,1, . . . , θc,Nte)
⊤. The importance-weighted KLR (IWKLR) method deter-

mines the parameter θ by maximizing the penalized importance-weighted log-likelihood

2Note that, in the original LapRLS, kernel basis functions are located at training input points {xtr
n }

Ntr
n=1.

Here, we locate them at test input points {xte
n }Nte

n=1 for being consistent with other methods.
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[32, 35]:

max
θ

[
Ntr∑
n=1

w(xtr
n )

ν log p(ytrn |xtr
n ;θ)− λθ⊤θ

]
.

The above objective function is concave with respect to θ, and thus the unique max-
imizer can be obtained by standard optimization techniques such as gradient methods
and (quasi-) Newton methods. Although sophisticated optimization toolboxes are readily
available, training a large-scale IWKLR model is still computationally challenging since
it requires to optimize the all-class parameter θ of dimension c × Nte at once. On the
other hand, IWLSPC optimizes the class-wise parameter θy of dimension Nte separately
c times.

4 Experiments

In this section, we experimentally compare the performance of the proposed and existing
methods.

4.1 Setup

We compare the performance of the following six classification methods:

• LapRLS+IWCV: a semi-supervised learning method described in Section 3.1. The
hyper-parameters σ, τ , λ, and η are selected by IWCV (see A).

• LapRLS+CV: a semi-supervised learning method described in Section 3.1. The
hyper-parameters σ, τ , λ, and η are selected by ordinary CV (i.e., no importance
weighting).

• IWKLR+IWCV: a probabilistic classifier described in Section 3.2. The hyper-
parameters σ, λ, and ν are selected by IWCV. We use a MATLAB implementa-
tion of a limited-memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton
method included in the minFunc package [22] for optimization.

• KLR+CV: IWKLR+IWCV with all importance weights set to 1, i.e., ptr(x) = pte(x)
is assumed.

• IWLSPC+IWCV: our proposed method described in Section 2.2. The hyper-
parameters σ, λ, and ν are selected by IWCV.

• LSPC+CV: IWLSPC+IWCV with all importance weights set to 1, i.e., ptr(x) =
pte(x) is assumed.

Importance weights are estimated by uLSIF (see B), and the number of kernel basis
functions is fixed to 200 by random sampling from Nte kernels. Training and test input
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Figure 1: Toy data. The optimal decision boundary is described by the solid line. ’◦’ and
’×’ denote positive and negative training samples, while ’2’ and ’+’ denote positive and
negative test samples. Note that the test samples are treated as unlabeled when training
a classifier, and their labels are used only for evaluating the test performance.

samples are normalized in the element-wise manner so that each element has mean zero
and unit variance. The hyper-parameters are chosen from

σ, τ ∈ {0.1m, 0.2m, 0.5m,m, 2m, 3m},
λ, η ∈ {10−2, 10−1.5, 10−1, 10−0.5, 100},
ν ∈ {0, 0.2, 0.4, 0.6, 0.8, 1},

where m is the median distance among test input samples:

m ≡ median
(
{∥xte

n − xte
n′∥}Nte

n,n′=1

)
.

The configuration of the computer used in experiments is as follows: Ubuntu 9.10,
Intel(R) Xeon(R) 2.93GHz, 2 CPUs and 24GB RAM.

4.2 Toy Classification Problem

Let us consider a binary classification problem on the two-dimensional input space. We
define the class-posterior probabilities given input x by

p(y = +1|x) = 1

2
+

1

2
tanh

(
x(1) +min(0, x(2))

)
,

p(y = −1|x) = 1− p(y = +1|x),

where x = (x(1), x(2))⊤. The optimal decision boundary is the set of all x such that

p(y = +1|x) = p(y = −1|x) = 1

2
.



Importance-Weighted Least-Squares Probabilistic Classifier 9

Table 1: Mean misclassification rates [%] and standard deviation (in parentheses) averaged
over 50 trials for toy data with 2 dimensional input space. A number in bold face indicates
the fact that the method is the best or comparable to the best one in terms of the mean
misclassification rate by the t-test at the significance level 5%.

Ntr
LapRLS
+CV

LapRLS
+IWCV

KLR
+CV

IWKLR
+IWCV

LSPC
+CV

IWLSPC
+IWCV

1000 18.6(6.4) 16.5(6.8) 17.5(3.7) 15.2(5.4) 16.6(3.4) 15.2(5.5)
2000 17.6(6.3) 15.7(7.0) 17.7(4.1) 14.1(6.3) 17.2(3.1) 13.3(5.8)

Table 2: Mean computation time [s] and standard deviation (in parentheses) averaged over
50 trials for toy data with 2 dimensional input space. A number in bold face indicates
the fact that the method is the best or comparable to the best one in terms of the mean
computation time by the t-test at the significance level 5%.

Ntr
LapRLS
+CV

LapRLS
+IWCV

KLR
+CV

IWKLR
+IWCV

LSPC
+CV

IWLSPC
+IWCV

1000 2.5(0.6) 3.5(2.1) 3.5(1.1) 3.0(1.1) 0.6(0.2) 0.5(0.3)
2000 4.2(0.9) 4.9(3.0) 9.1(2.4) 7.6(2.3) 1.2(0.3) 1.3(0.4)

Let the training and test input densities be

ptr(x)=
1

2
N

(
x;

[
−2
3

]
,

[
1 0
0 2

])
+
1

2
N

(
x;

[
2
3

]
,

[
1 0
0 2

])
,

pte(x)=
1

2
N

(
x;

[
0
−1

]
,

[
1 0
0 1

])
+
1

2
N

(
x;

[
3
−1

]
,

[
1 0
0 1

])
,

where N(x;µ,Σ) denotes the multivariate normal density with respect to x, with mean
µ and covariance matrix Σ.

We create training input points {xtr
n }Ntr

n=1 following ptr(x) and training labels {ytrn }Ntr
n=1

following p(y|xtr
n ). Similarly, we create Nte = 1000 test input points {xte

n }Nte
n=1 following

pte(x) and test labels {yten }Nte
n=1 following p(y|xte

n ). Examples of training and test samples,
and the optimal decision boundary are illustrated in Figure 1. The graph shows that the
optimal decision boundary sharply turns at the origin. This is an extrapolation problem
where training samples are distributed in the upper half of the graph and test samples are
distributed in the lower half. If the decision boundary is naively estimated from training
data, test data may not be classified correctly. This is a typical example of covariate shift.

The experiments are repeated 50 times with different random seeds. Table 1 depicts
the experimental results for Ntr = 1000 and 2000. The table shows that the use of
importance weights highly contributes to reducing the misclassification rate for KLR and
LSPC. Table 2 depicts the computation time for training classifiers. The table shows that
the LSPC-based methods are computationally much more efficient than the KLR-based
methods.
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Table 3: Mean misclassification rates [%] and standard deviation (in parentheses) averaged
over 50 trials for toy data with 10 dimensional input space. A number in bold face indicates
the fact that the method is the best or comparable to the best one in terms of the mean
misclassification rate by the t-test at the significance level 5%.

Ntr LSPC+CV IWLSPC+IWCV
1000 20.3(2.3) 20.3(3.7)
2000 20.1(2.5) 19.7(3.6)
4000 20.0(1.8) 19.4(2.8)
6000 19.9(1.5) 19.3(1.9)
8000 19.5(1.5) 18.6(2.0)
10000 19.3(1.8) 18.4(1.9)

To evaluate the performance of the importance-weighting approach in high dimensional
input spaces, we added eight dimensions to the above 2-dimensional input space—the
extra dimensional data (x(3), x(4), . . . , x(10))⊤ follow independently normal distribution.
Table 3 depicts the misclassification rate for LSPC+CV and IWLSPC+IWCV in various
numbers Ntr of training samples. The table shows that IWLSPC+IWCV significantly
outperforms LSPC+CV specifically when the number of training samples is large (Ntr ≥
4000). This implies that importance-weighting can perform well even in high dimensional
data.

4.3 Human Activity Recognition using Accelerometric Data

Next, we apply the proposed method to real-world human activity recognition. We use
three-axis accelerometric data collected by iPodTouch available from http://alkan.mns.

kyutech.ac.jp/web/data.html. In the data collection procedure, subjects were asked
to perform a specific task such as walking, running, and bicycle riding. The duration
of each task was arbitrary and the sampling rate was 20 Hz with small variations. An
example of three-axis accelerometric data for “walking” is plotted in Figure 2.

To extract features from the accelerometric data, each data stream was segmented
in a sliding window manner with window width 5 seconds and sliding step 1 second.
Depending on subjects, the position and orientation of iPodTouch was arbitrary—held
by hand or kept in a pocket or a bag. For this reason, we decided to take the ℓ2-norm
of the 3-dimensional acceleration vector at each time step, and computed the following 5
orientation-invariant features from each window: mean, standard deviation, fluctuation of
amplitude, average energy and frequency-domain entropy [1, 2].

Let us consider a situation where 2 new users (indicated by u1 and u2) want to use
the activity recognition system. However, since the new users do not want to label their
accelerometric data, there is no labeled sample for the new users. On the other hand, a
large number of unlabeled samples for the new user and a large number of labeled data
obtained from existing users are available. Let labeled training data {(xtr

n , y
tr
n )}Ntr

n=1 be
the set of labeled accelerometric data for 20 existing users. Each user has at most 100
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Figure 2: An example of three-axis accelerometric data for “walking”.

labeled samples for each action. Let unlabeled test data {xte
n }Nte

n=1 be Nte = 800 unlabeled
accelerometric data obtained from a new user. For stabilization purposes, we average out
the importance weights over each existing user in IWCV.

The experiment is repeated 50 times with different sample choice. Table 4 depicts
the experimental results for each new user (u1 and u2) in three binary classification
tasks: walk vs. run, walk vs. riding a bicycle, walk vs. taking a train. The table shows
that IWLSPC+IWCV and IWKLR+IWCV compare favorably with other methods in
terms of the classification accuracy. Table 6 depicts the confusion matrices of three
binary classification tasks using IWLSPC+IWCV. The table shows that the number of
corrected predictions for each task is rather imbalanced between two activities, e.g., there
are more corrected predictions for “walking” than for “taking a train”. Table 5 depicts the
computation time for training classifiers. The table shows that the LSPC-based methods
are computationally much more efficient than the KLR-based methods.

Figure 3 depicts the mean misclassification rate for various coverage level, which is
the ratio of test sample size used for evaluating the misclassification rate. For example,
the coverage 0.8 means that 80% of test samples with high confidence level (obtained
by an estimated class-posterior probability) are used for evaluating the misclassification
rate. The graphs show that, for most of the coverage level, IWLSPC+IWCV outperforms
LSPC+CV and the misclassification rate of both IWLSPC+IWCV and LSPC+CV tends
to decrease as the coverage level decreases. This implies that the confidence estimation
by (IW)LSPC is reliable since the higher the confidence is, the more accurate the learned
classifier. This fact leads to a good heuristic to further improve the performance. That
is, the prediction with low confidence level is rejected and instead the prediction with
high confidence level obtained in the previous time step is used since an action usually
continues for a certain amount of duration.

Table 7 depicts the mean misclassification rate for the case that the prediction with
lower confidence level than a threshold, i.e., 0.8 or 0.9 is replaced with the previous one
with the highest confidence level in last five steps. The table shows that the correction
based on the confidence-level can further improve the performance of IWLSPC+IWCV.
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Figure 3: Misclassification rate as a function of coverage for each new user (u1 and u2)
in human activity recognition.
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Table 4: Mean misclassification rates [%] and standard deviation (in parentheses) averaged
over 50 trials for each new user (u1 and u2) in human activity recognition. A number in
bold face indicates the fact that the method is the best or comparable to the best one in
terms of the mean misclassification rate by the t-test at the significance level 5%.

Walk vs.
LapRLS
+CV

LapRLS
+IWCV

KLR
+CV

IWKLR
+IWCV

LSPC
+CV

IWLSPC
+IWCV

Run (u1) 21.2(4.7) 11.3(4.7) 15.0(6.7) 8.9(0.8) 13.2(4.0) 8.9(0.6)
Bicycle (u1) 9.9(1.2) 12.5(1.4) 9.7(0.8) 8.6(4.5) 9.9(0.9) 8.7(4.7)
Train (u1) 2.2(0.23) 2.2(0.3) 1.4(0.4) 1.2(1.5) 1.5(0.4) 1.1(1.5)
Run (u2) 24.0(4.8) 19.9(9.4) 24.6(1.4) 21.6(5.8) 24.5(1.0) 21.0(5.6)

Bicycle (u2) 8.6(1.5) 9.9(2.5) 6.7(1.4) 6.8(1.7) 6.3(1.3) 6.4(1.8)
Train (u2) 4.0(1.3) 3.7(1.0) 3.7(0.7) 2.9(0.7) 3.5(0.6) 3.1(0.5)

Table 5: Mean computation time [s] and standard deviation (in parentheses) averaged
over 50 trials for each new user (u1 and u2) in human activity recognition. A number in
bold face indicates the fact that the method is the best or comparable to the best one in
terms of the mean computation time by the t-test at the significance level 5%.

Walk vs.
LapRLS
+CV

LapRLS
+IWCV

KLR
+CV

IWKLR
+IWCV

LSPC
+CV

IWLSPC
+IWCV

Run (u1) 14.1(0.7) 14.5(0.8) 86.8(16.2) 78.8(23.2) 7.3(1.1) 6.6(1.3)
Bicycle (u1) 38.8(4.8) 52.8(8.1) 38.8(4.8) 52.8(8.1) 4.2(0.8) 3.7(0.8)
Train (u1) 5.5(0.6) 5.4(0.6) 19.8(7.3) 30.9(6.0) 3.9(0.8) 4.0(0.8)
Run (u2) 12.6(2.1) 12.1(2.2) 70.1(12.9) 128.5(51.7) 8.2(1.3) 7.8(1.5)

Bicycle (u2) 16.8(7.0) 27.2(5.6) 16.8(7.0) 27.2(5.6) 3.7(0.8) 3.1(0.9)
Train (u2) 5.6(0.7) 5.6(0.6) 24.9(10.8) 29.4(10.3) 4.1(0.8) 3.9(0.8)

5 Conclusions

In human activity recognition, there are several practical issues to be taken into account:
a new user is not willing to gather labeled data, motion patterns are significantly different
depending on users, and prediction with confidence is useful. In this paper, we formu-
lated the new user problem in human activity recognition as a covariate shift adaptation
problem [23], and proposed a computationally efficient probabilistic classification method.
The proposed method is an importance-weighted variant of the least-squares probabilistic
classifier [26, 33], which is computationally very efficient thanks to the availability of an
analytic-form solution. Experiments on real-world human activity recognition illustrated
the usefulness of the proposed method.

A potential limitation of the proposed method is that it relies on the assumption
that the class-posterior probability does not change in between training and test phases.
That is, when this assumption does not hold, e.g., an existing user has a different decision
boundary between “walking” and “running” from the one of new user, the learned classifier
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Table 6: Confusion matrix for three binary-classification tasks using IWLSPC+IWCV in
human activity recognition. There are 80000 test samples (2 users × 50 trials × 800 test
samples) in total for each task. A number in bold face indicates correct predictions.

Predicted
Walk Run

Actual
Walk 31931 8069
Run 3907 36093

Walk Bicycle

Actual
Walk 38474 1526
Bicycle 4494 35506

Predicted
Walk Train

Actual
Walk 39973 27
Train 1651 38349

Table 7: Mean misclassification rates [%] and standard deviation (in parentheses) aver-
aged over 50 trials for each new user (u1 and u2) using IWLSPC+IWCV with/without
correction based on confidence levels in human activity recognition. A number in bold
face indicates the fact that the method is the best or comparable to the best one in terms
of the mean misclassification rate by the t-test at the significance level 5%.

Walk vs. Without correction
With correction
threshold=0.8

With correction
threshold=0.9

Run (u1) 8.9(0.6) 4.8(2.1) 4.0(3.8)
Bicycle (u1) 8.7(4.7) 8.6(4.6) 8.6(5.8)
Train (u1) 1.1(1.5) 0.8(1.4) 0.8(1.3)
Run (u2) 21.0(5.6) 23.3(8.2) 21.3(6.1)

Bicycle (u2) 6.4(1.8) 5.0(1.7) 5.4(1.7)
Train (u2) 3.1(0.5) 0.4(0.6) 0.5(0.7)
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can be significantly biased. This problem can be overcome if we can eliminate training
samples that follow a different class-posterior from the test samples. The change of two
class-posterior densities can be detected using the density-ratio pte(y|x)/ptr(y|x) as in
change-point detection [16] and two-sample test [31]. The ratio of class-posterior densities
can be in principle estimated similarly as the importance-weight estimation (B). Thus,
developing an efficient algorithm for detecting the change of class-posterior would be
important future works.
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A Model Selection by Importance-Weighted Cross-

Validation

The performance of IWLSPC depends on the choice of the regularization parameter λ,
the Gaussian kernel width σ, and the flattening parameter ν. Cross-validation (CV) is
a standard method for model selection. However, under covariate shift, ordinary CV is
highly biased due to the differing distributions. To cope with this problem, a variant
of CV called importance-weighted CV (IWCV) has been proposed [28]. Here, we briefly
describe the IWCV procedure.

Let us randomly divide the training set into D = {(xtr
n , y

tr
n )}Ntr

n=1 into K disjoint non-

empty subsets {Dk}Kk=1 of (approximately) the same size. Let f̂k(x) be a function learned
from D\Dk (i.e., without Dk). Then the k-fold IWCV estimate of the generalization error
is given by

ĜIWCV =
1

K

K∑
k=1

1

|Dk|
∑

(xtr,ytr)∈Dk

w(xtr)loss(f̂k(x
tr), ytr),

where w(x) is the importance weight defined by Eq.(1), loss(ŷ, y) is the loss function
which measures the discrepancy between the true output value y and its estimate ŷ,
and |D| denotes the number of samples in the set D. It was proved that IWCV gives
an almost unbiased estimate of the generalization error even under covariate shift [28].
Finally, we select the model (λ, σ, and ν in the case of IWLSPC) that minimizes the
above generalization error estimator:

(λ̂, σ̂, ν̂) = argmin
(λ,σ,ν)

ĜIWCV(λ, σ, ν).
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B Importance-Weight Estimation by Unconstrained

Least-Squares Importance Fitting

IWLSPC (and IWCV) requires the values of the importance {w(xtr
n )}Ntr

n=1, which are un-
known in practice. So far, various methods for estimating the importance has been devel-
oped [24, 7, 20, 12, 30, 13]. Among them, the method called unconstrained least-squares
importance fitting (uLSIF) [13] was shown to be superior since it achieves the optimal
convergence rate [14], it possesses the optimal numerical stability [15], and its solution
can be computed analytically. Here, we briefly review the uLSIF method.

Suppose we are given training and test input points {xtr
n }Ntr

n=1 and {xte
n }Nte

n=1, which
independently follow ptr(x) and pte(x), respectively. The main idea of uLSIF is to di-
rectly estimate the importance weight w(x) = pte(x)/ptr(x) without estimating ptr(x)
and pte(x). Let us model the importance w(x) by the following model:

w(x;α) =
Nte∑
n=1

αnL(x,x
te
n ),

where α = (α1, . . . , αNte)
⊤ are parameters to be learned from data samples and L(x,x′)

is a kernel function. Here, we focus on the Gaussian kernel:

L(x,x′) = exp

(
−∥x− x′∥2

2κ2

)
,

where κ denotes the Gaussian kernel width. We determine the parameter α so that the
following squared error J is minimized:

J(α) ≡ 1

2

∫ (
w(x;α)− w(x)

)2
ptr(x)dx

=
1

2

∫
w(x;α)2ptr(x)dx−

∫
w(x;α)pte(x)dx+ C ′

=
1

2
α⊤Hα− h⊤α+ C ′,

where C ′ is a constant independent of the parameter α, and H is the Nte × Nte matrix
and h is the Nte-dimensional vector defined as

Hn,n′ ≡
∫

L(x,xte
n )L(x,x

te
n′)ptr(x)dx,

hn ≡
∫

L(x,xte
n )pte(x)dx.

The expectations in H and h are approximated by the empirical averages using {xtr
n }Ntr

n=1



Importance-Weighted Least-Squares Probabilistic Classifier 17

and {xte
n }Nte

n=1 as

Ĥn,n′ ≡ 1

Ntr

Ntr∑
n′′=1

L(xtr
n′′ ,xte

n )L(x
tr
n′′ ,xte

n′),

ĥn ≡ 1

Nte

Nte∑
n′=1

L(xte
n′ ,xte

n ).

Then, we obtain the following optimization problem:

α̂ ≡ argmin
α

[
1

2
α⊤Ĥα− ĥ⊤α+

γ

2
α⊤α

]
,

where γ
2
α⊤α (γ ≥ 0) is a regularization term. Then the uLSIF solution can be analytically

computed as
α̂ = (Ĥ + γINte)

−1ĥ,

where INte denotes the Nte-dimensional identity matrix. Finally, since the importance
weight is non-negative by definition, we modify the solution as

ŵ(x) ≡ max

(
0,

Nte∑
n=1

α̂nL(x,x
te
n )

)
.

The performance of uLSIF depends on the choice of the regularization parameter γ
and the Gaussian kernel width κ. These tuning parameters can be determined by cross-
validation (CV) as follows. Let us randomly divide X tr = {xtr

n }Ntr
n=1 and X te = {xte

n }Nte
n=1

into K disjoint non-empty subsets {X tr
k }Kk=1 and {X te

k }Kk=1, respectively. Let ŵk(x) be an
importance function learned from X tr\X tr

k and X te\X te
k (i.e., without X tr

k and X te
k ). Then

the k-fold CV estimate of the importance estimation error J is given by

ĴCV =
1

K

K∑
k=1

 1

2|X tr
k |

∑
xtr∈X tr

k

ŵk(x
tr)2

− 1

|X te
k |

∑
xte∈X te

k

ŵk(x
te)

 ,

where |X | denotes the number of samples in the set X . Finally, we select the model (i.e.,

the regularization parameter γ and the Gaussian kernel width κ) that minimizes ĴCV:

(γ̂, κ̂) = argmin
(γ,κ)

ĴCV(γ, κ).



Importance-Weighted Least-Squares Probabilistic Classifier 18

References

[1] L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data.
In Proceedings of the 2nd IEEE International Conference on Pervasive Computing,
pages 1–17, 2004.

[2] N. B. Bharatula, M. Stager, P. Lukowicz, and G Troster. Empirical study of de-
sign choices in multi-sensor context recognition systems. In Proceedings of the 2nd
International Forum on Applied Wearable Computing, pages 79–93, 2005.

[3] J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 440–447,
2007.

[4] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural corre-
spodence learning. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 120–128, 2006.

[5] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, 2006.

[6] C. Cortes, Y. Mansour, and M. Mohri. Learning bounds for importance weighting.
In J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23, pages 442–450. 2010.
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