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Abstract
This paper provides a generic framework of compo-

nent analysis (CA) methods introducing a new expres-
sion for scatter matrices and Gram matrices, called
Generalized Pairwise Expression (GPE). This expres-
sion is quite compact but highly powerful: The frame-
work includes not only (1) the standard CA methods but
also (2) several regularization techniques, (3) weighted
extensions, (4) some clustering methods, and (5) their
semi-supervised extensions. This paper also presents
quite a simple methodology for designing a desired
CA method from the proposed framework: Adopting
the known GPEs as templates, and generating a new
method by combining these templates appropriately.

1 Introduction

Component analysis (CA) is traditional, quite sim-
ple but might be one of the powerful tools to obtain a
hidden structure embedded in the data. Recent reports
showed its effectiveness for several tasks in computer
vision and pattern recognition. Principal component
analysis (PCA), Fisher discriminant analysis (FDA),
multiple linear regression (MLR), and canonical cor-
relation analysis (CCA) are well known as standard
CA methods [1]. They can be formulated as a gen-
eralized eigenvalue problem of a scatter matrix or an
augmented matrix composed of several scatter matri-
ces [3, 4]. Kernel CA methods as kernelized extensions
of those standard methods have been also developed to
deal with non-vector samples and non-linear analysis,
which can be formulated as a generalized eigenvalue
problem of Gram matrices, instead of scatter matrices
[3, 4]. Kernel CA often needs some regularization tech-
niques such as ℓ2-norm regularization to inhibit overfit-
ting and Laplacian regularization [2] to fit underlying
data manifolds smoothly. In addition, improvements
of robustness against outliers and separately distributed
samples (e.g. locality preserving projection (LPP) [8]
and local FDA (LFDA) [11]) and their extensions to

semi-supervised analysis [12, 2] have been considered.
Although a lot of CA methods and several trials

to unify these methods have been presented so far
[3, 4, 5, 6], freely designing a tailor-made method of CA
for a specific purpose or domain still remains an open
problem. Until now, researchers have had to choose one
of the existing methods that seems best to address the
problem of interest, or had to laboriously develop a new
analysis method tailored specifically for that purpose.

In view of the above discussions, this paper provides
a new expression of scatter matrices and Gram matrices,
which we call generalized pairwise expression (GPE) to
make it easy to design a new CA method with desired
properties. The methodology is quite simple: adopt-
ing the above mentioned special cases as templates,
and generating a new method by combining these
templates appropriately. This characteristics has not
been discussed yet in any previous researches to our
best knowledge. It is also possible to individually se-
lect and arrange samples for calculating the scatter ma-
trices of the methods to be combined, which enables
us to extend CA methods to semi-supervised ones and
multi-modal ones.

2 Generalized pairwise expression

Consider two sample sets X = {x1, . . . ,xNx} and
Y = {y1, . . . ,yN ,yNx+1, . . . ,yNx+Ny−N} with Nx

and Ny samples and dx and dy dimensions. For brevity,
suppose that both of the sample sets X and Y are cen-
tered on the origin, and samples with the same suffix
are paired. A pair (X,Y ) is separated into the fol-
lowing two types: A complete set (XC ,Y C) so that
every sample pair (xn,yn) co-occurs, and incomplete
sets XI and Y I so that every sample xn (resp. yn)
cannot find the co-occurring sample. Unless otherwise
stated, we assume Nx = Ny = N .

Many CA methods developed so far involve the fol-
lowing optimization problem:

w(opt) := arg max
w∈Rd

(w⊤Cw)(w⊤Cw)−1,



where C and C are symmetric matrices with some sta-
tistical natures. Roughly speaking, C encodes the quan-
tity that we want to increase, and C corresponds to
the quantity that we want to decrease. The above opti-
mization can be converted to the following generalized
eigenvalue problem via Lagrangian multipliers:

Cw = λCw,

The eigenvector wk (k = 1, . . . , r) of this generalized
eigenvalue problem gives a solution of the original CA.

When addressing CA methods, we often deal with
the following type of second-order statistics as an ex-
tension of scatter matrices, since it is convenient to de-
scribe the relation between pairs of features:

SQ,xy :=
N∑

n=1

N∑
m=1

Qn,m(xn − xm)(yn − ym)⊤,

where Q is an N × N non-negative symmetric ma-
trix. A typical example is the scatter matrix Sxy =

N−1
∑N

n=1 xny
⊤
n . Let DQ be the N×N diagonal ma-

trix with DQ,n,n =
∑N

m=1 Qn,m, and LQ = DQ −Q
(Laplacian). Then, SQ,xy can be expressed as

SQ,xy = XLQY ⊤.

The above expression is called the pairwise expression
(PE) of the second-order statistics SQ,xy[12].

Here, we extend it to the following expression intro-
ducing an additional matrix independent of Q:

SQ,xy := XLQ,1Y
⊤ +L2,

where LQ,1 is a N × N positive semi-definite matrix,
and L2 is a dx×dy matrix.1 We call this expression the
generalized pairwise expression (GPE) of the second-
order statistics SQ,xy. The first and second terms are
called the data term and bias term, respectively.

We can derive the following fundamental lemmas of
GPE from the definition, if the number N of samples is
sufficiently large:

1. If A is a GPE and β > 0, then βA is also a GPE.
2. If A and B are dx × dy GPEs, then A+B is also

a GPE with the same size.
3. If A is a dx × dy GPE with columns, and B is a

dy × dz GPE, then AB is a dx × dz GPE.

Proof. The 1st and 2nd claims can be easily proved, so
we concentrate to prove the 3rd one. First, let us define

A := XLA1Y
⊤ +LA2, B := Y LB1Z

⊤ +LB2,

1In general, we do not have to explicitly consider the matrix Q for
the following discussions.

where LA1 (resp. LB1) is a positive semi-definite ma-
trix with dx (resp. dy) rows and dy (resp. dz) columns,
and LA2 (resp. LB2) is a dx × dy (resp. dy × dz) non-
negative matrix. Then, we obtain

AB = (XLA1Y
⊤ +LA2)(Y LB1Z

⊤ +LB2),

= X(LA1Y
⊤Y LB1)Z

⊤ + (LA2Y )LB1Z
⊤

+XLA1(Y
⊤LB2) +LA2LB2.

Here, we can find some matrices LCi (i = 1, 2, 3) sat-
isfying LC1 = LA1Y

⊤Y LB1, XLC2 = LA2Y , and
LC3Z

⊤ = Y ⊤LB2, if N > max(dx, dy, dz), which
implies that for some matrices LD1 and LD2

AB = XLC1Z
⊤ +XLC2LB1Z

⊤

+XLA1LC3Z
⊤ +LA2LB2

= X(LC1 +LC2LB1 +LA1LC3)Z
⊤+LA2LB2

= XLD1Z
⊤ +LD2.

which means AB is also a GPE.

Thanks to the above properties, various CA meth-
ods can be easily designed by simply combining (i.e.
adding, scaling and multiplying) GPEs of existing
methods with desired properties. The rest of the prob-
lem is to reveal GPE of existing methods and to present
several significant examples that would bring us quite
an important hint when constructing new CA methods.

3 Reviewing CA methods via GPE

The GPEs of the standard CA methods are listed in
Table 1. Several detailed derivations can be seen in
[3, 4]. Instead, this paper provides several significant
examples that would be quite an important hint when
constructing new CA methods.

3.1 Semi-supervised local FDA (SELF)

Semi-supervised local FDA (SELF) [12] integrates
localized FDA (LFDA) [11] as a supervised CA method
and PCA as an unsupervised one. SELF is a typical ex-
ample for designing CA methods via the GPE frame-
work from the following two viewpoints:

1. Combining several CA methods via GPE,
2. Selecting samples to calculate data terms, a key to

extend CA methods to semi-supervised ones.

SELF is effective when (1) we have a complete set
(XC ,Y C), where each sample in Y represents a class
ID of the paired sample in X , and (2) an incomplete
set XI only exists, namely there are at least one un-
labeled samples. In such cases, we can regularize the
objective function of the LFDA using the additional



Table 1. GPEs of standard methods
Method C C

PCA Sxx IdX

FDA S(b)
xx S(w)

xx

CCA
[

0 Sxy

Syx 0

] [
Sxx 0
0 Syy

]
MLR

[
0 Sxy

Syx 0

] [
Sxx 0
0 Idy

]
PCR[9]

[
0 Sx̂y

Syx̂ 0

] [
Sx̂x̂ 0
0 Idy

]
OPLS SxyS

⊤
xy Sxx

Ridge
[

0 Sxy

Syx 0

] [
Sxx + δIdx 0

0 Idy

]
regression
LPP[8] XLX⊤ XDX⊤

LFDA[11] S
(lb)
Q,xx S

(lw)
Q,xx

PCR: Principal component regression, OPLS: Orthogonal par-
tial least-squares.
S

(b)
xx and S

(w)
xx : Between-class and within-class scatter matri-

ces of X , X̂ = UKΣKV ⊤
K : K-rank approximation of X

by SVD, Id: d× d identity matrix, δ > 0: constant, S(b)
Q and

S
(w)
Q : between-class and within-class scatter matrices of X

weighted by an N ×N non-negative symmetric matrix.

data XI . In detail, SELF integrates the GPE (S(lb)
Q,C ,

S
(lw)
Q,C) of LFDA calculated only from the complete set

(XC ,Y C) and the GPE Sxx of PCA calculated from
all the samples X , as follows:

C
(SELF )

= βS
(lb)
Q,C + (1− β)Sxx,

C(SELF ) = βS
(lw)
Q,C + (1− β)Idx ,

where β is a scalar satisfying 0 ≤ β ≤ 1. When β =
1, SELF is equivalent to LFDA with only the labeled
samples (XC ,Y C). Meanwhile, when β = 0, SELF
is equivalent to PCA with all samples in X . In general,
SELF inherits the properties of both LFDA and PCA,
and their influences can be controlled by the scalar β.

3.2 Semi-supervised CCA (SemiCCA)

In a similar manner to SELF, we can derive a new ex-
tension of CCA that can deal with not only a complete
set (XC ,Y C) and also incomplete sets (XI ,Y I).
This extensive method is generally called SemiCCA
[10]. The GPE of SemiCCA can be described as

C
(sCCA)

= β

[
0 SCxy

SCyx 0

]
+ (1− β)

[
Sxx 0
0 Syy

]
,

C(sCCA) = β

[
SCxx 0
0 SCyy

]
+ (1− β)

[
Idx 0
0 Idy

]
.

Table 2. GPEs of kernelized CA methods

Method C C

kPCA Kx IN

kFDA K(b)
x K(w)

x

kCCA
[

0 KxKy

KyKx 0

] [
K2

x 0
0 K2

y

]
kMLR

[
0 KxKy

KyKx 0

] [
K2

x 0
0 IN

]
kCCA+ℓ2[7]

[
0 KxKy

KyKx 0

] [
K

(ℓ2)
x 0

0 K
(ℓ2)
y

]

L-kCCA[2]
[

0 KxKy

KyKx 0

] [
K

(L)
x 0

0 K
(L)
x

]
LE, SC Lx Dx

LLE K(LL)
x K(LL)⊤

x IN

NC, nSC D−1/2
x LxD

−1/2
x IN

L-kCCA: Laplacian-regularized kernel CCA, Kx, Kx: Gram
matrices, K(ℓ2)

x = K2
x + δxKx, K(L)

x = K2
x + γxRx,

Rx = KxLxKxm, LE: Laplacian eigenmap, SC: Spec-
tral clustering, NC: Normalized cuts, nSC: normalized SC,
K

(LL)
x = IN −Kx

3.3 Kernelized extensions

A lot of methods in the GPE framework can be ker-
nelized in a similar manner to the existing ones. The
GPEs of major kernelized CA methods are listed in
Table 1. By introducing kernelized expression, sev-
eral methods for clustering and local embedding can be
included in this framework, e.g. Laplacian eigenmap
(LE), locally linear embedding (LLE), spectral cluster-
ing (SC) and normalized cuts (NC).

4 Designing new methods

Summarizing the discussions so far, we describe (1)
GPEs of standard CA methods, (2) the way for integrat-
ing several GPEs and (3) some semi-supervised exten-
sions by changing samples for calculating GPEs. This
section shows that we can easily design new CA meth-
ods at will by replicating those steps.

Consider a problem of video categorization, where
its training data includes image features X , audio fea-
tures Y and class indexes. Finding appropriate cor-
relations of such three different modals would be still
challenging. Here, we consider an integration (CFDA)
of CCA and FDA which enables us to extract class-
wise differences of multiple feature correlations as well
as to achieve discriminative embedding simultaneously.



Figure 1. 2D embedding of MIT CBCL dataset. (Left) FDA with person IDs as classes, (middle)
CCA with illuminations and face poses as side info, (right) CCA-FDA with person IDs as classes
and illuminations and face poses as side information

CCA-FDA can be formulated as

C
(CFDA)

Q = β

[
0 Sxy

Syx 0

]
+ (1− β)S

(lb)
Q ,

C
(CFDA)
Q = β

[
Sxx 0
0 Syy

]
+ (1− β)S

(lw)
Q .

Figure 1 shows an example how CCA-FDA works with
MIT CBCL face dataset, which implies that CCA-FDA
obtains a specific property combining CCA and FDA.

Integrating two methods within the kernelized GPE
framework is not obvious, since a simple addition of
Gram matrices is not a GPE. One example can be
seen in a kernelized extension of SELF, called kernel
SELF [12]. Remember that the original SELF inte-
grates LFDA with labeled samples and PCA with all
the samples (see Section 3.1), and it can be formulated
by a localized between-class scatter matrix S

(lb)
Q,C , local-

ized within-class matrix S
(lw)
Q,C and the ordinary scatter

matrix Sxx. Kernel SELF can be formulated via their
Laplacian matrices L(lb)

Q,C , L(lw)
Q,C , Lxx, as follows:

C
(kSELF )

= Kx{βL(lb)
Q,C + (1− β)Lxx}Kx,

C(kSELF ) = βKxL
(lb)
Q,CKx + (1− β)Kx.

From this formulation, when dealing with kernelized
CA, we have to explicitly derive GPEs of existing meth-
ods, and replace the data matrix into its Gram matrix.

5 Concluding remarks

This paper presented a new expression of scatter ma-
trices and Gram matrices called generalized pairwise
expression (GPE). The GPE not only provided a uni-
fied insight into various CA methods and their exten-
sions, but also made it eacy to design new CA methods
with desired properties. The methodology is quite sim-
ple: adopting GPEs of existing methods as templates,

and combining (adding, scaling and multiplying those
templates according to the properties you want.

The GPE framework covers a wide variety of CA
methods, and thus the way we have presented in this
paper for designing new methods is still one example.
Developing more general guidelines would be one of
the important future work. We will disclose the details
just before the conference in arxiv.org.
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