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Abstract
We propose a general information-theoretic ap-
proach called SERAPH (SEmi-supervised metRic
leArning Paradigm with Hyper-sparsity) for met-
ric learning that does not rely upon the manifold
assumption. Given the probability parameterized
by a Mahalanobis distance, we maximize the en-
tropy of that probability on labeled data and min-
imize it on unlabeled data following entropy reg-
ularization, which allows the supervised and un-
supervised parts to be integrated in a natural and
meaningful way. Furthermore, SERAPH is regu-
larized by encouraging a low-rank projection in-
duced from the metric. The optimization of SER-
APH is solved efficiently and stably by an EM-
like scheme with the analytical E-Step and con-
vex M-Step. Experiments demonstrate that SER-
APH compares favorably with many well-known
global and local metric learning methods.

1. Introduction
A good metric for input data is a key factor for many ma-
chine learning algorithms. Classical metric learning meth-
ods fall into three types: (a) Supervised type requiring class
labels (e.g., Sugiyama, 2007); (b) Supervised type requir-
ing weak labels, i.e., {±1}-valued labels that indicate the
similarity/dissimilarity of data pairs (e.g., Weinberger et al.,
2005; Davis et al., 2007); (c) Unsupervised type requiring
no label information (e.g., Belkin & Niyogi, 2001). Types
(a) and (b) have a strict limitation for real-world applica-
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tions since they need lots of labels. Based on the belief that
preserving the geometric structure in an unsupervised man-
ner can be better than relying on the limited labels, semi-
supervised metric learning has emerged. To the best of our
knowledge, all semi-supervised extensions employ off-the-
shelf techniques in type (c) such as principal component
analysis (Yang et al., 2006; Sugiyama et al., 2010) or man-
ifold embedding (Hoi et al., 2008; Baghshah & Shouraki,
2009; Liu et al., 2010). They can be regarded as propagat-
ing labels along an assistant metric by some unsupervised
techniques and learning a target metric implicitly in a su-
pervised manner.

However, the target and assistant metrics assume different
forms, one Mahalanobis distance defined over a Euclidean
space and one geodesic distance over a curved space or a
Riemannian manifold. The two metrics also share slightly
different goals: the target metric tries to learn a metric so
that data in the same class are close and data from differ-
ent classes are far apart (e.g., Fisher discriminant analysis1

(Fisher, 1936)), and the assistant one tries to identify and
preserve the intrinsic geometric structure (e.g., Laplacian
eigenmaps (Belkin & Niyogi, 2001)). Simply putting them
together works in practice, but the paradigm is conceptu-
ally neither natural nor unified.

In this paper, we propose a semi-supervised metric learn-
ing approach SERAPH (SEmi-supervised metRic leArning
Paradigm with Hyper-sparsity) as an information-theoretic
alternative to the manifold-based methods. Our idea is to
optimize a metric by optimizing a conditional probability
parameterized by that metric. Following entropy regular-
ization (Grandvalet & Bengio, 2004), we maximize the en-
tropy of that probability on labeled data, and minimize it

1Note that learning a metric is equivalent to learning a projec-
tion in the scenario of dimensionality reduction.
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on unlabeled data, which can achieve the sparsity of the
posterior distribution (Graça et al., 2009), i.e., the low un-
certainty/entropy of unobserved weak labels. Furthermore,
we employ mixed-norm regularization (Ying et al., 2009)
to encourage the sparsity of the projection matrix, i.e., the
low rank of the projection matrix induced from the metric.
Unifying the posterior sparsity and the projection sparsity
brings us to the hyper-sparsity. Thanks to this property, the
metric learned by SERAPH possesses high discriminability
even under a noisy environment.

Our contributions can be summarized as follows. First, we
formulate the supervised metric learning problem as an in-
stance of the generalized maximum entropy distribution es-
timation (Dudı́k & Schapire, 2006). Second, we propose a
semi-supervised extension of the above estimation follow-
ing entropy regularization (Grandvalet & Bengio, 2004).
Notice that our extension is compatible with the manifold-
based extension, which means that SERAPH could adopt an
additional manifold regularization term.

2. Proposed Approach
In this section, we first formulate the model of SERAPH and
then develop the EM-like algorithm to solve the model.

2.1. Notations

Suppose we have a training set X = {xi | xi ∈ Rm}ni=1

that contains n points each with m features. Let the sets of
similar and dissimilar data pairs be

S = {(xi, xj) | xi and xj are similar},
D = {(xi, xj) | xi and xj are dissimilar}.

With some abuse of terminology, we refer to S ∪ D as the
labeled data and

U = {(xi, xj) | i 6= j, (xi, xj) 6∈ S ∪ D}

as the unlabeled data. A weak label yi,j = 1 is assigned to
(xi, xj) ∈ S, or yi,j = −1 to (xi, xj) ∈ D. We abbrevi-
ate
∑

(xi,xj)∈S∪D,
∑

(xi,xj)∈U and
∑
y∈{1,−1} as

∑
S∪D,∑

U and
∑
y . Consider learning a Mahalanobis distance

metric for x, x′ ∈ Rm of the form

d(x, x′) = ‖x− x′‖A =
√

(x− x′)>A(x− x′),

where> is the transpose operator and A ∈ Rm×m is a sym-
metric and positive semi-definite matrix to be learned2. The
probability pA(y | x, x′) of labeling (x, x′) ∈ Rm × Rm
with y = ±1 is parameterized by the matrix A. When ap-
plying pA(y | x, x′) to (xi, xj), it is abbreviated as pAi,j(y).

2In this paper, A is always assumed symmetric positive semi-
definite and will not be explicitly written for brevity.

2.2. Basic model

To begin with, we derive a probabilistic model to investi-
gate the conditional probability of y = ±1 given (x, x′) ∈
Rm×Rm. We resort to a parametric form of pA(y | x, x′),
and will focus on it for the out-of-sample ability.

The maximum entropy principle (Jaynes, 1957) suggests
that we should choose the probability distribution with the
maximum entropy out of all distributions that match the
data moments. Let3

H(pAi,j) = −
∑

y
pAi,j(y) ln pAi,j(y)

be the entropy of the conditional probability pAi,j(y), and

f(x, x′, y;A) : Rm × Rm × {+1,−1} 7→ R

be a feature function that is convex with respect to A. The
constrained optimization problem is

max
A,pAi,j ,ξ

∑
S∪D

H(pAi,j)−
1

2γ
ξ2

s.t.
∣∣∣∑

S∪D
EpAi,j [f(xi, xj , y;A)]

−
∑
S∪D

f(xi, xj , yi,j ;A)
∣∣∣ ≤ ξ,

(1)

where ξ is a slack variable and γ > 0 is a regularization
parameter. The penalty presumes the Gaussian prior of the
expected data moments from the empirical data moments,
which is essentially consistent in spirit with the generalized
maximum entropy principle (Dudı́k & Schapire, 2006) (see
Appendix B.1).

Theorem 1. The primal solution p∗A is given in terms of
the dual solution (A∗, κ∗) by

p∗A(y | x, x′) =
exp(κ∗f(x, x′, y;A∗))

Z(x, x′;A∗, κ∗)
, (2)

where Z(x, x′;A, κ) =
∑
y′ exp(κf(x, x′, y′;A)), and

(A∗, κ∗) can be obtained by solving the dual problem

min
A,κ

∑
S∪D

lnZ(xi, xj ;A, κ)

−
∑
S∪D

κf(xi, xj , yi,j ;A) +
γ

2
κ2.

(3)

Define the regularized log-likelihood function on labeled
data (i.e., on observed weak labels) as

L1(A, κ) =
∑
S∪D

ln pAi,j(yi,j)−
γ

2
κ2.

Then, for supervised metric learning, the regularized max-
imum log-likelihood estimation and the generalized maxi-
mum entropy estimation are equivalent.4

3Throughout this paper, we adopt that 0 ln 0 = 0.
4The proofs of all theorems are in Appendix A.
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When considering f(x, x′, y;A) that should take moments
about the metric information into account, we propose

f(x, x′, y;A, η) =
y

2
(‖x− x′‖2A − η), (4)

where η > 0 is a hyperparameter used as the threshold to
separate the sets S and D under the target metric d(x, x′).
Now the probabilistic model (2) becomes

pA(y | x, x′) =
1

1 + exp(−κy(‖x− x′‖2A − η))
. (5)

For the optimal solution (p∗A, A∗, κ∗), we hope for

p∗A(yi,j | xi, xj) > 1/2, yi,j(‖xi − xj‖2A∗ − η) < 0,

so there must be κ∗ < 0.

Although we use Eq.(4) as our feature function, other op-
tions are available. Please see Appendix C.1 for details.

2.3. Regularization

In this subsection, we extend L1(A, κ) by entropy regular-
ization to semi-supervised learning. Moreover, we regular-
ize our objective by trace-norm regularization.

Our unsupervised part does not rely upon the manifold as-
sumption and is not in the paradigm of smoothing the pro-
jected training data. In order to be integrated with the su-
pervised part more naturally in philosophy, we follow the
minimum entropy principle (Grandvalet & Bengio, 2004),
and hence pAi,j should have low entropy or uncertainty for
(xi, xj) ∈ U . Roughly speaking, the resultant discrimina-
tive models prefer peaked distributions on unlabeled data,
which carries out a probabilistic low-density separation.
Subsequently, according to Grandvalet & Bengio (2004),
our optimization becomes

max
A,κ

L2(A, κ) =
∑
S∪D

ln pAi,j(yi,j)−
γ

2
κ2

+ µ
∑
U

∑
y
pAi,j(y) ln pAi,j(y),

where µ ≥ 0 is a regularization parameter.

In addition, we hope for the dimensionality reduction abil-
ity by encouraging a low-rank projection induced from A.
This is helpful in dealing with corrupted data or data dis-
tributed intrinsically in a low-dimensional subspace. It is
known that the trace is a convex relaxation of the rank for
a matrix, so we revise our optimization problem into

max
A,κ

L(A, κ) =
∑
S∪D

ln pAi,j(yi,j)−
γ

2
κ2

+ µ
∑
U

∑
y
pAi,j(y) ln pAi,j(y)− λ tr(A),

(6)

where tr(A) is the trace of A, and λ ≥ 0 is a regularization
parameter.

Optimization (6) is the final model of SERAPH, and we say
that it is equipped with the hyper-sparsity when both µ and
λ are positive. SERAPH possesses standard kernel and man-
ifold extensions. For more information, please refer to Ap-
pendix C.2 and C.3.

2.4. Algorithm

From now on we will simplify the model (6) and derive a
practical algorithm. First, we eliminate κ from (6), thanks
to the fact that we use a simple feature function (4) in (1).

Theorem 2. Define the simplified optimization problem as5

max
A
L̂(A) =

∑
S∪D

ln p̂Ai,j(yi,j)

+ µ
∑
U

∑
y
p̂Ai,j(y) ln p̂Ai,j(y)− λ̂ tr(A),

(7)

where the simplified probabilistic model is

p̂A(y | x, x′) =
1

1 + exp(y(‖x− x′‖2A − η̂))
. (8)

Let Â and (A∗, κ∗) be the optimal solutions to (7) and (6),
respectively. Then, there exist well-defined hyperparame-
ters η̂ and λ̂, such that Â is equivalent to A∗ with respect
to d(x, x′), and the resulting p̂A(y | x, x′) parameterized
by Â and η̂ is identical to the original pA(y | x, x′) param-
eterized by A∗, κ∗ and η.

Remark 1. After the simplification, γ is dropped, η and λ
are modified, but the regularization parameter µ remains
the same, which means that the tradeoff between the super-
vised and unsupervised parts has not been affected.

Optimization (7) could be directly solved by the gradient
projection method (Polyak, 1967), even though it is non-
convex. Nevertheless, we would like to pose it as an EM-
like iterative scheme to access the derandomization by the
initial solution, the stability for the gradient update, and
the insensitivity to the step size, just to name a few of the
gained algorithmic properties.

The EM-like algorithm runs as follows. In the beginning,
we initialize a nonparametric probability q(y | xi, xj), and
then the M-Step and the E-Step get executed repeatedly un-
til the stopping conditions are satisfied.

At the t-th E-Step, similarly to Graça et al. (2009), we have
for each pair (xi, xj) ∈ U that

min
q

KL(q || pAi,j) + µEq[− ln pAi,j(y)], (9)

where KL is the Kullback-Leibler divergence, and pAi,j is
parameterized by the metric A(t) found at the last M-Step.
Optimization (9) can be solved analytically.

5The new functions and parameters are denoted by ·̂ within
this theorem for the sake of clarity.
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Theorem 3. The solution to (9) is given by

q(y | xi, xj) =
pAi,j(y) exp(µ ln pAi,j(y))∑
y′ p

A
i,j(y

′) exp(µ ln pAi,j(y
′))
. (10)

On the other hand, at the t-th M-Step, we find new metric
A(t) through the probability q(y | xi, xj) which is gener-
ated in the last E-Step and only defined for (xi, xj) ∈ U :

max
A
F(A) =

∑
S∪D

ln pAi,j(yi,j)

+ µ
∑
U

∑
y
q(y | xi, xj) ln pAi,j(y)− λ tr(A).

(11)

It could be solved by the gradient projection method with-
out worry about local maxima using the calculation of∇F
given by

∇F(A) = −
∑
S∪D

yi,j
(
1− pAi,j(yi,j)

)
xi,j

− µ
∑
U

∑
y
yq(y | xi, xj)

(
1− pAi,j(y)

)
xi,j − λIm,

where xi,j = (xi − xj)(xi − xj)>, since the convexity of
the feature function f(x, x′, y;A) with respect toA implies
the convexity of the objective F(A).

A remarkable property of F(A) is that its gradient is uni-
formly bounded, regardless of the scale of A, i.e., the mag-
nitude of tr(A).

Theorem 4. The objective F(A) is Lipschitz continuous,
and the best Lipschitz constant Lip‖·‖F (F) with respect to
the Frobenius norm ‖ · ‖F satisfies

Lip‖·‖F (F) ≤ (#S + #D + µ#U)(diam(X ))2 + λm,
(12)

where diam(X ) = maxxi,xj∈X ‖xi−xj‖2 is the diameter
of X , and # measures the cardinality of a set.

In our current implementation, the initial solution is q(−1 |
xi, xj) = 1, which means that we treat all unlabeled pairs
as dissimilar pairs. The overall asymptotic time complex-
ity is O(n2m + m3) in which the stopping criteria of the
M-Step and the whole EM-like iteration are ignored. Dis-
cussions about the computational complexity and the fast
implementation can be found in Appendix D.

3. Discussions
In this section, we discuss the sparsity issues, namely, we
can obtain the posterior sparsity (Graça et al., 2009) by en-
tropy regularization and the projection sparsity (Ying et al.,
2009) by trace-norm regularization.

By a ‘sparse’ posterior distribution, we mean that the un-
certainty (i.e., the entropy or variance) is low. See Figure 1
as an example. Recall that supervised metric learning aims
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Figure 1. Sparse vs. non-sparse posterior distributions. Six weak
labels are constructed according to four class labels. The left three
panels show the original data and the projected data by metrics
learned with/without the posterior sparsity. The right three pan-
els exhibit one-nearest-neighbor classification results based on the
Euclidean distance and two learned metrics.

at a metric under which data in the same class are close and
data from different classes are far apart. This results in the
metric which ignores the horizontal feature and focuses on
the vertical feature. However, the vertical feature is impor-
tant, and taking care of the posterior sparsity would lead to
a better metric as illustrated in (e) and (f). Therefore, we
prefer taking the posterior sparsity into account in addition
to the aforementioned goal, and then the risk of overfitting
weakly labeled data can be significantly reduced.

We can rewrite L2(A, κ) as a soft posterior regularization
(PR) objective (Graça et al., 2009). Let the auxiliary feature
function be g(x, x′, y) = − ln pA(y | x, x′), then maximiz-
ing L2(A, κ) is equivalent to

max
A,κ

L1(A, κ)− µ
∑
U
EpAi,j [g(xi, xj , y)]. (13)

On the other hand, according to optimization (7) of Graça
et al. (2009), the soft PR objective should take a form as

max
A,κ

L1(A, κ)−min
q

(
KL(q || pA) + µ

∑
U
ξi,j

)
s.t. Eq[g(xi, xj , y)] ≤ ξi,j ,∀(xi, xj) ∈ U , (14)
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Figure 2. Sparse vs. non-sparse projections. The settings and the
layout of panels are similar to Figure 1.

where ξi,j are slack variables. Since q is unconstrained, we
can optimize it with respect to fixed A and κ. It is easy to
see that q should be pA (restricted on U), so the KL term is
zero and the expectation term is the entropy, which implies
the equivalence of optimizations (13) and (14).

Besides the above posterior sparsity, we also hope for the
projection sparsity, which may guide the learned metric to
better generalization performance. See Figure 2 as an ex-
ample of its effectiveness, where the horizontal feature is
informative and the vertical feature is useless.

The underlying technique is the mixed-norm regularization
(Argyriou et al., 2006). Denote the `(2,1)-norm of a sym-
metric matrix M as ‖M‖(2,1) =

∑m
k=1(

∑m
k′=1M

2
k,k′)

1/2.
Similarly to Ying et al. (2009), let P ∈ Rm×m be a pro-
jection, and W = P>P be the metric induced from P . Let
the i-th column of P and W be Pi and Wi. If Pi is iden-
tically zero, the i-th component of x has no contribution to
z = Px. Since the column-wise sparsity of W and P are
equivalent, we can penalize ‖W‖(2,1) to reach the column-
wise sparsity of P .

Nevertheless, this is feature selection rather than dimen-
sionality reduction. Recall that the goal is to select a few
most representative directions of input data which are not

restricted to the coordinate axes. The solution is to pick an
extra transformation V ∈ Om to rotate x before the projec-
tion where Om is the set of orthonormal matrices of size
m, and add V to the optimization variables. Consequently,
we penalize ‖W‖(2,1), project x to z = PV x, and since
A = (PV )>(PV ) = V>WV , we arrive at

max
A,κ,W,V

L2(A, κ)− λ‖W‖(2,1) (15)

s.t. A = V>WV,W = W>,W � 0, V ∈ Om.

The equivalence of optimizations (6) and (15) is guaranteed
by Lemma 1 of Ying et al. (2009).

Moreover, there is another justification based on the infor-
mation maximization principle (Gomes et al., 2010). Please
see Appendix B.2 for details.

4. Related Works
Xing et al. (2002) initiated metric learning based on pair-
wise similarity/dissimilarity constraints by global distance
metric learning (GDM). Several excellent metric learning
methods have been developed in the last decade, including
neighborhood component analysis (NCA; Goldberger et al.,
2004), large margin nearest neighbor classification (LMNN;
Weinberger et al., 2005), and information-theoretic metric
learning (ITML; Davis et al., 2007).

Both ITML and SERAPH are information-theoretic, but the
ideas and models are quite different. ITML defines a gen-
erative model pA(x) = exp(− 1

2‖x − µ‖2A)/Z, where µ
is unknown mean value and Z is a normalizing constant.
Compared with GDM, ITML regularizes the KL-divergence
between pA0(x) and pA(x), and transforms this term to a
Log-Det regularization. By specifying A0 = 1

nIm, it be-
comes the maximum entropy estimation of pA(x). Thus,
it prefers the metric close to the Euclidean distance. SER-
APH also follows the maximum entropy principle, but the
probabilistic model pA(y | x, x′) is discriminative.

A probabilistic GDM was designed intuitively as a baseline
in the experimental part of Yang et al. (2006). It is a special
case of our supervised part. In fact, SERAPH is much more
general. Please refer to Section 2.2 for details.

Subsequently, local distance metric learning (LDM; Yang
et al., 2006) is the pioneer of semi-supervised metric learn-
ing, which assumes that the eigenvectors of A are the prin-
cipal components of training data. Hoi et al. (2008) com-
bines manifold regularization to the min-max principle of
GDM based on Belkin & Niyogi (2001), and Baghshah
& Shouraki (2009) shows that Roweis & Saul (2000) is
also useful for semi-supervised metric learning. Liu et al.
(2010) brings the element-wise sparsity to Hoi et al. (2008).

The manifold extension described in Appendix C.3 can be
attached to all metric learning methods, whereas our unsu-
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Table 1. Specification of benchmark data sets.
#classes #features (m) #training (n) #test #class labels E#S E#D #U

iris 3 4 100 38 10 15.10 29.90 4905
wine 3 13 100 78 10 13.98 31.02 4905
ionosphere 2 34 100 251 20 97.50 92.50 4760
balance 3 4 100 465 10 20.38 24.62 4905
breast cancer 2 30 100 469 10 23.54 21.46 4905
diabetes 2 8 100 668 10 23.02 21.98 4905
USPS1−5,20 5 64 100 2500 10 5 40 4905
USPS1−5,40 5 64 200 2500 20 30 160 19710
USPS1−10,20 10 64 200 2500 20 10 180 19710
USPS1−10,40 10 64 400 2500 40 60 720 79020
MNIST1,7 2 196 100 1000 4 2 4 4944
MNIST3,5,8 3 196 150 1500 9 9 27 11139

pervised part applies to probabilistic methods only. How-
ever, any probabilistic method with an explicit expression
of the posterior distribution adopts two semi-supervised ex-
tensions, while deterministic methods such as LMNN can-
not benefit from entropy regularization.

Due to limited space, we leave out sparse metric learning
and robust metric learning. Instead, we recommend Huang
et al. (2009) and Huang et al. (2010) for the latest reviews
of sparse and robust metric learning respectively.

5. Experiments
5.1. Setup

We compared SERAPH with the Euclidean distance, four
famous supervised and two representative semi-supervised
metric learning methods6: global distance metric learning
(GDM; Xing et al., 2002), neighborhood component anal-
ysis (NCA; Goldberger et al., 2004), large margin nearest
neighbor classification (LMNN; Weinberger et al., 2005),
information-theoretic metric learning (ITML; Davis et al.,
2007), local distance metric learning (LDM; Yang et al.,
2006), and manifold Fisher discriminant analysis (MFDA;
Baghshah & Shouraki, 2009).

Table 1 describes the specification of the data sets used in
our experiments. The top six data sets (i.e., iris, wine, iono-
sphere, balance, breast cancer, and diabetes) come from
the UCI machine learning repository7, while the USPS and
MNIST come from the homepage of the late Sam Roweis8.
Gray-scale images of handwritten digits are downsampled
to 8 × 8 and 14 × 14 pixel resolution resulting in 64- and
196-dimensional vectors for USPS and MNIST. The sym-

6We downloaded the codes of all baseline methods from the
official websites provided by the original authors except MFDA.

7http://archive.ics.uci.edu/ml/.
8http://cs.nyu.edu/˜roweis/data.html.

bol USPS1−5,20 means 20 training data from each of the
first 5 classes, USPS1−10,40 means 40 training data from
each of all 10 classes, MNIST1,7 means digits 1 versus 7,
and so forth. Note that in the last two tasks, the dimension-
ality of data is greater than the size of all training data.

In our experiments, all methods were repeatedly run on 50
random samplings. For each random sampling, class labels
of the first few data were revealed, and the sets S and D
were constructed according to these revealed class labels.
The sizes of S, D and U were fixed for all samplings of
USPS and MNIST but random for the samplings of UCI
data sets. We measured the performance of the one-nearest-
neighbor classifiers based on the learned metrics as well as
the computation time for learning the metrics.

Four settings of SERAPH were included in our experiments
(except on two artificial data sets): SERAPHnone stands for
µ = λ = 0, SERAPHpost for µ = #(S∪D)

#U and λ = 0,
SERAPHproj for µ = 0 and λ = 1, and SERAPHhyper for
µ = #(S∪D)

#U and λ = 1. We fixed η = 1 for simplicity.

There was no cross-validation for each random sampling,
otherwise the learned metrics would be highly dependent
upon the final classifier, and also because of the large vari-
ance of the classification performance given the limited su-
pervised information. The hyperparameters of other meth-
ods, e.g., the number of reduced dimensions, the number of
nearest neighbors, and the percentage of principal compo-
nents, were selected as the best value based on another 10
random samplings if default values or heuristics were not
provided by the original authors.

5.2. Results

Figures 1 and 2 had previously displayed the visually com-
prehensive results of the sparsity regularization on two ar-
tificial data sets respectively. Subfigures (c) and (d) in both
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Table 2. Means with standard errors of the nearest-neighbor misclassification rate (in %) on UCI, USPS and MNIST benchmarks. For
each data set, the best method and comparable ones based on the unpaired t-test at the significance level 5% are highlighted in boldface.

iris wine ionosphere balance breast cancer diabetes
EUCLIDEAN 9.58± 0.73 12.93± 0.83 23.60± 0.89 27.15± 0.75 14.11± 1.07 32.94± 0.65

GDM 8.95± 0.71 11.52± 0.77 20.82± 0.82 22.89± 1.08 11.86± 0.83 30.73± 0.59

NCA 10.32± 0.83 15.03± 1.12 26.68± 0.82 32.97± 1.31 14.63± 1.09 32.95± 0.65

LMNN 9.81± 0.79 14.83± 0.97 22.25± 0.75 24.00± 1.34 13.86± 0.84 32.02± 0.60

ITML 5.57± 0.53 8.22± 0.66 20.35± 0.64 22.04± 0.80 9.60± 0.49 31.21± 0.73

LDM 7.27± 0.72 17.21± 1.41 24.54± 0.92 21.22± 0.93 14.85± 0.92 34.33± 0.60

MFDA 6.58± 0.54 11.55± 1.03 23.66± 0.91 23.61± 1.00 11.21± 0.80 31.64± 0.62

SERAPHnone 6.21± 0.48 8.13± 0.58 19.70± 0.43 20.25± 0.64 11.39± 0.49 29.86± 0.61

SERAPHpost 4.79± 0.37 7.46± 0.51 19.64± 0.45 19.98± 0.67 11.33± 0.50 29.87± 0.57

SERAPHproj 5.79± 0.54 7.39± 0.50 19.53± 0.46 20.94± 0.64 9.61± 0.49 30.43± 0.65

SERAPHhyper 5.31± 0.43 7.38± 0.49 19.33± 0.42 20.15± 0.63 10.04± 0.52 30.02± 0.63

USPS1−5,20 USPS1−5,40 USPS1−10,20 USPS1−10,40 MNIST1,7 MNIST3,5,8

EUCLIDEAN 36.63± 0.80 28.43± 0.60 49.17± 0.50 39.30± 0.39 10.42± 0.67 37.30± 0.81

GDM 37.62± 0.77 - - - - -
NCA 37.55± 0.84 28.39± 0.60 57.01± 0.82 49.21± 0.66 10.42± 0.67 37.75± 0.92

LMNN 36.43± 0.78 28.93± 0.61 48.12± 0.57 43.68± 0.58 9.99± 0.71 36.49± 0.82

ITML 35.86± 0.74 27.40± 0.65 47.40± 0.60 39.44± 0.57 9.94± 0.69 40.83± 0.93

LDM 47.19± 1.51 32.52± 0.85 59.13± 0.73 43.18± 0.53 14.54± 1.41 45.53± 1.16

MFDA 42.52± 0.82 28.82± 0.62 52.13± 0.59 37.78± 0.50 9.35± 0.72 42.39± 0.92

SERAPHnone 36.08± 0.75 27.41± 0.60 47.29± 0.58 38.36± 0.55 9.97± 0.71 36.44± 0.84

SERAPHpost 35.79± 0.75 27.37± 0.60 47.12± 0.58 38.20± 0.55 10.98± 0.79 36.45± 0.84

SERAPHproj 36.01± 0.75 26.17± 0.57 47.42± 0.62 35.42± 0.54 9.28± 0.72 36.55± 0.80

SERAPHhyper 32.79± 0.77 25.26± 0.56 44.89± 0.58 33.41± 0.47 7.61± 0.57 35.71± 0.84

figures were obtained by GDM, while (e) and (f) were gen-
erated by SERAPH with µ = 10·#(S∪D)

#U , λ = 0 in Figure 1
and µ = 0, λ = 300 in Figure 2. We can see from Figures
1 and 2 that SERAPH improved supervised global metric
learning dramatically by the sparsity regularization.

The experimental results of the one-nearest-neighbor clas-
sification are reported in Table 2 (GDM was sometimes very
slow and excluded from the comparison). SERAPH is fairly
promising, especially with the hyper-sparsity (µ = #(S∪D)

#U
and λ = 1). It was best or tie over all tasks, and often statis-
tically significantly better than others on UCI data sets ex-
cept ITML. It was better than all other methods statistically
significantly on USPS, and SERAPHhyper outperformed
both SERAPHpost and SERAPHproj . Moreover, it improved
the accuracy even on the ill-posed MNIST tasks, though the
improvement was insignificant on MNIST3,5,8. In a word,
SERAPH can reduce the risk of overfitting weakly labeled
data with the help of unlabeled data, and hence our sparsity
regularization would be reasonable and practical.

In vivid contrast with SERAPH that exhibited nice general-
ization capability, supervised methods might learn a metric
even worse than the Euclidean distance due to overfitting

problems, especially NCA that optimized the leave-one-out
performance based on such limited label information. The
powerful LMNN did not behave satisfyingly, since it was
hardly fulfilled to find a lot of neighbors belonging to the
same class within labeled data. ITML was the second best
method though it can only access weakly labeled data, but
it became less useful for difficult tasks. On the other hand,
we observed that LDM might fail when the principal com-
ponents of training data were not close to the eigenvectors
of the target matrix, and MFDA might fail if the amount of
training data cannot recover the underlying manifold well.

An observation is that the global metric learning often out-
performed the local one, if the supervised information was
insufficient. This phenomenon indicates that the local met-
ric learning tends to fit the local neighborhood information
exceedingly and then suffers from overfitting problems.

Finally, we report in Figure 3 the computation time of each
algorithm on each task (excluding GDM). Generally speak-
ing, SERAPH was the second fastest method, and the fastest
MFDA involves only some matrix multiplication and a sin-
gle eigen-decomposition. Improvements may be expected
if we program in Matlab with C/C++.
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Figure 3. Computation time (per run) of different metric learning algorithms.

6. Conclusions
In this paper, we proposed an information-theoretic semi-
supervised metric learning approach SERAPH as an alterna-
tive to the manifold-based methods. The generalized maxi-
mum entropy estimation for supervised metric learning was
our foundation. Then a semi-supervised extension that can
achieve the posterior sparsity was obtained via entropy reg-
ularization. Moreover, we enforced a trace-norm regular-
ization that can reach the projection sparsity. The resulting
optimization was solved by an EM-like scheme with sev-
eral nice algorithmic properties, and the learned metric had
high discriminability even under a noisy environment.

Experiments on benchmark data sets showed that SERAPH
often outperformed state-of-the-art fully-/semi-supervised
metric learning methods given only limited supervised in-
formation. A final note is that in our experiments the pos-
terior and projection sparsity were demonstrated to be very
helpful for high-dimensional data if and only if they were
combined with each other, i.e., integrated into the hyper-
sparsity. An in-depth study of this interaction is left as our
future work.
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Appendix: Supplementary Material

A. Proofs
A.1. Proof of Theorem 1

Proof. To simplify our notations and make the proof com-
pact, let us denote

p+i,j , pAi,j(+1),

p−i,j , pAi,j(−1),

f+i,j , f(xi, xj ,+1),

f−i,j , f(xi, xj ,−1),

f̃i,j , f(xi, xj , yi,j),

respectively.

Foremost, expand optimization (1) into its complete form:

max
A,pAi,j ,ξ

−
∑
S∪D

(p+i,j ln p+i,j + p−i,j ln p−i,j)−
1

2γ
ξ2

s.t.
∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ ≤ 0,∑
S∪D

f̃i,j −
∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)− ξ ≤ 0,

p+i,j + p−i,j = 1,∀(xi, xj) ∈ S ∪ D.

The terms ln p+i,j and ln p−i,j in the objective function plus
p+i,j + p−i,j = 1 in the constraints have already implied that

0 ≤ p+i,j , p
−
i,j ≤ 1.

By introducing dual variables κ1 ≥ 0, κ2 ≥ 0 for the first
and second constraints, and δi,j ∈ R for the third group of
constraints, the Lagrangian is expressed as

L(A, pAi,j , ξ, κ1, κ2, δi,j) =

−
∑
S∪D

(p+i,j ln p+i,j + p−i,j ln p−i,j)−
1

2γ
ξ2

− κ1
(∑

S∪D
(p+i,jf

+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ
)

− κ2
(∑

S∪D
f̃i,j −

∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)− ξ

)
+
∑
S∪D

δi,j(p
+
i,j + p−i,j − 1).

Differentiating the function L(A, pAi,j , ξ, κ1, κ2, δi,j) with
respect to p+i,j and p−i,j , and equating the derivatives to zero
will give us

ln p+i,j = κf+i,j + δi,j − 1,

ln p−i,j = κf−i,j + δi,j − 1,
(16)

where κ = κ2 − κ1 ∈ R. Note that Eq.(16) says that

p+i,j

p−i,j
= exp(κf+i,j − κf

−
i,j). (17)

Hence Eq.(2) follows with

δi,j = 1− lnZAi,j . (18)

Next, differentiating L(A, pAi,j , ξ, κ1, κ2, δi,j) with respect
to ξ and equating the derivative to zero will give us

ξ = γ(κ1 + κ2). (19)

According to the Karush-Kuhn-Tucker condition about the
dual complementary slackness, i.e.,

κ1

(∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)−

∑
S∪D

f̃i,j − ξ
)

= 0,

κ2

(∑
S∪D

f̃i,j −
∑
S∪D

(p+i,jf
+
i,j + p−i,jf

−
i,j)− ξ

)
= 0,

we know that κ1κ2 = 0, which means

(κ1 + κ2)2 = (κ1 − κ2)2 = κ2. (20)

Substituting Eq.(16)-Eq.(20) into L(A, pAi,j , ξ, κ1, κ2, δi,j)
accomplishes dual problem (3).

Finally, the optimization of the regularized maximum log-
likelihood estimation is

max
A,κ

L1(A, κ).

By plugging the probabilistic model (2) into it we get opti-
mization (3) exactly, which is the dual problem of the gen-
eralized maximum entropy estimation for supervised met-
ric learning defined in optimization (1).

A.2. Proof of Theorem 2

Proof. The proof is constructive.

As mentioned before, there must be κ∗ < 0. Moreover,
κ∗ > −∞ and tr(A∗) < +∞, since they are penalized in
optimization (6). Let

Â = −κ∗A∗,
η̂ = −κ∗η,

λ̂ = −λ/κ∗.

Then η̂ and λ̂ are well-defined hyperparameters as finite
positive real numbers, and Â is a feasible solution to (7) as
a finite trace symmetric positive semi-definite matrix.

Differentiate pA and p̂A with respect to A,

∂pA

∂A
= κypA(1− pA)(x− x′)(x− x′)>, (21)

∂p̂A

∂A
= −yp̂A(1− p̂A)(x− x′)(x− x′)>. (22)

Note that from

p̂A(y | x, x′; Â, η̂) = pA(y | x, x′;A∗, κ∗, η), (23)
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we have

∂L̂
∂p̂Ai,j

∣∣∣∣
A=Â

=
∂L
∂pAi,j

∣∣∣∣
A=A∗,κ=κ∗

.

Thus from

∂p̂A

∂A

∣∣∣
A=Â

= − 1

κ∗
∂pA

∂A

∣∣∣
A=A∗,κ=κ∗

,

∂ tr(A)/∂A = Im where Im is the identity matrix, and the
KKT stationarity condition of optimization (6)

∂L
∂A

∣∣∣∣
A=A∗,κ=κ∗

= 0m×m

where 0m×m is the zero matrix in Rm×m, we get

∂L̂
∂A

∣∣∣∣
A=Â

= − 1

κ∗
∂L
∂A

∣∣∣∣
A=A∗,κ=κ∗

= 0m×m.

This implies that Â is a stationary point of L̂(A).

Similarly, we could derive

∂2L̂
∂A2

∣∣∣∣
A=Â

=

(
1

κ∗

)2
∂2L
∂A2

∣∣∣∣
A=A∗,κ=κ∗

.

Hence, ∂2AL̂(Â) � 0 if and only if ∂2AL(A∗, κ∗) � 0, and
Â is actually a maximum of L̂(A).

Remember Eq.(23) that p̂A(y | x, x′; Â, η̂) is identical to
pA(y | x, x′;A∗, κ∗, η). The theorem follows.

A.3. Proof of Theorem 3

Proof. By the techniques used in the supplementary ma-
terial of Graça et al. (2009), the dual of optimization (9)
should be

min
ξi,j

ln
(∑

y
pAi,j(y) exp(ξi,j ln pAi,j(y))

)
s.t. 0 ≤ ξi,j ≤ µ,

where ξi,j is the dual variable, and the primal variable can
be recovered by

q(y | xi, xj) =
pAi,j(y) exp(ξi,j ln pAi,j(y))∑
y′ p

A
i,j(y

′) exp(ξi,j ln pAi,j(y
′))
.

The optimal q(y | xi, xj) is given by

q(y | xi, xj) =
pAi,j(y) exp(µ ln pAi,j(y))∑
y′ p

A
i,j(y

′) exp(µ ln pAi,j(y
′))
,

since the objective of the dual problem is monotonically
decreasing with respect to ξi,j .

However, we present here a shorter and direct proof to get
Eq.(10) for the sake of self-containing.

As before, let us denote

p+i,j , pAi,j(+1),

p−i,j , pAi,j(−1),

q+i,j , q(+1 | xi, xj),

q−i,j , q(−1 | xi, xj),

respectively. We expand optimization (9) to its complete
form:

min
qi,j

q+i,j ln
q+i,j

p+i,j
+ q−i,j ln

q−i,j

p−i,j
− µq+i,j ln p+i,j − µq

−
i,j ln p−i,j

s.t. q+i,j + q−i,j = 1.

The terms ln(q+i,j/p
+
i,j) and ln(q−i,j/p

−
i,j) in the objective

function plus q+i,j + q−i,j = 1 in the constraints have already
implied that

0 ≤ q+i,j , q
−
i,j ≤ 1.

By introducing a dual variable ξi,j , the Lagrangian is ex-
pressed as

L(qi,j , ξi,j) = q+i,j ln
q+i,j

p+i,j
+ q−i,j ln

q−i,j

p−i,j
− µq+i,j ln p+i,j

− µq−i,j ln p−i,j + ξi,j(q
+
i,j + q−i,j − 1).

Differentiate the function L(qi,j , ξi,j) with respect to q+i,j
and q−i,j , equate the derivatives to zero, and then we get

ln q+i,j = ln p+i,j + µ ln p+i,j − 1− ξi,j ,
ln q−i,j = ln p−i,j + µ ln p−i,j − 1− ξi,j ,

which says that

q+i,j

q−i,j
=
p+i,j

p−i,j
exp(µ ln p+i,j − µ ln p−i,j).

The analytical solution defined in Eq.(10) follows after the
normalization.

A.4. Proof of Theorem 4

Proof. Obviously F(A) is differentiable as long as we al-
low unbounded derivatives. Now we prove that the deriva-
tive is uniformly bounded for fixed training set X .

The conjugate matrix norm of the Frobenius norm is still
the Frobenius norm, namely,

‖B‖∗F = max
‖A‖F≤1

tr(A>B) = ‖B‖F .
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Then the best Lipschitz constant of F with respect to ‖ · ‖F
can be expressed as

Lip‖·‖F (F) = supA�0 ‖∇F‖F ,

so it is sufficient to bound ‖(∂F/∂pAi,j)(∂pAi,j/∂A)‖F from
above uniformly.

Recall that the partial derivative of the simplified pA with
respect to A was given by Eq.(22) as

∂pA

∂A
= −ypA(1− pA)(x− x′)(x− x′)>.

On the other hand,

∂F
∂pAi,j

=


1

pAi,j(yi,j)
if (xi, xj) ∈ S ∪ D

µq(y | xi, xj)
pAi,j(y)

if (xi, xj) ∈ U , y ∈ {1,−1}.

Hence when (xi, xj) ∈ S ∪ D,∥∥∥∥∥ ∂F∂pAi,j · ∂p
A
i,j

∂A

∥∥∥∥∥
F

=
∥∥−yi,j(1− pAi,j(yi,j))(xi − xj)(xi − xj)>∥∥F
≤
∥∥(xi − xj)(xi − xj)>

∥∥
F

=‖xi − xj‖22
≤(diam(X ))2,

where we use the fact that

∥∥zz>∥∥2
F

=

m∑
i,j=1

(zizj)
2

=

(
m∑
i=1

z2i

) m∑
j=1

z2j


= ‖z‖42.

When (xi, xj) ∈ U , for fixed y we have∥∥∥∥∥ ∂F∂pAi,j · ∂p
A
i,j

∂A

∥∥∥∥∥
F

≤ µq(y | xi, xj)(diam(X ))2,

and thus

∑
y

∥∥∥∥∥ ∂F∂pAi,j · ∂p
A
i,j

∂A

∥∥∥∥∥
F

≤ µ(diam(X ))2.

As a result, there exists a finite Lip‖·‖F (F). The inequality
(12) is obtained by applying the triangle inequality of the
Frobenius norm.

B. Additional Justifications
B.1. Generalized maximum entropy principle

The regularization term−γκ2/2 is necessary, otherwise we
will have κ∗ = −∞ for the optimal solution (A∗, κ∗). In
other words, the optimization degenerates, and the learned
metric may easily overfit weakly labeled training data. The
reason for this phenomenon is the single point prior of
the expected data moments from the empirical data mo-
ments. According to the generalized maximum entropy
principle (Dudı́k & Schapire, 2006), an `2-regularization
on the dual variable reflects some Gaussian prior of the
expected data moments from the empirical data moments
rather than the single point prior of the maximum entropy
principle (Jaynes, 1957), where no regularization applies to
the dual variable.

The potential function underlies the generalized maximum
entropy distribution estimation. By the potential function
and the slack variable, we can obtain the same dual prob-
lem for `2-regularization but different dual problems for
`1-regularization on the gap of expected data moments and
empirical data moments.

Let the potential function Uf (·) and its target value uf be

Uf (x) =
1

2γ
(x− uf )2,

uf =
∑
S∪D

f(xi, xj , yi,j).

Redefine optimization (1) as an equivalent form

max
A,pAi,j

∑
S∪D

H(pAi,j)−Uf
(∑

S∪D
EpAi,j [f(xi, xj , y)]

)
,

where the equivalence is due to Fenchel’s Duality Theorem
of Dudı́k & Schapire (2006) and the fact that the conjugate
of Uf (x) is U∗f (κ) = γκ2/2. Subsequently,

max
A,κ

L2(A, κ) =
∑
S∪D

ln pAi,j(yi,j)− U∗f (−κ)

− µUg
(∑

U
EpAi,j [g(xi, xj , y)]

)
is a problem with two potential functions Uf (·) and Ug(·)
under the framework of Bellare et al. (2009), and hence
SERAPH can be viewed as a semi-supervised maximum en-
tropy estimation equipped with the projection sparsity.

B.2. Information maximization principle

The framework of regularized information maximization
(Gomes et al., 2010) follows the information maximization
principle, and advocates the preference for maximizing the
mutual information between data and labels as well as the
necessity of regularization on model parameters.
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Given the supervised part of SERAPH, the regularized in-
formation maximization framework would suggest

max
A,κ

∑
S∪D

ln pAi,j(yi,j) + µI(y;U)− γ

2
κ2 − λ tr(A),

where I(y;U) is the mutual information between unlabeled
data and unobserved weak labels:

I(y;U) =
∑
U

∑
y
p(xi, xj , y) ln

(
p(xi, xj , y)

p(xi)p(xj)p(y)

)
.

By decomposing I(y;U), it could be rewritten as

max
A,κ

L(A, κ) + µH(p̂(y)),

where p̂(y) is a simple estimate of the prior p(y) defined as

p(y) =

∫∫
Rm×Rm

pA(y | x, x′)p(x)p(x′)dxdx′.

The entropy of p(y) encourages a balanced prior distribu-
tion of y under the metric d(x, x′). However, the number
of similar and dissimilar pairs (i.e., y = 1 and y = −1)
are inherently imbalanced in all metric learning problem
settings. Therefore we simply drop H(p̂(y)) and attain (6).

C. Extensions
C.1. Generality

Although we use Eq.(4) as our feature function, other op-
tions are available. In fact, optimization (1) is very general
such that it could be applied to other problem settings. Sup-
pose temporarily that the input domain is X , the output
range is Y , and the training data is

(X ,Y) = {(xi, yi) | xi ∈X , yi ∈ Y }ni=1.

Subsequently, there is a general feature function

f(x, y, x′, y′) =

− (d2X(x, x′)− ηX)(d2Y (y, y′)− ηY )
(24)

defined on (X × Y )2, where dX and dY are two metrics
for X and Y , and ηX , ηY > 0 are separating thresholds.
As long as the range Y is finite, the problem can be solved
by SERAPH. For instance, when Y = {1, . . . , c} for some
positive integer c, the global distance metric feature func-
tion (4) can be derived from (24) by

dX(x, x′) = ‖x− x′‖A,
dY (y, y′) = 1− δ(y, y′),

ηX = η,

ηY =
1

2
,

where δ(·, ·) is the Kronecker delta function. The local dis-
tance metric feature function can be given by

dX(x, x′) = ‖x− x′‖A/‖x− x′‖2

as well. When considering multi-label classification where
Y = {0, 1}c, one can simply replace the above dY (y, y′)
with

δ(y, y′) = 1− 〈y, y′〉/(‖y‖2‖y′‖2).

C.2. Kernel extension

The kernel extension is straightforward. Suppose that we
have a kernel function k : Rm×Rm 7→ R, and a basis B =
{x̄i | x̄i ∈ Rm}bi=1 where most often but not necessarily
B ⊆ X . Let the empirical kernel map be

φ : Rm 7→ Rb

x 7→ (k(x, x̄1), . . . , k(x, x̄b))
>.

Under this scenario, we learn a Mahalanobis distance met-
ric for φ(x), φ(x′) ∈ Rb of the form

d(x, x′) =
√

(φ(x)− φ(x′))>A(φ(x)− φ(x′)),

where A ∈ Rb×b is a symmetric positive semi-definite ma-
trix to be learned.

Subsequently, we assume that B = X . Let K be the kernel
matrix and k1, . . . , kn be its columns, then for any xi, xj ∈
X ,

d(xi, xj) =
√

(ki − kj)>A(ki − kj).

All the components of SERAPH remain the same by replac-
ing xi with the corresponding column ki of the kernel ma-
trix. The resultant d(x, x′) will be highly non-linear with
respect to x, x′ ∈ Rm. There is a similar kernel extension
based on the kernel PCA map defined as

φ : Rm 7→ Rn

x 7→ K−1/2(k(x, x1), . . . , k(x, xn))>.

C.3. Manifold extension

The manifold extension is also straightforward.

Without loss of generality, we adopt the kernel matrix K
as the adjacency matrix of the underlying similarity graph.
Let D = diag(d1, . . . , dn) be the degree matrix such that
di =

∑n
j=1Ki,j , then the unnormalized graph Laplacian

is given by
L = D −K.

Let P ∈ Rm′×m be the projection associated with A such
that A = P>P , X = (x1, . . . , xn)> ∈ Rn×m be the matrix
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form of X , and Z = (z1, . . . , zn)> ∈ Rn×m′ be the pro-
jected data such that zi = Pxi. According to the manifold
assumption, we should also minimize

M(A) = tr
(
Z>LZ

)
= tr

(
X>LXA

)
.

More specifically, the closeness of xi and xj is measured
by the kernel function whereas the closeness of zi and zj
is measured by the Euclidean distance, and the assumption
that zi and zj should be close if xi and xj are close is in-
terpreted as ‖zi− zj‖22 should be penalized more for larger
Ki,j than smaller Ki,j . Consequently, we have

M(A) =
1

2

n∑
i,j=1

Ki,j‖zi − zj‖22

=

n∑
i,j=1

Ki,j

(
z>i zi − z>i zj

)
=

n∑
i=1

diz
>
i zi −

n∑
i,j=1

Ki,jz
>
i zj

= tr
(
DZZ>

)
− tr

(
KZZ>

)
= tr

(
LZZ>

)
= tr

(
LXP>PX>

)
= tr

(
X>LXA

)
.

Note that M(A) is again linear with respect to A, and it
will not affect the convexity and the Lipschitz continuity of
the M-Step. Let ω ≥ 0 be a regularization parameter for
M(A), then the optimization problem becomes

max
A
L(A)− ωM(A),

and at each M-Step, we solve

max
A
F(A)− ωM(A).

The gradient of F(A)− ωM(A) is given by

∇F(A)− ω∇M(A) =

−
∑
S∪D

yi,j
(
1− pAi,j(yi,j)

)
xi,j

− µ
∑
U

∑
y
yq(y | xi, xj)

(
1− pAi,j(y)

)
xi,j

− λIm − ωX>LX,

where xi,j = (xi − xj)(xi − xj)>.

D. Computational Issues
We employ a heuristic strategy for step sizes of the M-Step:
At the k-th iteration of the gradient projection method, we

set initially
sk =

m

10
√
k‖∇F‖F

,

where ‖ · ‖F is the Frobenius norm. Let π be an operator
that projects a symmetric matrix to the cone of symmet-
ric positive semi-definite matrices, which includes eigen-
decomposing a matrix and recovering it from the positive
eigenvalues and the eigenvectors associated with those pos-
itive eigenvalues. Then we first try this gradient projection
update

Ak+1 = π(Ak + sk∇F)

and keep it if Ak+1 improves Ak, otherwise we decrease
sk by half, i.e.,

sk ← sk/2,

and try again, since we are maximizing a concave objec-
tive function. The maximum number of such trails is set
to be 20. What is more, the maximum number kmax of in-
ner gradient projection iterations and the maximum number
tmax of outer EM iterations are set to be 10. We stop be-
fore reaching the maximum iteration numbers if either the
solutions have been converged for both inner and outer iter-
ations, or we fail to further improve the objective function
L after the last M-Step.

Consider the computational complexity of the M-Step first.
The complexity of the gradient part is O(n2m), the com-
plexity of the projection part isO(m3), and thus each inner
iteration takes O(n2m + m3) time9. Let ε′ be a stopping
criterion of the M-Step such that F(A) has to increase at
least ε′, then the asymptotic time complexity of each M-
Step will be

O

(
n2m+m3

ε′

)
.

Secondly, it is easy to see that each E-Step consumes the
time of orderO(n2). Thirdly, let ε be a stopping criterion of
the whole algorithm, the total number of outer iterations is
then O(1/ε). Therefore, the overall asymptotic time com-
plexity is

O

(
n2m+m3

εε′

)
.

Note that we ignore the maximum iteration numbers used
in our implementation when discussing the asymptotic time
complexities.

In practice, the main computational bottleneck is how to
compute∇F(A) in Matlab without inefficient double FOR
loops, as well as computing L(A), F(A) and q(y | xi, xj)
for all (xi, xj) ∈ U without double FOR loops. Fortu-
nately, there are such methods. Without loss of generality,
we describe the efficient method in Algorithm 1 to compute
∇F(A). We observed that in our experiments Algorithm 1

9For a well-posed training set, there should be n > m.
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Algorithm 1 Efficient computation of ∇F(A)

Input: the current solution A,
X ∈ Rn×m that is the design matrix of X ,
S ∈ Rn×n such that S(i, j) = 1 if (xi, xj) ∈ S and S(i, j) = 0 if (xi, xj) /∈ S,
D ∈ Rn×n such that D(i, j) = 1 if (xi, xj) ∈ D and D(i, j) = 0 if (xi, xj) /∈ D,
Q ∈ Rn×n such that Q(i, j) = q(+1 | xi, xj) for (xi, xj) ∈ U

Output: ∇F(A)

1: Compute all pairwise Mahalanobis distances by

x̄← diag(XAX>),M ← repmat(x̄, 1, n) + repmat(x̄>, n, 1)− 2XAX>.

% Now, M(i, j) = (xi − xj)>A(xi − xj).
2: Compute

P ← 1./(1 + exp(M − η)),

where ./ and exp are the element-wise matrix division and exponential function.
% Then, P (i, j) = pA(+1 | xi, xj).

3: Let C ∈ Rn×n that will store all the coefficients of (xi − xj)(xi − xj)>.
Initialize it as C ← 0n×n.

4: Let O ← 1n×n, and subsequently
CS ← PS −OS , CD ← PD,

where the subscripts S and D mean that the matrix operations are done
only for the entries corresponding to S(i, j) = 1 or D(i, j) = 1.

5: Get the matrix form of U by
U ← O − S −D − In,

and compute
CU ← µ(QU . ∗ (PU −OU ) + (OU −QU ). ∗ PU )

where .∗ is the element-wise matrix multiplication.
6: Finally,

∇F(A)← X>(repmat(sum(C, 2), 1,m). ∗X)−X>CX − λIm.

% Note that ∇F(A) 6= 2X>(repmat(sum(C, 2), 1,m). ∗X)− 2X>CX − λIm,
% since we consider one pair (xi, xj) twice in the algorithm by C(i, j) and C(j, i).

was at least twenty times faster than the naive implementa-
tion of this subroutine using double FOR loops. SERAPH
was in general the second fastest algorithm in our experi-
ment. The fastest MFDA involved solving a linear system in
the locally linear embedding and an eigen-decomposition,
while it has the same computational complexity with SER-
APH.


