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Abstract

The objective of pool-based incremental active learning is to choose a sample to label
from a pool of unlabeled samples in an incremental manner so that the generalization
error is minimized. In this scenario, the generalization error often hits a minimum in
the middle of the incremental active learning procedure and then it starts to increase.
In this paper, we address the problem of early labeling stopping in probabilistic
classification for minimizing the generalization error and the labeling cost. Among
several possible strategies, we propose to stop labeling when the empirical class-
posterior approximation error is maximized. Experiments on benchmark datasets
demonstrate the usefulness of the proposed strategy.
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1 Introduction

Supervised learning is aimed at predicting output values for unknown input points. In
a standard setup of supervised learning, pairs of input-output samples are provided for
training [36, 10, 1]. On the other hand, in some cases, users are allowed to choose input
points at which output values are observed. Such a situation is called active learning [25]
or experiment design [7, 23]. Because of this additional degree of freedom for choosing
input-point locations, better generalization performance is expected in the active learning
scenario. In particular, when the cost of measuring output values is expensive (in terms
of time, human labor, money etc.), active learning is highly useful [21, 38, 35].
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Active learning can be categorized into two types depending on the problem setup:
the population-based setup and the pool-based setup. In the population-based setup, users
are allowed to locate input points at arbitrary positions in the input domain [39, 16, 27].
On the other hand, in the pool-based setup, users can choose input points only from a
pool of input-point candidates [15, 31].

Another categorization of active learning is based on data collecting modes: the
batch/off-line mode and the incremental/sequential/online mode. All input-point loca-
tions are chosen at once in batch active learning [17, 33], whereas a single input point
(or a small batch of input points) is chosen one by one sequentially in incremental active
learning [3, 32].

In this paper, we consider pool-based incremental active learning for classification. In
this scenario, it is often observed that the test classification error (a.k.a. the generalization
error) decreases rapidly in an early stage of incremental active learning; then it hits a
minimum at some point and it turns to a gradual increase in the end (see Figure 2).
Intuitively, the mechanism of this phenomenon can be explained as follows: In an early
stage, “informative” input points are chosen for labeling, which tends to improve the
classification performance significantly [20, 34]. However, in the pool-based setup, the
number of such informative input points is limited. Thus, after using up all informative
input points in the pool, the active learning algorithm starts to choose remaining “less
informative” input points, which can cause a slight performance decline in a later stage.
Actually, this causes not only a loss of classification performance, but also a waste of
labeling costs at the same time—this is critical in active learning scenarios with high
sampling costs.

To cope with this problem, we address the problem of “early stopping” for incremental
active learning. So far, this issue has been investigated for support vector machines [24, 6]
and for natural language processing purposes [41, 18, 2]. In this paper, we focus on
a recently proposed probabilistic classifier called the least-squares probabilistic classifier
(LSPC) [28, 29], which was shown to be computationally much more efficient than kernel
logistic regression [10] with comparable accuracy.

For LSPC, we investigate the following three criteria for early stopping:

• The cross-validated classification error.

• The empirical classification error.

• The empirical class-posterior approximation error.

It turns out that the cross-validated classification error is not useful for early stopping
purposes because training samples are not independent and identically distributed in
the incremental active learning scenario, which causes a strong bias in cross-validation
estimates of the classification error [37, 4, 30].

On the other hand, the other two criteria, the empirical classification error and the
empirical class-posterior approximation error, turn out to behave oppositely to the true
test error. That is, the empirical errors increase in an early stage, they hit maxima at
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some point, and then they turn to decrease. This phenomenon can also be explained
intuitively in a similar way to the test classification error: informative samples gathered
in an early stage are generally difficult to classify, and thus the empirical errors tend to
grow. On the other hand, less informative samples gathered in a later stage tend to be
classified easily, which results in a decrease in the empirical errors.

Among the two empirical error criteria, we show that the empirical classification error
tends to be more unstable. This is because the classification error is measured by the
0/1 loss, which only evaluates the correctness of class predictions, and thus is sensitive
to sample choice and noise. On the other hand, the class-posterior approximation error
reflects overall approximation quality of class-posterior probabilities, and thus it tends to
be more stable and reliable.

Consequently, we propose to terminate incremental active learning when the class-
posterior approximation error starts to decrease. Through experiments, we demonstrate
that our early stopping strategy improves the classification accuracy by about 10%, only
with one third of sampling costs.

The rest of this paper is structured as follows. In Section 2, we formulate the problem
of probabilistic classification and review LSPC. In Section 3, we review pool-based incre-
mental active learning strategies for probabilistic classification and numerically illustrate
their behavior. We then discuss early stopping methods for incremental active learning
in Section 4, and experimentally evaluate their performances in Section 5. Finally, we
conclude in Section 6.

2 Probabilistic Classification by LSPC

In this section, we formulate the problem of probabilistic classification and review a re-
cently proposed probabilistic classification method called the least-squares probabilistic
classifier (LSPC) [28, 29].

2.1 Problem Formulation

Suppose that we are given n training samples consisting of input x and label y:

(xi, yi) ∈ X × Y , i = 1, . . . , n,

where X (⊂ Rd) is the input domain, Y = {1, . . . , c} is the set of class labels, and c denotes
the number of classes. We assume that the training samples {(xi, yi)}ni=1 independently
follow a joint probability distribution with probability density p(x, y).

The objective of probabilistic classification is to estimate the class-posterior probability
p(y|x) from the training samples {(xi, yi)}ni=1. Using the class-posterior probability, we
can classify a test sample x into ŷ with confidence p(ŷ|x):

ŷ := argmax
y∈Y

p(y|x).
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2.2 Least-Squares Probabilistic Classifier

For each class y = 1, . . . , c, the class-posterior probability p(y|x) is modeled by the fol-
lowing linear model:

q(y|x;αy) :=
b∑

ℓ=1

αy,ℓϕℓ(x) = α⊤
y ϕ(x),

where b is the number of basis functions, ⊤ is the transpose,

αy = (αy,1, . . . , αy,b)
⊤

is a parameter vector, and

ϕ(x) = (ϕ1(x), . . . , ϕb(x))
⊤

is a basis function vector. For example, the Gaussian kernel could be used as a basis
function:

ϕℓ(x) = exp

(
−∥x− cℓ∥2

2σ2

)
for ℓ = 1, . . . , b,

where σ is a Gaussian width and {cℓ}bℓ=1 are Gaussian centers randomly chosen from
training inputs {xi}ni=1.

Let p(x) be the marginal density. Then, the parameter αy in the model q(y|x;αy) is
determined so that the following class-posterior squared error is minimized:

Jy(αy) :=
1

2

∫
(q(y|x;αy)− p(y|x))2p(x)dx

=
1

2

∫
q(y|x;αy)

2p(x)dx

− p(y)

∫
q(y|x;αy)p(x|y)dx+ Const.

=
1

2
α⊤

y Hαy − h⊤
y αy + Const.,

where H and hy are the b× b matrix and the b-dimensional vector defined as

H :=

∫
ϕ(x)ϕ(x)⊤p(x)dx,

hy := p(y)

∫
ϕ(x)p(x|y)dx.

Ignoring the constant term, approximating the expectations by corresponding sample
averages, and adding a regularizer, we obtain the following training criterion:

α̂y := argmin
αy∈Rb

[
1

2
α⊤

y Ĥαy − ĥ⊤
y αy +

λ

2n
α⊤

y αy

]
,



Early Stopping Heuristics in Pool-Based Incremental Active Learning 5

where λα⊤
y αy/(2n) (λ > 0) is the regularization term, and

Ĥ :=
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤,

ĥy :=
1

n

∑
i:yi=y

ϕ(xi).

The solution α̂y can be computed analytically as

α̂y =

(
Ĥ +

λ

n
Ib

)−1

ĥy,

where Ib denotes the b-dimensional identity matrix.
Rounding up negative outputs to zero and renormalizing the solution, we obtain the

final solution p̂(y|x) as follows [40]:

p̂(y|x) =
max(0, α̂⊤

y ϕ(x))∑c
y′=1max(0, α̂⊤

y′ϕ(x))
.

This method is called the least-squares probabilistic classifier (LSPC). Tuning parameters
included in LSPC such as the kernel width σ and the regularization parameter λ can
be optimized by cross-validation. LSPC was shown to have comparable classification
accuracy to kernel logistic regression, while its training is computationally much more
efficient [28, 40, 26, 9, 22].

When a new sample (xn+1, yn+1) is added to the training set {(xi, yi)}ni=1, the LSPC
solution can be updated efficiently, based on the Sherman-Woodbury-Morrison formula
[8]: for an invertible square matrix A and vectors u and v such that v⊤A−1u ̸= −1, it
holds that (

A+ uv⊤)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Let

k̂n = P̂nϕ(xn+1),

where

P̂n :=

(
n∑

i=1

ϕ(xi)ϕ(xi)
⊤ + λIb

)−1

.

Then the LSPC solution α̂
(n+1)
y for {(xi, yi)}n+1

i=1 can be incrementally computed from the

LSPC solution α̂
(n)
y for {(xi, yi)}ni=1 as

α̂(n+1)
y = α̂(n)

y +
I(y = yn+1)− ϕ(xn+1)

⊤α̂
(n)
y

1 + ϕ(xn+1)
⊤k̂n

k̂n,
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where

I(cond) :=

{
1 if ‘cond’ is true,

0 otherwise.

For the next iteration, P̂n+1 is computed as

P̂n+1 ← P̂n −
k̂nk̂

⊤
n

1 + ϕ(xn+1)
⊤k̂n

.

3 Pool-Based Incremental Active Learning for Prob-

abilistic Classification

Let us consider a pool of unlabeled samples

U := {x′
i}n

′

i=1,

which independently follow p(x). The objective of pool-based incremental active learning
is to choose a sample x′ to label from the pool so that the generalization error is mini-
mized. In this section, we review methods of pool-based incremental active learning for
probabilistic classification, and numerically illustrate their behavior for LSPC.

3.1 Incremental Active Learning Strategies for Multi-Class
Problems

A simple strategy for incremental active learning when the number of classes is c = 2
(i.e., binary classification) is uncertainty sampling [19]. That is, a sample x′ with p(y =
1|x = x′) closest to 1/2 is chosen as the next input point to label. However, for multi-class
problems where c > 2, there are various possibilities to define the uncertainty of unlabeled
samples. Here, we review two popular strategies: the entropy-based strategy [13, 14] and
the best-versus-second-best strategy [14].

3.1.1 Entropy-Based Strategy

The entropy is a measure of uncertainty of a random variable [5]: the entropy of class
label y given x is defined as

E(x) := −
c∑

y=1

p̂(y|x) log p̂(y|x),

where we regard p log p as 0 if p = 0. A larger entropy value implies more uncertainty.
The entropy-based strategy for incremental active learning chooses the unlabeled sam-

ple that has the largest entropy [13, 14]:

x′ := argmax
x∈U

E(x).
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3.1.2 Best-Versus-Second-Best Strategy

A weakness of the entropy-based strategy is that its choice is heavily influenced by less
important classes. To illustrate this, let us consider class-posterior probabilities of two
samples x′

1 and x′
2 for a 10-class classification problem. In the example plotted in Figure 1,

x′
1 has a significantly higher class-posterior probability for class 3 than other classes, and

thus x′
1 is less uncertain. On the other hand, the highest class-posterior probability of

x′
2 (i.e., class 8) is close to the second highest one (i.e., class 7), and thus x′

2 is more
uncertain. However, because x′

1 has a larger entropy than x′
2, x

′
1 is chosen as the next

sample to label by the entropy-based strategy. Such a phenomenon tends to be more
significant when the number of classes is large.

To cope with this problem, the best-versus-second-best (BvSB) strategy was proposed
[14]. BvSB chooses the unlabeled sample that has the minimal difference between the
highest and the second highest class-posterior probabilities:

x′ := argmin
x∈U

D(x),

where

D(x) := p̂(y′|x)− p̂(y′′|x),
y′ := argmax

y∈U
p̂(y|x),

y′′ := argmax
y∈U\y′

p̂(y|x).

In the example illustrated in Figure 1, x′
2 is chosen by the BvSB strategy, which would

be appropriate.

3.2 Numerical Examples

Here, we illustrate how the above incremental active learning strategies behave for LSPC.

3.2.1 Setting

We compare the following three sampling methods:

• Passive: Choose an unlabeled sample from the pool just randomly.

• Active(EP): Choose an unlabeled sample from the pool using the entropy-based
strategy.

• Active(BvSB): Choose an unlabeled sample from the pool using the BvSB strat-
egy.
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(a) p(y|x = x′
1)
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Figure 1: Class-posterior probabilities of two unlabeled samples x′
1 and x′

2 for a 10-class
problem. E(x′

1) = 1.81, D(x′
1) = 0.359, E(x′

2) = 1.68, and D(x′
2) = 0.015.

We employ LSPC with Gaussian kernels as a classifier. The Gaussian width σ and
the regularization parameter λ are chosen based on 2-fold cross-validation from

σ ∈ { 1
10
m, 1

5
m, 1

2
m, 2

3
m,m, 3

2
m, 2m, 5m, 10m},

λ ∈ {10−3, 10−2.5, 10−2, 10−1.5, 10−1, 10−0.5, 100},

where

m := median({∥xi − xj∥}ni,j=1).

We evaluate the classification accuracy of each sampling method using the following 6
classification benchmark datasets (c denotes the number of classes and d denotes the
dimensionality of x):

• Satimage (c = 6 and d = 36).

• Pendigits (c = 10 and d = 16).

• Optdigits (c = 10 and d = 64).

• Usps (c = 10 and d = 256).

• Mnist (c = 10 and d = 717).

• Letter (c = 26 and d = 16).
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Input samples were normalized in the element-wise manner so that each element has mean
zero and unit variance.

Initially, a classifier was trained by the LSPC algorithm using training samples consist-
ing of 2 randomly chosen labeled samples from each class. Then, each sampling strategy
is applied and the next unlabeled sample to label is chosen from a pool consisting of 100
randomly chosen unlabeled samples from each class. In each iteration, the classification
accuracy is evaluated using 100 randomly chosen test samples from each class.

3.2.2 Results

Figure 2 shows the mean misclassification rate over 100 trials for each sampling method.
Overall, Active(EP) is comparable to or slightly better than Passive, whereas Ac-
tive(BvSB) clearly outperforms Passive and Active(EP) for all datasets. In particular, in
an early stage of incremental active learning iterations, Active(BvSB) provides a remark-
able decrease in the misclassification rate.

However, in a later stage, the misclassification rate of Active(BvSB) tends to increase;
for all datasets, we can observe minima of the misclassification rate before all unlabeled
samples in the pool are labeled. This phenomenon can be interpreted as follows: Most
uncertain unlabeled samples are chosen in the beginning of the incremental active learning
process. By this, estimates of the class-posterior probability around decision boundaries
are fine-tuned and thus the classification accuracy is improved considerably. However,
in a later stage, the algorithm starts to select less uncertain unlabeled samples because
no uncertain sample remains in the pool. Such less uncertain samples may disturb the
classification performance.

This fact motivates us to stop the incremental active learning process halfway, which
can reduce the misclassification as well as the sampling cost. In the next section, we
investigate how we can appropriately terminate the incremental active learning process.

4 Early Stopping of Incremental Active Learning

As we have shown in the previous section, incremental active learning with the BvSB
strategy leads to a remarkable decrease of the misclassification rate in an early stage.
However, the misclassification rate tends to increase in a later stage of the incremental
active learning process. In this section, we address the problem of early stopping of
incremental active learning.

4.1 Cross-Validation Score

A popular method for predicting the misclassification rate is cross-validation (CV) [37, 4,
30]. Let us split the labeled training set L = {(xi, yi)}ni=1 into k disjoint subsets {Lj}kj=1.
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(a) Satimage (c = 6, d = 36)
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(b) Pendigits (c = 10, d = 16)
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(c) Optdigits (c = 10, d = 64)
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(d) Usps (c = 10, d = 256)
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(e) Mnist (c = 10, d = 717)
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Figure 2: Mean misclassification rate over 100 trials for each sampling method.
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Then the misclassification rate is predicted by CV as

1

k

k∑
j=1

1

|Lj|
∑

(x′,y′)∈Lj

I(y′ ̸= argmax
y

p̂j(y|x′)),

where p̂j(y|x) is a class-posterior probability estimated from L\Lj and |Lj| denotes the
number of elements in the subset Lj.

Figure 3 shows the mean misclassification rate predicted by 2-fold CV over 100 trials
in passive learning and active learning (with the BvSB strategy). In passive learning,
the shape of the true test classification error is rather accurately estimated by the CV
score for all datasets. However, in active learning, CV performs poorly—the predicted
misclassification rate sharply increases in the beginning, and then it monotonically de-
creases. This phenomenon is induced by selecting samples near decision boundaries in
the beginning; because such samples are difficult to correctly classify, and the CV tends
to overestimate the true misclassification error. After selecting up all unlabeled samples
near decision boundaries, ones far from the boundaries (which can be easily classified)
start to be selected and therefore the CV score rapidly decreases.

Theoretically, CV gives an almost unbiased estimate of the misclassification rate, given
that training samples are independent and identically distributed [37]. However, in incre-
mental active learning scenarios, training samples are chosen one by one in an sequential
manner and thus they are no longer independent of each other. This is the reason why
CV is not reliable in incremental active learning scenarios.

4.2 Empirical Classification Error

As an alternative approach, let us consider the empirical classification error [12], which
can be computed using labeled training samples {(xi, yi)}ni=1 as

1

n

n∑
i=1

I(yi ̸= argmax
y

p̂(y|xi)).

Figure 4 shows the mean test classification error and mean empirical classification
error over 100 trials for passive learning and active learning (with the BvSB strategy).
In passive learning, the empirical classification error tends to increase as the number of
labeled samples increases, whereas the test classification error tends to decrease.

On the other hand, in active learning, the empirical classification error tends to increase
more sharply than passive learning, and then it starts to decrease. This happens because,
in the case of active learning, uncertain samples tend to be labeled in the beginning, which
are difficult to classify. Thus, the empirical classification error tends to grow significantly.
However, in a later stage of the incremental active learning procedure, all uncertain (i.e.,
difficult to classify) samples have already been labeled, and thus easy-to-classify samples
are chosen. For this reason, the empirical classification error tends to decrease.
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(b) Pendigits (c = 10, d = 16)
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Figure 3: Mean classification errors measured on test samples and predicted by 2-fold
cross-validation over 100 trials.
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(b) Pendigits (c = 10, d = 16)
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(c) Optdigits (c = 10, d = 64)
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Figure 4: Mean test classification error and mean empirical classification error over 100
trials.
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The graphs also show that t he behavior of the empirical classification errors in active
learning is roughly symmetric to those of the true test classification errors. More impor-
tantly, we can see that peaks of the empirical classification error are located around the
minima of the true test classification errors. This observation implies that terminating
incremental active learning when the empirical classification error starts to decrease is a
sensible strategy.

4.3 Empirical Class-Posterior Squared Error

Recall that LSPC learns the class-posterior probability so that the squared error to the
true class-posterior probability is minimized. As explained in Section 2.2, the empirical
class-posterior squared error (without an irrelevant constant) is given as

c∑
y=1

(
1

2
α⊤

y Ĥαy − ĥ⊤
y αy

)
.

Figure 5 shows the mean test class-posterior squared error and mean empirical class-
posterior squared error over 100 trials for passive learning and active learning (with the
BvSB strategy). Note that values can be negative because an irrelevant positive constant
is ignored (see Section 2.2). The graphs show that, similarly to the empirical classification
error, the empirical class-posterior squared error in active learning also sharply increases
compared with passive learning, and then it starts to decrease gradually.

Figure 6 and Figure 7 show the empirical classification error and the empirical class-
posterior squared error for a single trial. The graph shows that the empirical classification
error is more fluctuated than the empirical class-posterior squared error. This is because
the classification error is measured by the 0/1 loss, which only evaluates the correctness
of class predictions. On the other hand, the class-posterior squared error reflects overall
approximation quality of class-posterior probabilities, and thus it tends to be more stable
than the 0/1 classification error.

Based on the above discussions, we propose to use the empirical class-posterior squared
error as a stopping criterion for active learning.

5 Experiments

In this section, we experimentally evaluate the performance of early stopping criteria for
incremental active learning.

We use BvSB as the active learning strategy (see Section 3.1.2), and other experimental
settings such as datasets are common to Section 3.2.

We evaluate the classification accuracy and the number of labeled samples for the
following three methods:

• ECE: Terminate active learning if the empirical classification error drops from the
value 10c samples before.
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Figure 5: Mean test class-posterior squared error and mean empirical class-posterior
squared error over 100 trials. Values can be negative because an irrelevant positive con-
stant is ignored.
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200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Labeled Samples

M
is

cl
as

si
fic

at
io

n 
ra

te

(d) Usps (c = 10, d = 256)

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Number of Labeled Samples

M
is

cl
as

si
fic

at
io

n 
ra

te

(e) Mnist (c = 10, d = 717)

500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Labeled Samples

M
is

cl
as

si
fic

at
io

n 
ra

te

(f) Letter (c = 26, d = 16)

Figure 6: Empirical classification error for a single trial.
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Figure 7: Empirical class-posterior squared error for a single trial.
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Table 1: Mean misclassification rate over 100 runs.

Method ECE ESE ALL
Satimage 0.2493 0.2447 0.2457
Pendigits 0.1833 0.1781 0.2027
Optdigits 0.1707 0.1597 0.1672
Usps 0.2243 0.2093 0.2450
Mnist 0.4179 0.3825 0.3804
Letter 0.3662 0.3277 0.4024
Average 0.2686 0.2503 0.2739

Table 2: Mean percentage of selected samples over 100 runs.

Method ECE ESE ALL
Satimage 20.14 31.68 100.00
Pendigits 18.04 31.61 100.00
Optdigits 17.91 31.68 100.00
Usps 20.85 38.49 100.00
Mnist 18.30 38.71 100.00
Letter 40.01 40.01 100.00
Average 19.88 35.36 100.00

• ESE: Terminate active learning if the empirical class-posterior squared error drops
from the value 10c samples before.

• ALL: Label all samples in the pool (no termination).

Note that we introduced the “10c”-buffer to avoid terminating active learning just by a
small fluctuation of a stopping criterion.

The experimental results are summarized in Table 1 and Table 2, showing the mean
misclassification rate and mean percentage of selected samples over 100 trials for each
dataset. The best method in terms of the mean misclassification rate and comparable
methods according to the t-test at the significance level 5% [11] are specified by bold face.

ECE tends to stop the active learning process earlier than ESE (see Table 2), but
this seems to be too early because the misclassification error is not reduced enough (see
Table 1). This is caused by high fluctuation of the classification error (see Figure 6). On
the other hand, the ESE method tends to give smaller misclassification errors than ALL,
with only 30–40% labeling costs.

6 Conclusions

In this paper, we proposed an early stopping heuristics for pool-based incremental ac-
tive learning in least-squares probabilistic classification. Our idea was to terminate the
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incremental active learning procedure when the empirical class-posterior approximation
error starts to decrease. An intuition behind this heuristic is that if the empirical class-
posterior approximation error starts to decrease, all informative samples in the pool have
already been used up. Thus, it is a waste of sampling costs to further label unlabeled
data. Through experiments, we demonstrated that the proposed heuristic improves the
classification accuracy by about 10%, only with one third of sampling costs.

In experiments, we introduced a buffer to avoid terminating active learning just by
a small fluctuation of a stopping criterion. How to optimally control the buffer size is
left as a future work. Finally, the most important future challenge is to justify our early
stopping heuristics theoretically.
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