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Abstract

The Hilbert-Schmidt independence criterion (HSIC) is a kernel-based statistical in-
dependence measure that can be computed very efficiently. However, it requires
us to determine the kernel parameters heuristically because no objective model se-
lection method is available. Least-squares mutual information (LSMI) is another
statistical independence measure that is based on direct density-ratio estimation.
Although LSMI is computationally more expensive than HSIC, LSMI is equipped
with cross-validation, and thus the kernel parameter can be determined objectively.
In this paper, we show that HSIC can actually be regarded as an approximation to
LSMI, which allows us to utilize cross-validation of LSMI for determining kernel pa-
rameters in HSIC. Consequently, both computational efficiency and cross-validation
can be achieved.
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1 Introduction

Measuring statistical independence between random variables is an important challenge
in machine learning, because it can be used for various purposes such as feature selection
[17, 24], feature extraction [22, 25], clustering [16, 9, 21], statistical independence test
[7, 19], independent component analysis [15, 23], object matching [13, 27], and causal
inference [11, 26].

Among various statistical independence measures, the Hilbert-Schmidt independence
criterion (HSIC) [6] is a powerful and computationally efficient method. The basic idea
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of HSIC is to evaluate all possible non-linear correlations in universal reproducing kernel
Hilbert spaces [18], which can be performed efficiently via the kernel trick [14]. However,
HSIC requires us to choose kernel parameters manually because no objective model se-
lection criterion is available. In practice, using Gaussian kernels with widths set to the
median distances between samples is a popular heuristic [6, 7], although such a heuristic
does not always work well.

Least-squares mutual information (LSMI) [24] is another statistical independence mea-
sure, which is an estimator of a squared-loss variant of mutual information. The basic idea
of LSMI is to approximate the ratio of a joint density over the product of marginal densi-
ties directly in a single-shot process, allowing us to avoid density estimation systematically
[20]. LSMI was shown to possess a superior non-parametric convergence property [22] and
optimal numerical stability [8]. Furthermore, LSMI is equipped with cross-validation that
can be used for objectively determining kernel parameters.

In this paper, we show that HSIC can actually be regarded as an approximation to
LSMI. This interpretation allows us to employ cross-validation of LSMI to determine
kernel parameters in HSIC, by which both computational efficiency and objective model
selection can be achieved. Through numerical experiments, we show the usefulness of the
proposed approach.

2 Measuring Statistical Independence between Ran-

dom Variables

Suppose that we are given a set of paired samples {(xi,yi)}ni=1 on X × Y , which are
independently drawn from a joint probability distribution with density p(x,y). Our goal
is to evaluate statistical independence between x and y.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

Here, we review a kernel-based statistical independence measure called the Hilbert-Schmidt
independence criterion (HSIC) [6].

Let F be a reproducing kernel Hilbert space (RKHS) [2] with reproducing kernel
K(x,x′), and G be another RKHS with reproducing kernel L(y,y′). Let us denote the
inner products in F and G by ⟨·, ·⟩F and ⟨·, ·⟩G, respectively, and marginal densities of x
and y by p(x) and p(y), respectively.

Let C be a cross-covariance operator from G to F , which is defined such that for all
f ∈ F and g ∈ G,

⟨f, Cg⟩F =

∫∫ ([
f(x)−

∫
f(x)p(x)dx

] [
g(y)−

∫
g(y)p(y)dy

])
p(x,y)dxdy.

By the reproducing properties,

f(x) = ⟨f,K(·,x)⟩F and g(y) = ⟨g, L(·,y)⟩G,



On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion 3

the cross-covariance operator C can be more explicitly expressed as

C :=

∫∫ ([
K(·,x)−

∫
K(·,x)p(x)dx

] [
L(·,y)−

∫
L(·,y)p(y)dy

])
p(x,y)dxdy,

where ‘⊗’ denotes the tensor product.
The cross-covariance operator is a generalization of the cross-covariance matrix be-

tween random vectors. When F and G are universal RKHSs [18] defined on compact
domains X and Y , respectively, the largest singular value of C is zero if and only x and
y are statistically independent. Gaussian RKHSs are examples of the universal RKHS.

HSIC is defined as the squared Hilbert-Schmidt norm (the sum of the squared singular
values) of the cross-covariance operator C:

HSIC :=

∫∫∫∫
K(x,x′)L(y,y′)p(x,y)p(x′,y′)dxdydx′dy′

+

∫∫
K(x,x′)p(x)p(x′)dxdx′

∫∫
L(y,y′)p(y)p(y′)dydy′

− 2

∫∫∫
K(x,x′)p(x′)dx′

∫
L(y,y′)p(y′)dy′p(x,y)dxdy.

Its empirical estimator is given as

ĤSIC :=
1

n2

n∑
i,i′=1

K(xi,xi′)L(yi,yi′) +
1

n4

n∑
i,i′,j,j′=1

K(xi,xi′)L(yj,yj′)

− 2

n3

n∑
i,j,k=1

K(xi,xk)L(yj,yk)

=
1

n2
tr(KΓLΓ),

where Ki,i′ = K(xi,xi′), Lj,j′ = L(yj,yj′), Γ = In − 1
n
1n1

⊤
n is the “centering” matrix in

RKHSs, In denotes the n-dimensional identity matrix, and 1n denotes the n-dimensional
vector with all ones.

ĤSIC depends on the choice of the universal RKHSs F and G. In the original HSIC
papers [6, 7], the Gaussian RKHSs with widths set to the median distances between
samples were used. However, there is no theoretical justification for this choice.

2.2 Least-Squares Mutual Information (LSMI)

Next, we review another statistical independence measure called least-squares mutual
information (LSMI) [24].

LSMI is an estimator of squared-loss mutual information (SMI) defined as

SMI :=

∫∫
p(x)p(y)

(
p(x,y)

p(x)p(y)
− 1

)2

dxdy. (1)
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SMI is non-negative and zero if and only if x and y are statistically independent. Hence,
SMI can be used for detecting statistical independence between random variables1.

SMI includes unknown probability densities p(x,y), p(x), and p(y), and thus it cannot
be directly computed. A naive approach is to separately estimate the densities p(x,y),
p(x), and p(y), and plug the estimated densities in Eq.(1). However, density estimation is
known to be a hard task and division by estimated densities can magnify the estimation
error. To cope with this problem, LSMI systematically avoids density estimation by
directly estimating the following density ratio function:

r(x,y) :=
p(x,y)

p(x)p(y)
. (2)

Let us approximate the density ratio (2) using the following model:

rθ(x,y) =
n∑

i=1

θiK(x,xi)L(y,yi).

The parameter θ are determined so that the following squared-error J is minimized:

J(θ) :=

∫∫
(rθ(x,y)− r(x,y))2 p(x)p(y)dxdy

=

∫∫
rθ(x,y)

2p(x)p(y)dxdy − 2

∫∫
rθ(x,y)p(x,y)dxdy + Const.

Since J contains the expectations over unknown densities p(x)p(y) and p(x,y), the ex-
pectations are approximated by empirical averages. By including an ℓ2-regularizer and
ignoring the irrelevant constant, the LSMI optimization problem is given as follows:

θ̂ := argmin
θ∈Rn

[
θ⊤Ĥθ − 2θ⊤ĥ+ λθ⊤θ

]
,

where λ (≥ 0) is the regularization parameter that controls the strength of regularization,
and

Ĥi′,j′ :=
1

n2

n∑
i,j=1

K(xi,xi′)K(xi,xj′)L(yj,yi′)L(yj,yj′),

ĥj :=
1

n

n∑
i=1

K(xi,xj)L(yi,yj).

1Note that SMI is the Pearson divergence [12] from the joint density p(x,y) to the product of marginals
p(x)p(y), whereas ordinary mutual information [3], defined by

MI :=

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy,

is theKullback-Leibler divergence [10] from p(x,y) to p(x)p(y). The Pearson divergence and the Kullback-
Leibler divergence both belong to the class of Ali-Silvey-Csiszár divergences (also known as f -divergences,
see [1, 4]), which share similar properties.
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The solution θ̂ can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ, (3)

with which the density ratio estimator r̂(x,y) is obtained as

r̂(x,y) := rθ̂(x,y) =
n∑

i=1

θ̂iK(x,xi)L(y,yi).

Finally, SMI can be approximated as

ŜMI :=
1

n

n∑
i,j=1

θ̂iK(xi,xj)L(yi,yj)− 1, (4)

which is based on the following expression of SMI:

SMI =

∫∫
r(x,y)p(x,y)dxdy − 1.

Practical performance of LSMI depends on the choice of kernel parameters in K(x,x′)
and L(y,y′) and the regularization parameter λ. Model selection of LSMI is possible
based on cross-validation with respect to the criterion J . More specifically, the sample
set Z = {(xi,yi)}ni=1 is divided into M disjoint subsets {Zm}Mm=1. Then an LSMI solution
r̂m(x) is obtained using Z\Zm (i.e., all samples without Zm), and its J-score for the hold-
out samples Zm is computed as

ĴCV
m :=

1

|Zm|
∑

(x,y)∈Zm

r̂m(x,y)
2 − 2

|Zm|
∑

(x,y)∈Zm

r̂m(x,y),

where |Z| denotes the number of elements in the set Z. This procedure is repeated for

m = 1, . . . ,M , and the average score ĴCV := 1
M

∑M
m=1 Ĵ

CV
m is computed. Finally, the

model (the kernel parameters and the regularization parameter λ in the current setup)

that minimizes ĴCV is chosen as the most suitable one.

3 HSIC as an Approximation to LSMI

For a centralized kernel K̃(x,x′) where K̃ := ΓKΓ, ĤSIC can be expressed as

ĤSIC =
1

n2

n∑
i,j=1

K̃(xi,xj)L(yi,yj),

which is equivalent to ŜMI with centralized kernel K̃(x,x′) and parameters {θ̂i}ni=1 ap-
proximated by 1/n, up to an irrelevant constant −1 (see Eq.(4)). This implies that HSIC
can actually be regarded as an approximation to LSMI.
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An advantage of HSIC over LSMI is that HSIC is computationally more efficient
than LSMI, because LSMI involves matrix inversion (see Eq.(3)), whereas HSIC only
computes the sum of kernel values. On the other hand, a disadvantage of HSIC is that
kernel parameters are determined heuristically, whereas kernel parameter selection in
LSMI can be performed objectively via cross-validation. Thus, the view that HSIC is an
approximation to LSMI allows us to use cross-validation also for HSIC. More specifically,
we replace ŜMI given by Eq.(4) with

S̃MI = ĤSIC− 1,

and perform cross-validation as described in Section 2.2. Consequently, advantages of
HSIC (i.e., computational efficiency) and LSMI (i.e., objective model selection) can both
be gained.

4 Numerical Examples

In this section, we consider statistical independence testing by the permutation test [5],
and experimentally compare the performances of LSMI with the Gaussian width chosen by
cross-validation (denoted as LSMICV), HSIC with the Gaussian widths set to the median
distances between samples (denoted as HSICmed), and HSIC with the Gaussian widths
chosen by LSMI cross-validation (denoted as HSICCV). We use 5-fold cross-validation
(i.e., M = 5).

We generate data samples {(xi, yi)}ni=1 by[
x
y

]
=

[
cosα − sinα
sinα cosα

] [
x′

y′

]
,

i.e., (x, y) are a rotation of (x′, y′) by angle α. We generate (x′, y′) as

x′ ∼ 0.5N(−1, 1) + 0.5N(1, 1),

y′ ∼ 0.5N(−2, 1) + 0.5N(2, 1),

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. We conduct
experiments for α = 0 (i.e., x and y are independent) and α = π/8 (i.e., x and y are
dependent). Data samples {xi}ni=1 and {yi}ni=1 are normalized to have unit variance.

Figure 1 shows the rejection rates of LSMICV, HSICmed, and HSICCV. When x and
y are independent, all three methods successfully accept the correct null-hypothesis with
roughly the designated significance level (i.e., rejection rate 5%). On the other hand, when
x and y are dependent, HSICmed rejects the incorrect null-hypothesis less frequently, and
HSICCV performs much better than HSICmed; its performance is close to state-of-the-art
LSMICV, with about 80% reduction in computation time (see Table 1).
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Figure 1: Results of independence test. Frequency of rejecting the null hypothesis (i.e.,
independent) over 100 runs under the significance level 5% is depicted.

Table 1: Normalized CPU computation time.

Method LSMICV HSICmed HSICCV

Time 1 0.022 0.193

5 Conclusions

In this paper, we showed that HSIC can be regarded as an approximation to LSMI,
allowing us to employ LSMI cross-validation for kernel parameter choice in HSIC. Con-
sequently, advantages of HSIC (i.e., computational efficiency) and LSMI (i.e., objective
model selection) can both be gained. Experiments illustrated the validity of our approach.

MS was supported by AOARD and the JST PRESTO program.
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