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Abstract

The goal of supervised learning is to estimate an underlying input-output function
from its input-output training samples so that output values for unseen test input
points can be predicted. A common assumption in supervised learning is that the
training input points follow the same probability distribution as the test input
points. However, this assumption is not satisfied, for example, when outside of the
training region is extrapolated. The situation where the training and test input
points follow different distributions while the conditional distribution of output
values given input points is unchanged is called covariate shift. Since almost all
existing learning methods assume that the training and test samples are drawn from
the same distribution, their fundamental theoretical properties such as consistency
or efficiency no longer hold under covariate shift. In this chapter, we review recently
proposed techniques for covariate shift adaptation.

1 Introduction

The goal of supervised learning is to infer an unknown input-output dependency from
training samples, by which output values for unseen test input points can be predicted.
When developing a method of supervised learning, it is commonly assumed that the input
points in the training set and the input points used for testing follow the same probability
distribution (Wahba, 1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al.,
2001; Schölkopf & Smola, 2002). However, this common assumption is not fulfilled, for
example, when outside of the training region is extrapolated or when training input points
are designed by an active learning (a.k.a. experimental design) algorithm (Wiens, 2000;
Kanamori & Shimodaira, 2003; Sugiyama, 2006; Kanamori, 2007; Sugiyama & Naka-
jima, 2009). Situations where training and test input points follow different probability
distributions but the conditional distributions of output values given input points are un-
changed are called covariate shift (Shimodaira, 2000). In this chapter, we review recently
proposed techniques for alleviating for the influence of covariate shift.
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Under covariate shift, standard learning techniques such as maximum likelihood esti-
mation are biased. It was shown that the bias caused by covariate shift can be asymptot-
ically canceled by weighting the loss function according to the importance—the ratio of
test and training input densities (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller,
2005; Sugiyama et al., 2007; Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe,
2011). Similarly, standard model selection criteria such as cross-validation (Stone, 1974;
Wahba, 1990) or Akaike’s information criterion (Akaike, 1974) lose their unbiasedness
under covariate shift. It was shown that proper unbiasedness can also be recovered by
modifying the methods based on importance weighting (Shimodaira, 2000; Zadrozny,
2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007).

As explained above, the importance weight plays a central role in covariate shift adap-
tation. However, since the importance weight is unknown in practice, it should be esti-
mated from data. A naive approach to this task is to first use kernel density estimation
(Härdle et al., 2004) for obtaining estimators of the training and test input densities, and
then taking the ratio of the estimated densities. However, division by estimated quan-
tities can magnify the estimation error, so directly estimating the importance weight in
a single-shot process would be more preferable. Following this idea, various methods for
directly estimating the importance have been explored (Silverman, 1978; Ćwik & Miel-
niczuk, 1989; Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007; Bickel et al., 2007;
Sugiyama et al., 2008; Kanamori et al., 2009a). These direct estimation approaches have
been demonstrated to be more accurate than the two-step density estimation approach.

Examples of successful real-world applications of covariate shift adaptation include
brain-computer interface (Sugiyama et al., 2007), robot control (Hachiya et al., 2009;
Akiyama et al., 2010; Hachiya et al., 2011), speaker identification (Yamada et al., 2010a),
age prediction from face images (Ueki et al., 2011), wafer alignment in semiconductor ex-
posure apparatus (Sugiyama & Nakajima, 2009), and natural language processing (Tsuboi
et al., 2009).

The rest of this chapter is organized as follows. In Section 2, the problem of supervised
learning under covariate shift is mathematically formulated. In Section 3, various learning
methods under covariate shift are introduced. In Section 4, the issue of model selection
under covariate shift is addressed. In Section 5, methods of importance estimation are
reviewed. Finally, we conclude in Section 6.

A more extensive description of covariate shift adaptation techniques is available in
Sugiyama and Kawanabe (2011).

2 Formulation of Supervised Learning under Covari-

ate Shift

In this section, we formulate the supervised learning problem under covariate shift.
Let us consider the supervised learning problem of estimating an unknown input-
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Figure 1: Framework of supervised learning.

output dependency from training samples. Let

{(xtr
i , y

tr
i ) | xtr

i ∈ X ⊂ Rd, ytri ∈ Y ⊂ R}ntr
i=1,

be the training samples. xtr
i is a training input point drawn from a probability distribution

with density ptr(x). ytri is a training output value following a conditional probability
distribution with conditional density p(y|x = xtr

i ). p(y|x) may be regarded as the sum of
the true output f(x) and noise ϵ:

y = f(x) + ϵ.

We assume that the noise ϵ has mean 0 and variance σ2. This formulation is summarized
in Figure 1.

Let (xte, yte) be a test sample, which is not given to the user in the training phase, but
will be provided in the test phase in the future. xte ∈ X is a test input point following
a probability distribution with density pte(x), which is different from ptr(x). yte ∈ Y is
a test output value following p(y|x = xte), which is the same conditional density as the

training phase. The goal of supervised learning is to obtain an approximation f̂(x) to
the true function f(x) for predicting the test output value yte. More formally, we would

like to obtain the approximation f̂(x) that minimizes the test error expected over all test
samples (which is called the generalization error):

G := E
xte

E
yte

[
loss(f̂(xte), yte)

]
,

where Exte denotes the expectation over xte drawn from pte(x) and Eyte denotes the ex-
pectation over yte drawn from p(y|x = xte). loss(ŷ, y) is the loss function which measures
the discrepancy between the true output value y and its estimate ŷ. When the output
domain Y is continuous, the problem is called regression and the squared-loss is often
used.

loss(ŷ, y) = (ŷ − y)2.
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On the other hand, when Y = {+1,−1}, the problem is called (binary) classification and
the 0/1-loss is a typical choice.

loss(ŷ, y) =

{
0 if sgn(ŷ) = y,

1 otherwise,

where sgn(y) = +1 if y ≥ 0 and sgn(y) = −1 if y < 0. Note that the 0/1-loss corresponds
to the misclassification rate.

We use a parametric function f̂(x;θ) for learning, where θ is a parameter. A

model f̂(x;θ) is said to be correctly specified if there exists a parameter θ∗ such that

f̂(x;θ∗) = f(x); otherwise the model is said to be misspecified. In practice, the model
used for learning would be misspecified to a greater or less extent since we do not generally
have enough prior knowledge for correctly specifying the model. Thus it is important to
consider misspecified models when developing machine learning algorithms.

In standard supervised learning theories (Wahba, 1990; Bishop, 1995; Vapnik, 1998;
Duda et al., 2001; Hastie et al., 2001; Schölkopf & Smola, 2002), the test input point xte

is assumed to follow the same distribution as the training input point xtr. On the other
hand, in this chapter, we consider the situation called covariate shift (Shimodaira, 2000),
i.e., the training input point xtr and the test input point xte have different distributions.
Under covariate shift, most of the standard learning techniques do not work well due to
the differing distributions. Below, we review recently developed techniques for mitigating
the influence of covariate shift.

3 Function Learning under Covariate Shift

A standard method to learn the parameter θ in the model f̂(x;θ) would be empirical
risk minimization (ERM) (Vapnik, 1998; Schölkopf & Smola, 2002):

θ̂ERM := argmin
θ

[
1

ntr

ntr∑
i=1

loss(f̂(xtr
i ;θ), y

tr
i )

]
.

If ptr(x) = pte(x), θ̂ERM converges to the optimal parameter θ∗ (Shimodaira, 2000):

θ∗ := argmin
θ

[G].

However, under covariate shift where ptr(x) ̸= pte(x), θ̂ERM does not converge to θ∗ if the
model is misspecified1.

In this section, we review various learning methods for covariate shift adaptation and
show their numerical examples.

1θ̂ERM still converges to θ∗ under covariate shift if the model is correctly specified.
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3.1 Importance Weighting Techniques for Covariate Shift Adap-
tation

Here, we introduce various regression and classification techniques for covariate shift adap-
tation.

3.1.1 Importance Weighted ERM

The inconsistency of ERM is due to the difference between training and test input dis-
tributions. Importance sampling (Fishman, 1996) is a standard technique to compensate
for the difference of distributions. The following identity shows the essence of importance
sampling:

E
xte

[g(xte)] =

∫
g(x)pte(x)dx =

∫
g(x)

pte(x)

ptr(x)
ptr(x)dx = E

xtr

[
g(xtr)

pte(x
tr)

ptr(xtr)

]
,

where Extr and Exte denote the expectations over xtr and xte drawn from ptr(x) and
pte(x), respectively. The quantity

pte(x)

ptr(x)

is called the importance. The above identity shows that the expectation of a function
g(x) over pte(x) can be computed by the importance-weighted expectation of g(x) over
ptr(x). Thus the difference of distributions can be systematically adjusted by importance
weighting.

Applying the above importance weighting technique to ERM, we obtain importance-
weighted ERM (IWERM):

θ̂IWERM := argmin
θ

[
1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtr
i )

loss(f̂(xtr
i ;θ), y

tr
i )

]
.

θ̂IWERM converges to θ∗ under covariate shift, even if the model is misspecified (Shi-
modaira, 2000). In practice, IWERM may be regularized, e.g., by slightly flattening the
importance weight and/or adding a penalty term as

argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

loss(f̂(xtr
i ;θ), y

tr
i ) + λθ⊤θ

]
,

where 0 ≤ γ ≤ 1 is the flattening parameter, λ ≥ 0 is the regularization parameter, and
⊤ denotes the transpose of a matrix or a vector.

3.1.2 Importance-Weighted Regression Methods

Least-squares (LS) would be one of the most fundamental regression techniques. The
importance-weighted regression method for the squared-loss (see Figure 2), called
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Figure 2: Loss functions for regression. y is the true output value at an input point and
ŷ is its estimate.

importance-weighted LS (IWLS), is given as follows:

θ̂IWLS := argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ (
f̂(xtr

i ;θ)− ytri

)2
+ λθ⊤θ

]
. (1)

Let us employ the following linear model:

f̂(x;θ) =
b∑

ℓ=1

θℓϕℓ(x), (2)

where {ϕℓ(x)}bℓ=1 are fixed linearly-independent basis functions. Then the solution θ̂IWLS

is given analytically as

θ̂IWLS = (Xtr⊤W γXtr + ntrλIb)
−1Xtr⊤W γytr, (3)

where Xtr is the design matrix, i.e., Xtr is the ntr × b matrix with the (i, ℓ)-th element

Xtr
i,ℓ = ϕℓ(x

tr
i ), W is the diagonal matrix with the i-th diagonal element

pte(xtr
i )

ptr(xtr
i )
, Ib is the

b-dimensional identity matrix, and ytr is the ntr-dimensional vector with the i-th element
ytri .

The LS method often suffers from excessive sensitivity to outliers (i.e., irregular values)
and less reliability. A popular alternative is importance-weighted least absolute (IWLA)
regression—instead of the squared loss, the absolute loss is used (see Figure 2):

θ̂IWLA = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ ∣∣∣f̂(xtr
i ;θ)− ytri

∣∣∣+ λθ⊤θ

]
.

For the linear model (2), the above optimization problem is reduced to a quadratic pro-
gram, which can be solved by a standard optimization software. If the regularization term
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θ⊤θ is replaced by the ℓ1-regularizer
∑b

ℓ=1 |θℓ|, the optimization problem is reduced to a
linear program, which may be solved more efficiently. Furthermore, the ℓ1-regularizer is
known to induce a sparse solution (Williams, 1995; Tibshirani, 1996; Chen et al., 1998).

Although the LA method is robust against outliers, it tends to have a large variance
when the noise is Gaussian. The use of the Huber loss can mitigate this problem:

θ̂Huber = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

ρτ

(
f̂(xtr

i ;θ)− ytri

)
+ λθ⊤θ

]
,

where τ (≥ 0) is the robustness parameter and ρτ is the Huber loss defined as follows (see
Figure 2):

ρτ (y) :=


1
2
y2 if |y| ≤ τ,

τ |y| − 1
2
τ 2 if |y| > τ.

Thus, the squared loss is applied to ‘good’ samples with small fitting error, and the
absolute loss is applied to ‘bad’ samples with large fitting error. The above optimization
problem can be reduced to a quadratic program (Mangasarian & Musicant, 2000), which
can be solved by a standard optimization software.

Another variant of the IWLA is importance-weighted support vector regression
(IWSVR):

θ̂SVR = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ ∣∣∣f̂(xtr
i ;θ)− ytri

∣∣∣
ϵ
+ λθ⊤θ

]
,

where | · |ϵ is the deadzone-linear loss (or Vapnik’s ϵ-insensitive loss) defined as follows
(see Figure 2):

|x|ϵ :=

{
0 if |x| ≤ ϵ,

|x| − ϵ if |x| > ϵ.

For the linear model (2), the above optimization problem is reduced to a quadratic pro-
gram (Vapnik, 1998), which can be solved by a standard optimization software. If the
regularization term θ⊤θ is replaced by the ℓ1-regularizer

∑b
ℓ=1 |θℓ|, the optimization prob-

lem is reduced to a linear program.

3.1.3 Importance-Weighted Classification Methods

In the binary classification scenario where Y = {+1,−1}, Fisher discriminant analysis
(FDA) (Fisher, 1936), logistic regression (LR) (Hastie et al., 2001), support vector machine
(SVM) (Vapnik, 1998; Schölkopf & Smola, 2002), and boosting (Freund & Schapire, 1996;
Breiman, 1998; Friedman et al., 2000) would be popular learning algorithms. They can
be regarded as ERM methods with different loss functions (see Figure 3).

An importance-weighted version of FDA, IWFDA, is given by

θ̂IWFDA := argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ (
1− ytri f̂(x

tr
i ;θ)

)2
+ λθ⊤θ

]
,
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Figure 3: Loss functions for classification. y is the true output value at an input point
and ŷ is its estimate.

which is essentially equivalent to Eq.(1) since (ytri )
2 = 1.

An importance-weighted version of LR, IWLR, is given by

θ̂IWLR := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

log
(
1 + exp

(
−ytri f̂(xtr

i ;θ)
))

+ λθ⊤θ

]
,

which is usually solved by (quasi-)Newton methods.
An importance-weighted version of SVM, IWSVM, is given by

θ̂IWSVM := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

max
(
0, 1− ytri f̂(x

tr
i ;θ)

)
+ λθ⊤θ

]
,

whose solution can be obtained by a standard quadratic programming solver.
An importance-weighted version of Boosting, IWB, is given by

θ̂IWB := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

exp
(
−ytri f̂(xtr

i ;θ)
)
+ λθ⊤θ

]
,

which is usually solved by stage-wise optimization.

3.2 Numerical Examples

Here we illustrate the behavior of IWERM using toy regression and classification data
sets.

3.2.1 Regression

Let us consider one-dimensional regression problem. Let the learning target function be
f(x) = sinc(x), and let the training and test input densities be

ptr(x) = N(x; 1, (1/2)2) and pte(x) = N(x; 2, (1/4)2),
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(b) γ = 0
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Figure 4: An illustrative regression example with covariate shift. (a) The probability
density functions of the training and test input points and their ratio (i.e., the importance).
(b)–(d) The learning target function f(x) (the solid line), training samples (‘◦’), a learned

function f̂(x) (the dashed line), and test samples (‘×’).

where N(x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2. As illus-
trated in Figure 4(a), we are considering a (weak) extrapolation problem since the training
input points are distributed in the left-hand side of the input domain and the test input
points are distributed in the right-hand side.

We create the training output value {ytri }ntr
i=1 as ytri = f(xtr

i ) + ϵtri , where {ϵtri }ntr
i=1 are

i.i.d. noise drawn from N(ϵ; 0, (1/4)2). Let the number of training samples be ntr = 150,
and we use the following linear model:

f̂(x;θ) = θ1x+ θ2.

The parameter θ is learned by IWLS.
Here we fix the regularization parameter to λ = 0, and compare the performance

of IWLS for γ = 0, 0.5, 1. When γ = 0, a good approximation of the left-hand side of
the sinc function can be obtained (see Figure 4(b)). However, this is not appropriate
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Figure 5: An illustrative classification example with covariate shift.

for estimating the test output values (‘×’ in the figure). Thus, IWLS with γ = 0 (i.e.,
ordinary LS) results in a large test error. Figure 4(d) depicts the learned function when
γ = 1, which tends to approximate the test output values well, but having a large variance.
Figure 4(c) depicts a learned function when γ = 0.5, which yields even better estimation
of the test output values for this particular data realization.

3.2.2 Classification

Let us consider a binary classification problem on the two-dimensional input space. Let
the class posterior probabilities given input x be

p(y = +1 |x) = 1

2

(
1 + tanh

(
x(1) +min(0, x(2))

))
, (4)

where x = (x(1), x(2))⊤ and p(y = −1 |x) = 1 − p(y = +1 |x). The optimal decision
boundary, i.e., a set of all x such that p(y = +1 |x) = p(y = −1 |x) = 1/2 is illustrated
in Figure 5(a).

Let the training and test input densities be

ptr(x) =
1

2
N

(
x;

[
−2
3

]
,

[
1 0
0 4

])
+

1

2
N

(
x;

[
2
3

]
,

[
1 0
0 4

])
,

pte(x) =
1

2
N

(
x;

[
0
−1

]
,

[
1 0
0 1

])
+

1

2
N

(
x;

[
4
−1

]
,

[
1 0
0 1

])
,
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where N(x;µ,Σ) is the multivariate Gaussian density with mean µ and covariance matrix
Σ. This setup implies that we are considering a (weak) extrapolation problem. Contours
of the training and test input densities are illustrated in Figure 5(a).

Let the number of training samples be ntr = 500, and we create training input points
{xtr

i }ntr
i=1 following ptr(x) and training output labels {ytri }ntr

i=1 following p(y|x = xtr
i ). Sim-

ilarly, let the number of test samples be nte = 500, and we create nte test input points
{xte

j }nte
j=1 following pte(x) and test output labels {ytej }nte

j=1 following p(y|x = xte
j ). We use

the following linear model:

f̂(x;θ) = θ1x
(1) + θ2x

(2) + θ3.

The parameter θ is learned by IWFDA.
Here we fix the regularization parameter to λ = 0, and compare the performance of

IWFDA for γ = 0, 0.5, 1. Figure 5(b) depicts an example of realizations of training and
test samples, and decision boundaries obtained by IWFDA. For this particular realization
of data samples, γ = 0.5 or 1 works better than γ = 0.

4 Model Selection under Covariate Shift

As illustrated in the previous section, importance-weighting is a promising approach to
covariate shift adaptation, given that the flattening parameter γ is chosen appropriately.
Although γ = 0.5 worked well both for the toy regression and classification experiments
in the previous section, γ = 0.5 may not always be the best choice. Indeed, an appro-
priate value of γ depends on the learning target function, models, the noise level in the
training samples, etc. Therefore, model selection needs to be appropriately carried out
for enhancing the generalization capability under covariate shift.

The goal of model selection is to determine the model (e.g, basis functions, the flat-
tening parameter γ, and the regularization parameter λ) so that the generalization error
is minimized (Akaike, 1970; Mallows, 1973; Akaike, 1974; Takeuchi, 1976; Schwarz, 1978;
Rissanen, 1978; Craven & Wahba, 1979; Akaike, 1980; Rissanen, 1987; Shibata, 1989;
Wahba, 1990; Efron & Tibshirani, 1993; Murata et al., 1994; Konishi & Kitagawa, 1996;
Ishiguro et al., 1997; Vapnik, 1998; Sugiyama & Ogawa, 2001; Sugiyama & Müller, 2002;
Sugiyama et al., 2004). The true generalization error is not accessible since it contains the
unknown learning target function. Thus, some generalization error estimator needs to be
used instead. However, standard generalization error estimators such as cross-validation
(CV) are heavily biased under covariate shift, and therefore they are no longer reliable.
In this section, we review a modified CV method that possesses proper unbiasedness even
under covariate shift.

4.1 Importance-Weighted Cross-Validation

One of the popular techniques for estimating the generalization error is CV (Stone, 1974;
Wahba, 1990). CV has been shown to give an almost unbiased estimate of the general-
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ization error with finite samples (Luntz & Brailovsky, 1969; Schölkopf & Smola, 2002).
However, such almost unbiasedness is no longer fulfilled under covariate shift.

To cope with this problem, a variant of CV called importance-weighted CV (IWCV)
has been proposed (Sugiyama et al., 2007). Let us randomly divide the training set
Z = {(xtr

i , y
tr
i )}ntr

i=1 into k disjoint non-empty subsets {Zi}ki=1 of (approximately) the same

size. Let f̂Zi
(x) be a function learned from {Zi′}i′ ̸=i (i.e., without Zi). Then the k-fold

IWCV (kIWCV) estimate of the generalization error G is given by

ĜkIWCV =
1

k

k∑
i=1

1

|Zi|
∑

(x,y)∈Zi

pte(x)

ptr(x)
loss(f̂Zi

(x), y),

where |Zi| is the number of samples in the subset Zi.
When k = ntr, kIWCV is particularly called IW leave-one-out CV (IWLOOCV):

ĜIWLOOCV =
1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtr
i )

loss(f̂i(x
tr
i ), y

tr
i ),

where f̂i(x) is a function learned from {(xtr
i′ , y

tr
i′ )}i′ ̸=i (i.e., without (xtr

i , y
tr
i )). It was

proved that IWLOOCV gives an almost unbiased estimate of the generalization error
even under covariate shift (Sugiyama et al., 2007). More precisely, IWLOOCV for ntr

training samples gives an unbiased estimate of the generalization error for ntr−1 training
samples:

E
{xtr

i }ntr
i=1

E
{ytri }ntr

i=1

[
ĜIWLOOCV

]
= E

{xtr
i }ntr

i=1

E
{ytri }ntr

i=1

[G′] ≈ E
{xtr

i }ntr
i=1

E
{ytri }ntr

i=1

[G],

where E{xtr
i }ntr

i=1
denotes the expectation over {xtr

i }ntr
i=1 drawn i.i.d. from ptr(x), E{ytri }ntr

i=1

denotes the expectation over {ytri }ntr
i=1 each drawn from p(y|x = xtr

i ), and G′ denotes
the generalization error for ntr − 1 training samples. A similar proof is also possible for
kIWCV, but the bias is slightly larger (Hastie et al., 2001).

The almost unbiasedness of IWCV holds for any loss function, any model, and any
parameter learning method; even non-identifiable models (Watanabe, 2009) or non-
parametric learning methods (Schölkopf & Smola, 2002) are allowed. Thus IWCV is
a highly flexible model selection technique under covariate shift. For other model selec-
tion criteria under covariate shift, see Shimodaira (2000) for regular models with smooth
losses and Sugiyama and Müller (2005) for linear models with the squared loss.

4.2 Numerical Examples

Here we illustrate the behavior of IWCV using the same toy data sets as Section 3.2.

4.2.1 Regression

Let us continue the one-dimensional regression simulation in Section 3.2.1.
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As illustrated in Figure 4 in Section 3.2.1, IWLS with flattening parameter γ = 0.5
appears to work well for that particular realization of data samples. However, the best
value of γ would depend on the realization of samples. In order to investigate this sys-
tematically, let us repeat the simulation 1000 times with different random seeds, i.e., in
each run {(xtr

i , ϵ
tr
i )}ntr

i=1 are randomly drawn and the scores of 10-fold IWCV and 10-fold
ordinary CV are calculated for γ = 0, 0.1, 0.2, . . . , 1. The means and standard deviations
of the generalization error G and its estimate by each method are depicted as functions
of γ in Figure 6. The graphs show that IWCV gives very accurate unbiased estimates of
the generalization error, while ordinary CV is heavily biased.

Next we investigate the model selection performance. The flattening parameter γ
is chosen from {0, 0.1, 0.2, . . . , 1} so that the score of each model selection criterion is
minimized. The mean and standard deviation of the generalization error G of the learned
function obtained by each method over 1000 runs are described in Table 1. This shows
that IWCV gives significantly smaller generalization errors than ordinary CV, under the
t-test (Henkel, 1976) at the significance level 5%. For reference, the generalization error
when the flattening parameter γ is chosen optimally (i.e., in each trial, γ is chosen so that
the true generalization error is minimized) is described as ‘Optimal’ in the table. The
result shows that the performance of IWCV is rather close to that of the optimal choice.

4.2.2 Classification

Let us continue the toy classification simulation in Section 3.2.2.
In Figure 5(b) in Section 3.2.2, IWFDA with a middle/large flattening parameter γ

appears to work well for that particular realization of samples. Here, we investigate the
choice of the flattening parameter value by IWCV and ordinary CV. Figure 7 depicts the
means and standard deviations of the generalization error G (i.e., the misclassification
rate) and its estimate by each method over 1000 runs, as functions of the flattening
parameter γ in IWFDA. The graphs clearly show that IWCV gives much better estimates
of the generalization error than ordinary CV.

Next we investigate the model selection performance. The flattening parameter γ
is chosen from {0, 0.1, 0.2, . . . , 1} so that the score of each model selection criterion is
minimized. The mean and standard deviation of the generalization error G of the learned
function obtained by each method over 1000 runs are described in Table 2. The table shows
that IWCV gives significantly smaller test errors than ordinary CV, and the performance
of IWCV is rather close to that of the optimal choice.

5 Importance Estimation

In the previous sections, we have seen that the importance weight

w(x) =
pte(x)

ptr(x)
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Figure 6: Generalization error and its estimates obtained by IWCV and ordinary CV as
functions of the flattening parameter γ in IWLS for the regression examples in Figure 4.
Thick dashed curves in the bottom graphs depict the true generalization error for clear
comparison.

Table 1: The mean and standard deviation of the generalization error G obtained by each
method for the toy regression data set. The best method and comparable ones by the
t-test at the significance level 5% are indicated by ‘◦’. For reference, the generalization
error obtained with the optimal γ (i.e., the minimum generalization error) is described as
‘Optimal’.

IWCV Ordinary CV Optimal
◦0.077± 0.020 0.356± 0.086 0.069± 0.011
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Figure 7: The generalization error G (i.e., the misclassification rate) and its estimates
obtained by IWCV and ordinary CV as functions of the flattening parameter γ in IWFDA
for the toy classification examples in Figure 5. Thick dashed curves in the bottom graphs
depict the true generalization error for clear comparison.

Table 2: The mean and standard deviation of the generalization error G (i.e., the mis-
classification rate) obtained by each method for the toy classification data set. The best
method and comparable ones by the t-test at the significance level 5% are indicated by
‘◦’. For reference, the generalization error obtained with the optimal γ (i.e., the minimum
generalization error) is described as ‘Optimal’.

IWCV Ordinary CV Optimal
◦0.108± 0.027 0.131± 0.029 0.091± 0.009
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plays a central role in covariate shift adaptation. However, the importance weight is
unknown in practice and needs to be estimated from data. In this section, we review
importance estimation methods.

Here we assume that in addition to the training input samples {xtr
i }ntr

i=1 drawn in-
dependently from ptr(x), we are given test input samples {xte

j }nte
j=1 drawn independently

from pte(x). Thus the goal of the importance estimation problem addressed here is to
estimate the importance function w(x) from {xtr

i }ntr
i=1 and {xte

j }nte
j=1.

5.1 Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric technique to estimate a probability
density function p(x) from its i.i.d. samples {xi}ni=1. For the Gaussian kernel

Kσ(x,x
′) = exp

(
−∥x− x′∥2

2σ2

)
, (5)

KDE is expressed as

p̂(x) =
1

ntr(2πσ2)d/2

n∑
ℓ=1

Kσ(x,xℓ).

The performance of KDE depends on the choice of the kernel width σ. It can be
optimized by cross-validation (CV) as follows (Härdle et al., 2004): First, divide the
samples {xi}ni=1 into k disjoint non-empty subsets {Xr}kr=1 of (approximately) the same
size. Then obtain a density estimator p̂Xr(x) from {Xi}i̸=r (i.e., without Xr), and compute
its log-likelihood for the hold-out subset Xr:

1

|Xr|
∑
x∈Xr

log p̂Xr(x),

where |X | denotes the number of elements in the set X . Repeat this procedure for
r = 1, 2, . . . , k and choose the value of σ such that the average of the above hold-out
log-likelihood over all r is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence from p(x) to p̂(x), up to an
irrelevant constant.

KDE can be used for importance estimation by first obtaining density estimators p̂tr(x)
and p̂te(x) separately from {xtr

i }ntr
i=1 and {xte

j }nte
j=1, and then estimating the importance

by ŵ(x) = p̂te(x)/p̂tr(x). However, division by an estimated density can magnify the
estimation error, so directly estimating the importance weight in a single-shot process
would be more preferable.

5.2 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al., 2008)
directly gives an estimate of the importance function without going through density esti-
mation by matching the two densities ptr(x) and pte(x) in terms of the Kullback-Leibler
divergence (Kullback & Leibler, 1951).
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Let us model the importance weight w(x) by the following kernel model:

ŵ(x) =
nte∑
ℓ=1

αℓKσ(x,x
te
ℓ ),

where α = (α1, α2, . . . , αnte)
⊤ are parameters to be learned from data samples and

Kσ(x,x
′) is the Gaussian kernel (see Eq.(5)). An estimate of the density pte(x) is given

by using the model ŵ(x) as p̂te(x) = ŵ(x)ptr(x). In KLIEP, the parameters α are
determined so that the Kullback-Leibler divergence from pte(x) to p̂te(x) is minimized:

KL(α) := E
xte

[
log

pte(x
te)

ŵ(xte)ptr(xte)

]
= E

xte

[
log

pte(x
te)

ptr(xte)

]
− E

xte

[
log ŵ(xte)

]
,

where Exte denotes the expectation over xte drawn from pte(x). The first term is a
constant, so it can be safely ignored. We define the negative of the second term by KL′:

KL′(α) := E
xte

[
log ŵ(xte)

]
. (6)

Since p̂te(x) (= ŵ(x)ptr(x)) is a probability density function, it should satisfy

1 =

∫
D
p̂te(x)dx =

∫
D
ŵ(x)ptr(x)dx = E

xtr

[
ŵ(xtr)

]
. (7)

The KLIEP optimization problem is given by replacing the expectations in Eqs.(6) and
(7) with empirical averages:

max
{αℓ}

nte
ℓ=1

[
nte∑
j=1

log

(
nte∑
ℓ=1

αℓK(xte
j ,x

te
ℓ )

)]

subject to
1

ntr

nte∑
ℓ=1

αℓ

(
ntr∑
i=1

K(xtr
i ,x

te
ℓ )

)
= 1 and α1, α2, . . . , αnte ≥ 0.

This is a convex optimization problem and the global solution—which tends to be sparse
(Boyd & Vandenberghe, 2004)—can be obtained, e.g., by simply performing gradient
ascent and feasibility satisfaction iteratively. A pseudo code is summarized in Figure 8.
The Gaussian width σ can be optimized by CV over KL′, where only the test samples
{xte

j }nte
j=1 are divided into k disjoint subsets (Sugiyama et al., 2008).

A MATLAB R⃝ implementation of the entire KLIEP algorithm is available from the
following web page.

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/
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Input: {xtr
i }ntr

i=1, {xte
j }nte

j=1, and σ
Output: ŵ(x)

Aj,ℓ ←− Kσ(x
te
j ,x

te
ℓ ) for j, ℓ = 1, 2, . . . , nte;

bℓ ←− 1
ntr

∑ntr

i=1Kσ(x
tr
i ,x

te
ℓ ) for ℓ = 1, 2, . . . , nte;

Initialize α (> 0nte) and ε (0 < ε≪ 1);
Repeat until convergence

α←− α+ εA⊤(1nte ./Aα); % Gradient ascent

α←− α+ (1− b⊤α)b/(b⊤b); % Constraint satisfaction
α←− max(0nte ,α); % Constraint satisfaction

α←− α/(b⊤α); % Constraint satisfaction
end
ŵ(x)←−

∑nte

ℓ=1 αℓKσ(x,x
te
ℓ );

Figure 8: Pseudo code of KLIEP. 0nte denotes the nte-dimensional vector with all zeros,
and 1nte denotes the nte-dimensional vector with all ones. ‘./’ indicates the element-wise
division, and inequalities and the ‘max’ operation for vectors are applied in the element-
wise manner.

5.3 Numerical Examples

Here, we illustrate the behavior of the KLIEP method.
Let us consider the following one-dimensional importance estimation problem:

ptr(x) = N(x; 1, (1/2)2) and pte(x) = N(x; 2, (1/4)2).

Let the number of training samples be ntr = 200 and the number of test samples be
nte = 1000.

Figure 9 depicts the true importance and its estimates by KLIEP, where three different
Gaussian widths σ = 0.02, 0.2, 0.8 are tested. The graphs show that the performance
of KLIEP is highly dependent on the Gaussian width. More specifically, the estimated
importance function ŵ(x) is highly fluctuated when σ is small, while it is overly smoothed
when σ is large. When σ is chosen appropriately, KLIEP seems to work reasonably well
for this example.

Figure 10 depicts the values of the true J (see Eq.(6)) and its estimate by 5-fold
CV; the means, the 25 percentiles, and the 75 percentiles over 100 trials are plotted as
functions of the Gaussian width σ. This shows that CV gives a very good estimate of J ,
which results in an appropriate choice of σ.

6 Conclusions and Outlook

In standard supervised learning theories, test input points are assumed to follow the
same probability distribution as training input points. However, this assumption is often
violated in real-world learning problems. In this chapter, we reviewed recently proposed
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Figure 9: Results of importance estimation by KLIEP. w(x) is the true importance func-
tion and ŵ(x) is its estimation obtained by KLIEP.

techniques for covariate shift adaptation, including importance-weighted empirical risk
minimization, importance-weighted cross-validation, and direct importance estimation.

In Section 5, we introduced the KLIEP algorithm for importance estimation, where
linearly-parameterized models were used. It was shown that the KLIEP idea can also
be naturally applied to log-linear models (Tsuboi et al., 2009), Gaussian mixture mod-
els (Yamada & Sugiyama, 2009), and probabilistic principal component analysis mixture
models (Yamada et al., 2010b). Other than KLIEP, various methods of direct impor-
tance estimation have also been proposed (Silverman, 1978; Ćwik & Mielniczuk, 1989;
Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Kanamori et al.,
2009a). Among them, the method proposed in Kanamori et al. (2009a) called uncon-
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strained least-squares importance fitting (uLSIF) gives an analytic-form solution and the
solution can be computed very efficiently in a stable manner. Thus it can be applied to
large-scale data sets.

Recently, importance estimation methods which incorporate dimensionality reduction
have been developed. A method proposed by Sugiyama et al. (2010a) uses a supervised
dimensionality reduction technique called local Fisher discriminant analysis (Sugiyama,
2007) for identifying a subspace in which two densities are significantly different (which
is called the hetero-distributional subspace). Another method proposed by Sugiyama
et al. (2011) tries to find the hetero-distributional subspace by directly minimizing the
discrepancy between the two distributions. Theoretical analysis of importance estimation
has also been conducted thoroughly (Silverman, 1978; Ćwik & Mielniczuk, 1989; Gijbels
& Mielniczuk, 1995; Jacob & Oliveira, 1997; Qin, 1998; Cheng & Chu, 2004; Bensaid &
Fabre, 2007; Nguyen et al., 2010; Sugiyama et al., 2008; Chen et al., 2009; Kanamori
et al., 2009b; Kanamori et al., 2010).

It has been shown that various statistical data processing tasks can be solved through
importance estimation (Sugiyama et al., 2009; Sugiyama et al., 2012), including multi-task
learning (Bickel et al., 2007), inlier-based outlier detection (Silverman, 1978; Hido et al.,
2008; Smola et al., 2009; Hido et al., 2011), change detection in time series (Kawahara &
Sugiyama, 2011), mutual information estimation (Suzuki et al., 2008; Suzuki et al., 2009b),
independent component analysis (Suzuki & Sugiyama, 2011), feature selection (Suzuki
et al., 2009a), sufficient dimension reduction (Suzuki & Sugiyama, 2010), causal inference
(Yamada & Sugiyama, 2010), conditional density estimation (Sugiyama et al., 2010b),
and probabilistic classification (Sugiyama, 2010). Thus, following this line of research,
further improving the accuracy and computational efficiency of importance estimation
as well as further exploring possible application of importance estimation would be a
promising direction to be pursued.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. (Eds.). (2009).
Dataset shift in machine learning. Cambridge, MA, USA: MIT Press.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.

Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Society, Series
B, 49, 223–239.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA, USA: MIT
Press.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6,
461–464.

Shibata, R. (1989). Statistical aspects of model selection. In J. C. Willems (Ed.), From
data to model, 215–240. New York, NY, USA: Springer-Verlag.

Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of Statistical Planning and Inference, 90, 227–244.

Silverman, B. W. (1978). Density ratios, empirical likelihood and cot death. Journal of
the Royal Statistical Society, Series C, 27, 26–33.

Smola, A., Song, L., & Teo, C. H. (2009). Relative novelty detection. Proceed-
ings of Twelfth International Conference on Artificial Intelligence and Statistics (AIS-
TATS2009) (pp. 536–543). Clearwater Beach, FL, USA.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Jour-
nal of the Royal Statistical Society, Series B, 36, 111–147.

Sugiyama, M. (2006). Active learning in approximately linear regression based on con-
ditional expectation of generalization error. Journal of Machine Learning Research, 7,
141–166.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local Fisher
discriminant analysis. Journal of Machine Learning Research, 8, 1027–1061.



Learning under Non-stationarity 25

Sugiyama, M. (2010). Superfast-trainable multi-class probabilistic classifier by least-
squares posterior fitting. IEICE Transactions on Information and Systems, E93-D,
2690–2701.

Sugiyama, M., Kanamori, T., Suzuki, T., Hido, S., Sese, J., Takeuchi, I., & Wang, L.
(2009). A density-ratio framework for statistical data processing. IPSJ Transactions
on Computer Vision and Applications, 1, 183–208.

Sugiyama, M., & Kawanabe, M. (2011). Machine learning in non-stationary environ-
ments: Introduction to covariate shift adaptation. Cambridge, MA, USA: MIT Press.
to appear.

Sugiyama, M., Kawanabe, M., & Chui, P. L. (2010a). Dimensionality reduction for density
ratio estimation in high-dimensional spaces. Neural Networks, 23, 44–59.

Sugiyama, M., Kawanabe, M., & Müller, K.-R. (2004). Trading variance reduction with
unbiasedness: The regularized subspace information criterion for robust model selection
in kernel regression. Neural Computation, 16, 1077–1104.

Sugiyama, M., Krauledat, M., & Müller, K.-R. (2007). Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8, 985–
1005.

Sugiyama, M., & Müller, K.-R. (2002). The subspace information criterion for infinite
dimensional hypothesis spaces. Journal of Machine Learning Research, 3, 323–359.

Sugiyama, M., & Müller, K.-R. (2005). Input-dependent estimation of generalization error
under covariate shift. Statistics & Decisions, 23, 249–279.

Sugiyama, M., & Nakajima, S. (2009). Pool-based active learning in approximate linear
regression. Machine Learning, 75, 249–274.

Sugiyama, M., & Ogawa, H. (2001). Subspace information criterion for model selection.
Neural Computation, 13, 1863–1889.

Sugiyama, M., Suzuki, T., & Kanamori, T. (2012). Density ratio estimation in machine
learning. Cambridge, UK: Cambridge University Press. to appear.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., & Kawanabe,
M. (2008). Direct importance estimation for covariate shift adaptation. Annals of the
Institute of Statistical Mathematics, 60, 699–746.

Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T., Hachiya, H., & Okanohara, D.
(2010b). Least-squares conditional density estimation. IEICE Transactions on Infor-
mation and Systems, E93-D, 583–594.



Learning under Non-stationarity 26

Sugiyama, M., Yamada, M., von Bünau, P., Suzuki, T., Kanamori, T., & Kawanabe, M.
(2011). Direct density-ratio estimation with dimensionality reduction via least-squares
hetero-distributional subspace search. Neural Networks, 24, 183–198.

Suzuki, T., & Sugiyama, M. (2010). Sufficient dimension reduction via squared-loss mu-
tual information estimation. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS2010) (pp. 804–811). Sardinia, Italy.

Suzuki, T., & Sugiyama, M. (2011). Least-squares independent component analysis.
Neural Computation, 23, 284–301.

Suzuki, T., Sugiyama, M., Kanamori, T., & Sese, J. (2009a). Mutual information es-
timation reveals global associations between stimuli and biological processes. BMC
Bioinformatics, 10, S52.

Suzuki, T., Sugiyama, M., Sese, J., & Kanamori, T. (2008). Approximating mutual
information by maximum likelihood density ratio estimation. Proceedings of ECML-
PKDD2008 Workshop on New Challenges for Feature Selection in Data Mining and
Knowledge Discovery 2008 (FSDM2008) (pp. 5–20). Antwerp, Belgium.

Suzuki, T., Sugiyama, M., & Tanaka, T. (2009b). Mutual information approximation via
maximum likelihood estimation of density ratio. Proceedings of 2009 IEEE International
Symposium on Information Theory (ISIT2009) (pp. 463–467). Seoul, Korea.

Takeuchi, K. (1976). Distribution of information statistics and validity criteria of models.
Mathematical Science, 153, 12–18. in Japanese.

Tibshirani, R. (1996). Regression shrinkage and subset selection with the lasso. Journal
of the Royal Statistical Society, Series B, 58, 267–288.

Tsuboi, Y., Kashima, H., Hido, S., Bickel, S., & Sugiyama, M. (2009). Direct density ratio
estimation for large-scale covariate shift adaptation. Journal of Information Processing,
17, 138–155.

Ueki, K., Sugiyama, M., & Ihara, Y. (2011). Lighting condition adaptation for perceived
age estimation. IEICE Transactions on Information and Systems, E94-D, 392–395.

Vapnik, V. N. (1998). Statistical learning theory. New York, NY, USA: Wiley.

Wahba, G. (1990). Spline models for observational data. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics.

Watanabe, S. (2009). Algebraic geometry and statistical learning theory. Cambridge, UK:
Cambridge University Press.

Wiens, D. P. (2000). Robust weights and designs for biased regression models: Least
squares and generalized M-estimation. Journal of Statistical Planning and Inference,
83, 395–412.



Learning under Non-stationarity 27

Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace prior. Neural
Computation, 7, 117–143.

Yamada, M., & Sugiyama, M. (2009). Direct importance estimation with Gaussian mix-
ture models. IEICE Transactions on Information and Systems, E92-D, 2159–2162.

Yamada, M., & Sugiyama, M. (2010). Dependence minimizing regression with model
selection for non-linear causal inference under non-Gaussian noise. Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI2010) (pp. 643–648).
Atlanta, Georgia, USA: The AAAI Press.

Yamada, M., Sugiyama, M., & Matsui, T. (2010a). Semi-supervised speaker identification
under covariate shift. Signal Processing, 90, 2353–2361.

Yamada, M., Sugiyama, M., Wichern, G., & Simm, J. (2010b). Direct importance estima-
tion with a mixture of probabilistic principal component analyzers. IEICE Transactions
on Information and Systems, E93-D, 2846–2849.

Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection
bias. Proceedings of the Twenty-First International Conference on Machine Learning
(ICML2004) (pp. 903–910). New York, NY, USA: ACM Press.


