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Abstract

Change-point detection is the problem of discovering time points at which properties
of time-series data change. This covers a broad range of real-world problems and has
been actively discussed in the community of statistics and data mining. In this paper,
we present a novel non-parametric approach to detecting the change of probability
distributions of sequence data. Our key idea is to estimate the ratio of probability
densities, not the probability densities themselves. This formulation allows us to avoid
non-parametric density estimation, which is known to be a difficult problem. We
provide a change-point detection algorithm based on direct density-ratio estimation
that can be computed very efficiently in an online manner. The usefulness of the
proposed method is demonstrated through experiments using artificial and real-world
datasets.

1 Introduction

The problem of discovering time points at which properties of time-series data change is
attracting a lot of attention in the data mining community [5, 7, 15, 24]. This problem is
referred to as change-point detection [37, 18, 21] or event detection [3], and covers a broad
range of real-world problems such as fraud detection in cellular systems [29, 6], intrusion
detection in computer networks [38], irregular-motion detection in vision systems [22], signal
segmentation in data stream [5], and fault detection in engineering systems [13].

The problem of change-point detection has been actively studied over the last several
decades in statistics. A typical statistical formulation of change-point detection is to consider
probability distributions from which data in the past and present intervals are generated,
and regard the target time point as a change point if two distributions are significantly
different. Various approaches to change-point detection have been investigated within this
statistical framework, including the CUSUM (cumulative sum) [5] and GLR (generalized
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likelihood ratio) [14, 15] approaches. In these approaches, the logarithm of the likelihood
ratio between two consecutive invervals in time-series data is monitored for detecting change
points. In recent years, the above statistical framework has been extensively explored in the
data mining community in connection with real-world applications, for example, approaches
based on novelty detection [26, 27], maximum-likelihood estimation [3], and online learning
of autoregressive models [37, 36]. Another line of research is based on analysis of subspaces
in which time-series sequences are constrained [28, 18, 21]. This approach has a strong
connection with a system identification method called subspace identification, which has
been thoroughly studied in the area of control theory [31, 20]. Moreover, there are several
literatures on spectrum-based methods for change-point detection, where the changes in
autocorrelation structure are caught through the Fourier or wavelet-based spectrum analysis
[1, 30, 8]. Also, we should mention that in the offline case, once a class of models for change-
point detection is fixed, the problem becomes to search a combination of time points that
give a sequence of the models fitting into data, which has been studied actively based on
several combinatorial techniques [4, 10].

A common limitation of the above-mentioned approaches is that they rely on pre-specified
parametric models such as probability density models, autoregressive models and state-
space models, or some specific quantities such as averages, covariances, autocorrelation and
spectrums. Thus, these methods tend to be less flexible in real-world change-point detection
scenarios. The primal purpose of this paper is to present a more flexible non-parametric
method that does not rely on a strong model assumption. In the community of statistics,
some non-parametric approaches to change-point detection problems have been explored, in
which non-parametric density estimation is used for calculating the likelihood ratio [9, 7].
However, since non-parametric density estimation is known to be a hard problem [16, 17],
this naive approach may not be promising in practice.

Our key idea for alleviating this difficulty is to directly estimate the ratio of probability
densities, not the probability densities themseleves. Namely, we estimate the density ratio
(which is also referred to as the importance in literature [12]) without going through den-
sity estimation. Recently, direct density-ratio estimation has been actively explored in the
machine learning community, e.g., Kernel Mean Matching [17] and the Kullback-Leibler Im-
portance Estimation Procedure (KLIEP) [34, 19]. The KLIEP is shown to give the optimal
convergence rate (minmax rate) for non-parametric density-ratio estimation [34]. However,
these conventional methods are batch algorithms and are not suitable for change-point de-
tection due to the sequential nature of time-series data analysis. To cope with this problem,
we give an online version of the KLIEP algorithm and develop a flexible and computation-
ally efficient change-point detection method. An advantage of our method over existing
non-parametric approaches such as the sequential one-class support vector machine [32, 11]
is that our method is equipped with a natural cross validation procedure. Thus, the values
of tuning parameters such as the kernel bandwidth can be objectively detemined in our
method. This is a highly useful property in unsupervised change detection scenarios.

The remainder of this paper is organized as follows. In Section 2, we formulate the
change-point detection problem of time-series data as a density-ratio estimation problem. In
Section 3, we develop a new change-point detection algorithm based on an online extension
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of a direct density-ratio estimation procedure. Finally, we report experimental results on
artificial and real-world datasets in Section 4 and conclude by summarizing our contribution
and possible future works in Section 5.

2 Problem Formulation and Basic Approach

In this section, we formulate a change-point detection problem based on the density ratio in
Section 2.1 and describe our basic approach to this problem in Section 2.2.

2.1 Problem Formulation

Let y(t) (∈ Rd) be a d-dimensional time series sample at time t. Our task is to detect whether
there exists a change point between two consecutive time intervals, called the reference and
test intervals. The conventional algorithms [5, 15] consider the likelihood ratio over samples
from the two intervals. However, time-series samples are generally not independent over
time and therefore directly dealing with non-independent samples is cumbersome. To ease
this difficulty, in this paper, we consider sequences of samples in each time intervals; let Y (t)
(∈ Rdk) be the forward subsequence of length k at time t:

Y (t) =
[
y(t)T ,y(t+ 1)T , . . . ,y(t+ k − 1)T

]T
,

where •T denotes the transpose of a vector or matrix. This is a common practice in subspace
identification since it allows us to implicitly take time correlation into consideration to some
degree [31, 20]. Our algorithm stated in the remainder of this paper is based on the logarithm
of the likelihood ratio of the sequence sample Y defined by

s(Y ) = ln
pte(Y )

prf(Y )
,

where pte(Y ) and prf(Y ) are the probability density functions of the reference and test
sequence samples, respectively.

Let trf and tte (trf < tte) be the starting time points of the reference and test intervals,
respectively. Suppose we have nrf and nte sequence samples whose starting points are in the
reference and test intervals, respectively. Then,

tte = trf + nrf .

The above formulation is summarized in Figure 1.
For brevity, we use the following shorthand notation in the sequel:

Yrf(i) = Y (trf + i− 1),

Yte(i) = Y (tte + i− 1).
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Figure 1: Definition of the reference and test intervals.

Thus, the i-th reference and test samples are denoted by Yrf(i) and Yte(i), respectively. Now,
let us introduce the following hypotheses about the observations1:

H0 : p(Y (i)) = prf(Y (i)) for trf ≤ i < t.

H1 : p(Y (i)) = prf(Y (i)) for trf ≤ i < tte,

p(Y (i)) = pte(Y (i)) for tte ≤ i < t.

Then the likelihood ratio between the hypotheses H0 and H1 is

Λ =

∏nrf

i=1 prf(Yrf(i))
∏nte

i=1 pte(Yte(i))∏nrf

i=1 prf(Yrf(i))
∏nte

i=1 prf(Yte(i))

=

∏nte

i=1 pte(Yte(i))∏nte

i=1 prf(Yte(i))
.

Thus, we can decide whether there is a change point between the reference and test intervals
by monitoring the logarithm of the likelihood ratio:

S =
nte∑
i=1

ln
pte(Yte(i))

prf(Yte(i))
. (1)

Based on the logarithm of the likelihood ratio S, we conclude{
S ≤ µ −→ no change occurs,

otherwise −→ a change occurs,
(2)

where µ (> 0) is a predetermined threshold for the decision of a change point.

1This formulation is slightly different from the original one used in the CUSUM or GLR algorithms,
where the tested time point is not fixed at time tte.
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The remaining question of this procedure is how to calculate the density ratio,

w(Y ) :=
pte(Y )

prf(Y )
,

because, in practice, the above ratio is unknown and therefore we need to estimate it from
samples. A naive approach to this would be to first estimate the reference and test densities
separately from the reference and test sequence samples, and then estimate the density
ratio by taking the ratio of the estimated densities. However, since non-parametric density
estimation is known to be a hard problem [16, 17], this naive approach to change-point
detection via non-parametric density estimation may not be effective—directly estimating
the density ratio without estimating the densities would be more promising.

2.2 Direct Density-Ratio Estimation

As described above, we need to estimate the density ratio for solving the change-point detec-
tion problem. Here, we show how the density ratio could be directly estimated without going
through density estimation based on the Kullback-Leibler Importance Estimation Procedure
(KLIEP) [34].

Let us model the density ratio w(Y ) by a non-parametric Gaussian kernel model:

ŵ(Y ) =
nte∑
l=1

αlKσ(Y ,Yte(l)), (3)

where {αl}nte
l=1 are parameters to be learned from data samples andKσ(Y ,Y ′) is the Gaussian

kernel function with mean Y ′ and standard deviation σ:

Kσ(Y ,Y ′) = exp

(
−∥Y − Y ′∥2

2σ2

)
. (4)

Using the model ŵ(Y ), we can estimate the test interval density pte(Y ) by

p̂te(Y ) = ŵ(Y )ptr(Y ).

The parameters {αl}nte
l=1 in the model (3) are determined so that the empirical Kullback-

Leibler divergence from pte(Y ) to p̂te(Y ) is minimized. The solution of this problem can be
obtained by solving the following convex optimization problem:

max
{αl}

nte
l=1

nte∑
i=1

log

(
nte∑
l=1

αlKσ(Yte(i),Yte(l))

)
,

s.t.
1

nrf

nrf∑
i=1

nte∑
l=1

αlKσ(Yrf(i),Yte(l)) = 1,

and α1, . . . , αnte ≥ 1.

(5)

The equality constraint in the above optimization problem comes from the requirement that
ŵ(Y ) should be properly normalized since prf(Y )ŵ(Y ) (= p̂te(Y )) is a probability density
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input: Reference samples Yrf = {Yrf(i)}nrf
i=1, test samples Yte = {Yte(i)}nte

i=1, and the
Gaussian width σ.

Ki,l = Kσ(Yte(i),Yte(l)) (i = 1, . . . , nte, l = 1, . . . , nte).1

bl =
1
nrf

∑nrf

i=1 Kσ(Yrf(i),Yte(l)) (l = 1, . . . , nte).2

Initialize α (> 0) and ϵ (0 < ϵ≪ 1).3

Repeat4

Perform gradient ascent:5
α← α+ ϵK(1./Kα).

Perform feasibility satisfaction:6

α← α+ (1− bTα)b/(bTb),

α← max(0,α),

α← α/(bTα).

Until convergence;7

Output ŵ(Y )←
∑nte

l=1αlKσ(Y ,Yte(l)).8

Algorithm 1: The KLIEP algorithm in pseudo code. ‘./′ in Line 5 indicates the element-
wise division. An inequality for a vector in Line 3 and the max operation for a vector
in Line 6 are applied in the elment-wise manner.

function. The non-negativity constraint comes from the non-negativity of the density ratio
function.

A pseudo code of the KLIEP is described in Algorithm 1, which will be used for initial-
ization purposes in the online setup discussed in the next section. In the Gaussian kernel
model (3), we set the Gaussian centers at the test subsequences {Yte(i)}nte

i=1, not the reference
sequences. The reason for this choice is as follows. The density-ratio w(Y ) tends to take
large values if the reference sequence density prf(Y ) is small and the test sequence density
pte(Y ) is large by definition. When a non-negative function is approximated by a Gaussian
kernel model in general, many kernels may be needed in the region where the output of
the target function is large. Thus, it would be effective to allocate many kernels at high
reference density regions, which can be achieved by setting the centers at the test sequence
points {Yte(i)}nte

i=1.
In Algorithm 1, the kernel width σ is an open tuning parameter and needs to be chosen

appropriately for better estimation. As shown in the paper [34], the kernel width σ can be
determined from data samples using likelihood cross validation. A pseudo code of likelihood
cross validation is described in Algorithm 2.

3 Online Algorithm

The above framework would be a suitable method for flexible change-point detection since it
enables us to directly compute a non-parametric estimate of the density-ratio w(Y ) without
going through density estimation. However, it is a batch algorithm (i.e., all samples are
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input: Reference samples Yrf = {Yrf(i)}nrf
i=1, test samples Yte = {Yte(i)}nte

i=1, and the
Gaussian width candidates {σi}si=1.

Split Yte into R disjoint subsets {Yr}Rr=1.1

For each Gaussian width σi2

For each split r = 1, . . . , R3

Call KLIEP with model σi and split r:4

ŵr(Y )← KLIEP(Yrf , {Yj}j ̸=r, σi).

Compute out-of-sample log-likelihood:5

Ĵr(i)←
1

|Yr|
∑
Y ∈Yr

log ŵr(Y ).

Compute average out-of-sample log-likelihood:6

Ĵ(i)← 1

R

R∑
r=1

Ĵr(i).

Choose the optimal Gaussian width:7

î← argmax
i

Ĵ(i)

Output ŵ(Y )← KLIEP(Yrf ,Yte, σî).8

Algorithm 2: Pseudo code of kernel width selection in KLIEP by likelihood cross vali-
dation.

used for estimation) and therefore is not computationally efficient in the current setup since
solutions need to be computed sequentially over time in change-point detection. To reduce
the computational cost, we develop an online version of the above algorithm that recursively
builds a new solution upon the previous solution (Section 3.1). We then describe the overall
procedure of our proposed algorithm for change-point detection in Section 3.2.

3.1 Online Density-Ratio Estimation

Let ŵ(Y ) be an estimate of the density ratio by the offline algorithm (Algorithm 1) from
{Yrf(i)}nrf

i=1 and {Yte(i)}nte
i=1 and let {α̂l}nte

l=1 be the learned parameters:

ŵ(Y ) =
nte∑
l=1

α̂lKσ(Y ,Yte(l)).

Let us consider the case where a new sample point y(tte + k + nte) is observed—in the
sequence representation, Y (tte + nte + 1) is additionally obtained (see Figure 2). Let ŵ′(Y )
be an estimate of the density ratio by Algorithm 1 after the new sample is given. Here we
give an online method that computes the new solution ŵ′(Y ) efficiently from the previous
solution ŵ(Y ) and the new sample Y (tte + nte + 1).
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Figure 2: Online setup of change detection.

Our idea basically relies on stochastic gradient descent [2], which allows us to learn the
parameters efficiently in an online manner. However, since the algorithm described in the
previous section is a non-parametric kernel method and the basis functions vary over time, it
is not straightforward to employ the techniques of stochastic gradient descent in the current
setup. Recently, an online learning technique for kernel methods has been addressed [25].
Here, we apply this technique to the problem (5) and give an online version of the algorithm.

Let Et(w) be the empirical error for Yte(t):

Ei(w) = − logw(Yte(i)).

Note that the solution ŵ is given as the minimizer of
∑nte

i=1Ei(w) under the normalization
and non-negativity constraints (cf. Eq.(5)). Let us assume that w is searched within a
reproducing kernel Hilbert space H. Then the following reproducing property holds:

⟨w(·), K(·,Y ′)⟩H = w(Y ′),

where K(·, ·) is the reproducing kernel of H and ⟨·, ·⟩H denotes the inner product in H. Let
us consider the following regularized empirical error:

E ′
i(w) = − logw(Yte(i)) +

λ

2
∥w∥2H ,

where λ(> 0) is the regularization parameter and ∥ · ∥H denotes the norm in H.
The basic idea of online learning for kernel methods is to update the solution as

ŵ′ ← ŵ − η∂wE
′
i+1(ŵ),

where ∂w denotes the partial derivative with respect to w and η(> 0) is the learning rate
that controls the adaptation sensitivity to the new sample. Given the Gaussian kernel model
(3), the above update rule is explicitly expressed as

ŵ′ ← ŵ − η

(
−Kσ(·,Yte(nte + 1)

ŵ(Yte(nte + 1)
+ λŵ

)
.
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This implies that the parameters are updated as
α̂′
l ← (1− ηλ)α̂l+1 if l = 1, . . . , nte − 1,

α̂′
l ←

η

ŵ(Yte(nte + 1)
if l = nte.

Note that ηλ, which should be chosen between zero and one, works as a forgetting factor
for older samples. When the target time series is highly nonstationary, it is often useful to
deemphasize the influence of older samples via the forgetting factor. If such weighting is not
necessary, we merely set η = 0.

In addition to reducing the empirical error, the constraints in the optimizatin problem
(5) need to be fullfilled. This could be achieved in the same manner as the batch algorithm
(Algorithm 1), but normalization is carried out over {Yrf(t + 1)}nrf

t=1 with Gaussian centers
{Yte(l + 1)}nte

t=1:

1

nrf

nrf∑
t=1

nte∑
l=1

αlKσ(Yrf(t+ 1),Yte(l + 1)) = 1. (6)

Altogether, the pseudo code of the online update procedure is summarized in Algorithm 3.

3.2 Change-Point Detection Algorithm

The entire procedure for change-point detection based on direct density-ratio estimation is
summarized in Algorithm 4. At the begining, the batch algorithm with model selection
(Algorithms 1 and 2) is called and the kernel width σ and initial estimate of parameters α
are calculated. Then, when a new sample y(t) (or, equivalently, a new sequence Yte(nte+1))
is given, the reference and test intervals are shifted one step to the future (see Figure 2) and
the estimate of parameters α is updated using Algorithm 3. With the estimated parameters,
the logarithm of the likelihood ratio (1) is evaluated as the change-detection score. If this
score is beyond the given threshold µ (see Eq.(2)), the time point is reported as a change
point and the current time t is updated as t← t+(nrf +nte+k). This procedure is repeated
until the end of data.

4 Experimental Results

In this section, we experimentally investigate the performance of the proposed algorithm
using artificial and real-world datasets. First, the proposed non-parametric direct density-
ratio approach is compared with existing model-based likelihood-ratio approaches in Section
4.1. Then the proposed algorithm is compared with several popular change-point detection
algorithms using real-world datasets in Section 4.2.

4.1 Artificial Dataset

Here we use the following three artificial datasets for illustration purposes.
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input: New sample y(t), the previous estimate of parameters α and forgetting
factors η and λ.

Create the new sequence sample Yte(nte + 1).1

Update the parameters α:2

α←


(1− ηλ)α2

(1− ηλ)α3
...

(1− ηλ)αnte

η/c

 ,

where c =
∑nte

l=1 αlKσ(Yte(nte + 1),Yte(l)).
Perform feasibility satisfaction:3

α← α+ (1− bTα)b/(bTb),

α← max(0,α),

α← α/(bTα),

where bl =
1
nrf

∑nrf

i=1Kσ(Yrf(i),Yte(l)) for l = 1, . . . , nte.

Update as Yrf(nrf + 1)← Yte(1).4

Algorithm 3: Online update of parameters α in the Gaussian kernel model (3) in pseudo
code.

input: Window size k, interval lengths nrf and nte, Gaussian width candidates
{σi}si=1, change-point detection threshold µ, and, forgetting factors η and λ.

Set trf = 1 (t = nrf + nte + k), Yrf and Yte.1

Run the batch KLIEP (Algorithm 1) with Yrf , Yte and σ (in case of the first call, run2

the batch KLIEP with model selection (Algorithm 2)).
while not at the end of data do3

t← t+ 1.4

Update the estimate of parameters αt by Algorithm 3 with a new sample y(t) and5

the previous estimate αt−1.
Compute the change-detection score S (Eq.(1)).6

if S > µ then7

Report change at time t.8

t← t+ nrf + nte .9

Go to step 2.10

Algorithm 4: Pseudo code for the change-point detection algorithm based on the online
density-ratio estimation.
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Dataset 1 (see Figure 4 (a)):

The following autoregressive model (borrowed from the paper [37]) is used for generating
10000 time-series samples (i.e., t = 1, . . . , 10000):

yt = 0.6yt−1 − 0.5yt−2 + ϵt,

where ϵt is Gaussian noise with mean µ and standard deviation 1. The initial values are set
as y1 = 0 and y2 = 0. We artificially create change points at every 1000 points: starting
from ξ = 0, the noise mean is increased as ξ ← ξ + i at time t = 1, 000× i for i = 1, . . . , 9.

Dataset 2 (see Figure 4 (b)):

The following autoregressive model (borrowed from the papers [28, 21]) is used for generating
1500 time-series samples:

yt = et +

{
0.97yt−1 + yt−2 − 0.5yt−3 + 0.97yt−4 if t < 1000,
0.97yt−1 + yt−2 − 0.7yt−3 + 0.97yt−4 if t ≥ 1000,

where et is Gaussian noise with mean 0 and standard deviation 0.2. The initial values are
set as y1 = 0, y2 = 8, y3 = 6 and y4 = 4. The change point exists at t = 1000.

Dataset 3 (see Figure 4 (c)):

The following state-space model (borrowed from the paper [21]) is used for generating 1500
time-series samples:

xt = Axt−1 + ut,

yt = Cxt−1 + vt,

where x is a two-dimensional state vector, u is two-dimensional system noise following the
uncorrelated Gaussian distribution with mean zero and variance (0.5, 0.1), and v is scalar-
valued observation noise following the Gaussian distribution with mean zero and variance
0.02. The parameters A and C are set as

A =

[
0.95 c
0.1 1.0

]
and C =

[
0 1

]
,

where

c =

{
−0.3 if t < 1000,
0.05 if t ≥ 1000.

The change point exists at t = 1000.
For the proposed algorithm, the parameters are set as k = 80, nrf = 100, nrf = 50,

η = 1.0 and λ = 0.01 for all three datasets. The threshold µ (see Eq.(2)) is set as

µ =


0.4 for the dataset 1,
0.2 for the dataset 2,
0.5 for the dataset 3.
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Figure 3: Averages of the kernel widths σ chosen by cross validation with several different
number of data splits R for randomly generated 50 time-series with the models (Dataset 1,
2 and 3).

The kernel width σ in KLIEP is chosen by cross validation described in Algorithm 2. Fir-
gure 3 shows the averages of the kernel widths σ chosen by cross validation with several
different number of data splits R for randomly generated 50 time-series with the above mod-
els. The figure shows that the selected widths are not highly dependent on R. For this
reason, we decided to use 5-fold cross validation in the rest of the experiments.

Figure 4 depicts time-series (upper graphs) samples as well as the change-detection score
used in the proposed algorithm (i.e., the logarithm of the likelihood ratio S; see Eq.(1))
computed by the proposed method (lower graphs). The vertical black dotted lines in the
graphs denote the detected change points (i.e., the change-detection score S goes beyond the
threshold µ; which is denoted by the horizontal green solid lines in the graphs). The results
show that after changes occur, the change-detection score of the proposed method increases
rapidly and therefore the change points are detected accurately. Note that there is small delay
in the detected changes—this is due to the data buffering process for constructing sequence
samples. However, the amount of delay is systematic (in the current setup, k + nte = 130)
and therefore the delay can be easily adjusted by substituting the length of the test interval
from the time where the change is detected.

As shown above, the proposed method, in which the likelihood-ratio is estimated directly
without going through density estimation in a non-parametric fashion, works reasonably
well in the controlled setup. Next, we compare the performance of the proposed method
with existing methods which are also based on the likelihood ratio but density estimation is
explicitly involved in a parametric or non-parametric way.

Autoregressive (AR) model [37]: Time-series data is modeled by the following AR
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Figure 4: Illustrative time-series samples (upper graphs) and the change-detection score
obtained by the proposed method. The vertical black solid lines in the upper graphs denote
the true change points. The vertical black dotted lines in the lower graphs denote the
change points detected by the proposed method. The horizontal green solid lines denote the
threshold for detecting change points.

model:

y(t) =
b∑

i=1

Aiy(t− i) + v(t),

where {Ai}bi=1 are fixed parameters and v(t) is the Gaussian noise model with mean
zero and variance parameter σ2. The order b of the AR model is determined by cross
validation. Here, two AR models are trained for modeling time-series in the reference
and test intervals, and the logarithm of the ratio of the predictive densities of the last
sample in the reference and test intervals is used as the change-detection score.

Kernel density estimation (KDE) [16]: KDE is a non-parametric technique to estimate
a probability density p(Y ) from its i.i.d. samples {Y (i)}ni=1. For the Gaussian kernel
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(4), the KDE solution is given as

p̂(Y ) =
1

n(2πσ2)dk/2

n∑
i=1

Kσ(Y ,Y (i)),

where dk is the dimensionality of Y and Kσ(Y ,Y ′) is a kernel function. At each time
step t, probability densities corresponding to reference and test intervals are estimated
using KDE and then its logarithm of the likelihood ratio is used as the change-detection
score.

Figure 5 depicts the false-alarm rate versus accuracy (true positive) rate curves for several
different values of the detection threshold µ for different window size k using randomly
generated 50 time-series data with the above models.2 More specifically, the horizontal axis
of the graph corresponds to the false-alarm rate nf/nal (nf denotes the number of times non-
change points are detected by mistake and nal denotes the number of all detection alarms),
and the vertical axis corresponds to the accuracy rate ncr/ncp (ncr denotes the number of
times change points are correctly detected and ncp denotes the number of all change points).
Thus, a curve which is close to the left-upper corner means that the corresponding algorithm
has good performance. Table 1 summarizes the best accuracy rate over the threshold µ for
different window size k. More specifically, the table contains the maximum value of ncr/ncp

over µ and its corresponding accuracy degree (ncr − nf)/ncp.
The results show that the AR model based method works well for the dataset 1 since the

pre-specified AR model is correct. The AR model is still correct for the dataset 2, but the
performance tends to be rather poor since the true data generation model is rather complex;
thus it is difficult to choose the right order of the AR model using cross validation with a
limited number of samples. The performance of the AR model based method also tends to
be rather poor for the dataset 3 since the model is under-specified—the true data generation
model is a state-space model which is substantially more complex than AR models.

The false-alarm rate versus accuracy rate curves of the KDE based and KLIEP based
method are stably well for all the three datasets, thanks to the flexibility of non-parametric
estimation. However, since non-parametric density estimation is a hard task and tends to
be rather inaccurate when only a limited number of samples is available, the performance of
the KDE based methods can be degraded. On the other hand, the KLIEP based method can
avoid this difficulty by directly estimating the density ratio without going through density
estimation. Thus it tends to perform better. Indeed, the curves of the KLIEP based method
tends to be better than those of the KDE based method for the datasets 1 and 2; they are
comparable for the dataset 3.

Another important finding from the experimental results is that the performance of all
the methods tend to be degraded when the window size k is too small. This is because time-
correlation of the series-samples is still strong for a small k and therefore it is not appropriate

2A false-alarm vs. accuracy rates curve is usually called an ROC (Receiver Operating Characteristic)
curve. However, in our case, i.e., sequential change-point detection, the number of samples used in calculating
the rates is not uniform at each point on the curve because it depends on the number of detected change
points. Thus, the curves in Figure 5 may not have the properties that usual ROC curves have, e.g., monotone
non-decreasing.
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(a) Dataset 1, k = 40 (b) Dataset 1, k = 60 (c) Dataset 1, k = 80

(d) Dataset 2, k = 40 (e) Dataset 2, k = 60 (f) Dataset 2, k = 80

(g) Dataset 3, k = 40 (h) Dataset 3, k = 60 (i) Dataset 3, k = 80

Figure 5: False-alarm rate versus accuracy rate curves for the artificial datasets for different
window size k.

to regard them as independent. Thus our strategy of using subsequence samples for change
detection would be a reasonable choice.

4.2 Real-World Dataset

As shown above, the proposed method works reasonably well for the illustrative change-
detection problems. Next, we apply the proposed method to real-world datasets and inves-
tigate whether the good performance is still obtained in realistic circumstances.

In this experiment, we compare the performance of the proposed method with the fol-
lowing four algorithms:

Singular-spectrum analysis (SSA) [28]: SSA evaluates the degree of changes between
two consecutive sequences using the distance defined based on singular spectrums.

Change finder (CF) [36, 37]: CF first sequentially fits an AR model to time-series data
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Table 1: The best accuracy rate and its accuracy degree for the artificial datasets. The
results of the best methods are described in bold face.

(a) Accuracy rate
k AR KDE KLIEP

40 98.4 96.7 98.0
1 60 98.2 96.4 97.8

80 98.7 96.7 98.2
Avg. 98.4 96.6 98.3

40 88.0 90.0 98.2
2 60 74.0 100.0 100.0

80 62.0 100.0 100.0
Avg. 74.7 96.7 99.4

40 70.0 100.0 100.0
3 60 88.0 100.0 100.0

80 94.0 100.0 100.0
Avg. 84.0 100.0 100.0

(b) Accuracy degree
k AR KDE KLIEP

40 77.0 72.7 87.6
1 60 80.1 63.5 88.3

80 81.8 71.7 74.4
Avg. 79.6 69.3 83.4

40 26.9 59.2 74.4
2 60 25.4 100.0 100.0

80 37.6 100.0 100.0
Avg. 30.0 86.4 91.5

40 -13.2 15.9 21.3
3 60 6.3 20.1 32.1

80 14.4 18.7 38.2
Avg. 7.5 18.2 30.5

and auxiliary time-series data is generated from the AR model. Then another AR
model is fitted to the auxiliary time-series and its log-likelihood is used as the change-
detection score.

Subspace identification (SI) [21]: SI identifies a subspace in which time-series sequences
are constrained and evaluates the distance of target sequences form the subspace. A
recursive subspace identification algorithm based on an instrumental variable method
is used for estimating the subspace.

One-class support vector machine (OSVM) [11]: This algorithm iteratively com-
pares the supports of probability densities estimated by one-class support vector ma-
chine from samples in the reference and test intervals.

Here, two different kinds of datasets, namely, the respiration and speech datasets are used
in Section 4.2.1 and in Section 4.2.2, respectively.

4.2.1 Respiration Dataset

The first real-world dataset we use here is the respiration dataset in the UCR Time Series
Data Mining Archive3. This dataset contains 15 time-series data—each of which records
patients’ respiration measured by thorax extension and every time period is manually an-
notated by a medical expert as ‘awake’, ‘sleep’ etc. [23]. Two examples of the original
time-series as well as the annotation results are depicted in the top graphs of Figure 6. The
task is to detect the time points at which the state of patients changes.

3Available from ‘http://www.cs.ucr.edu/∼eamonn/discords/’.
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Stage II sleep Eyes open,awake
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(a) The nprs11 dataset
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0
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-0.5

(b) The nprs43 dataset

Figure 6: The raw time-series data of the respiration datasets (top) and the change-detection
score (1) of the proposed method (bottom).

Figure 6 illustrates the original time-series (upper) as well as the change-detection score
(see Eq.(1)) of the proposed method (bottom). The change points detected for

µ =

{
1.0 for the nprs11 dataset,
0.5 for the nprm43 dataset,

are indicated by the vertical dotted lines. We set k = 80, nrf = 100, and nte = 100, and
the kernel width σ is chosen by likelihood cross validation using Algorithm 2. The graphs
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Table 2: Accuracy rate (top) and degree (bottom) of change detection for the respiration
dataset. The results of the best methods are described in bold face.

(a) Accuracy rate

CF SSA SI OSVM KLIEP

k = 30 22.1 46.5 47.5 49.7 49.8
k = 50 25.2 46.5 47.9 49.6 50.0

Average 23.7 46.5 47.7 49.7 49.9

(b) Accuracy degree

CF SSA SI OSVM KLIEP

k = 30 -59.0 -40.0 -42.3 -44.3 -38.4
k = 50 -54.5 -38.2 -39.4 -44.2 -35.3

Average -56.8 -39.1 -40.9 -44.2 -36.9

show that, although the increase of the change-detection score is not so clear as that in the
illustrative examples in Figure 4, the proposed algorithm still works reasonably well for the
real-world respiration datasets. Note that in the nprs11 dataset, the time point around 9250
is detected incorrectly.

The comparison results are summarized in Table 2 (the best accuracy rate and its cor-
responding accuracy degree). All the results are averaged over the 15 datasets. The table
shows that the best performance of the proposed method is better than the other methods.

4.2.2 Speech Dataset

The second real-world dataset is the speech dataset CENSREC-1-C in the Speech Resource
Consortium (SRC) corpora provided by National Institute of Informatics (NII) 4. This
dataset contains dozens of time-series data – each of which records speech signals mea-
sured with microphones in several noise environments and the begining and ending of every
speech are manually annotated. One example of the original time-series data as well as the
annotation results are depicted in the top graph of Figure 7. The task here is to detect the
time points at which a speech begins or ends. Before feeding the data to the algorithms, we
took the moving average over 10 samples for smoothing purposes.

Figure 7 illustrates a part of the original time-series data (upper) as well as change-
detection score (see Eq.(1)) of the proposed method (bottom). The change points detected
for µ = 1.3 are indicated by the vertical dotted lines. We set k = 100, nrf = 200 and
nte = 100, and the kernel width σ is chosen by likelihood cross validation using Algorithm
2. The graphs show that the proposed algorithm still works reasonably well also for the
real-world speech dataset. Note that the time points around 22200 and 28400 are detected
incorrectly, and the change point around 28400 is not detected by the proposed method in

4Available from ‘http://research.nii.ac.jp/src/eng/index.html’.
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this case.
The comparison results are summarized in Table 3 (the best accuracy rate and its cor-

responding accuracy degree). All results are averaged over the first 10 datasets (in the
STREET SNR HIGH dataset). The table shows that the best performance of the proposed
method is also competitive with the best existing algorithms.

Overall, we experimentally confirmed that the proposed method could be a useful alter-
native to the existing methods in practical change detection applications.

5 Conclusions and Future Prospects

We formulated the problem of change-point detection in time-series data as the problem of
comparing probability distributions over two consecutive time intervals that generate the
time-series data. Within this framework, we proposed a novel non-parametric algorithm
for change-point detection. The key idea of the proposed method is that the ratio of two
probability densities is directly estimated without going through density estimation. Thus,
the proposed method can avoid non-parametric density estimation, which is known to be a
hard problem in practice. We also derived an online algorithm that can update the density
ratio estimator efficiently based on the previous estimation result. We experimentally showed
the usefulness of the proposed algorithm using artificial and real-world datasets.

In our framework, the dimensionality of data samples tends to be high because not
observations at each time point but sequences of observations are treated as samples for
estimation. This can potentially cause performance degradation in density-ratio estimation.
A possible measure for this is to incorporate some dimensionality reduction scheme into the
density-ratio estimation framework [33, 35]. We will apply such dimensionality reduction
methods to change-detection problems in the future work.

Another important issue to be further investigated is model selection—the performance
of change-point detection depends on the selection of the kernel width σ. In the current
implementation of the proposed method, the width is chosen by cross validation in the
beginning and the same fixed width is used over the entire online learning process. Although
the current implementation showed a superior performance in experiments, its performance
could be further improved if the kernel width is optimized through the online learning process.
Another challenging future work along this line would be to develop a computationally
efficient online density-ratio estimation method that can perform model selection also in an
online manner.

In our method, there are several tuning parameters other than σ, such as, window size k,
interval lengths nrf and nte, and forgeting factors η and λ. Basically, the paremeter k does
not affect the performance so much if it is sufficiently large (≥ 40), as can be observed in
the experiments. As for nrf and nte, the larger these are, the more accurate the estimation
of density-ratio would be, as common statistical algorithms. However, since the interval
requred for initialization becomes longer with increasing of nrf or nte, too large nrf or nte

may make the method less practical for time-series data where changes occur frequently. η
and λ control effects from past data by gradually decreasing the weights on past time points,
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Figure 7: The raw time-series data of the speech dataset (top) and the change-detection
score (1) of the proposed method (bottom). The vertical black solid lines in the top graph
denote the true change points. The vertical black dotted lines in the bottom graph denote
the change points detected by the proposed method. The horizontal green solid lines denote
the threshold for detecting change points

Table 3: Accuracy rate (top) and degree (bottom) of change detection for the speech dataset.
The results of the best methods are described in bold face.

(a) Accuracy rate

CF SSA SI OSVM KLIEP

k = 50 34.0 43.5 39.0 43.5 42.5
k = 100 39.0 45.0 40.5 53.0 45.0

Average 36.5 44.3 39.8 47.8 43.8

(b) Accuracy degree

CF SSA SI OSVM KLIEP

k = 50 -54.3 -34.6 -35.0 -48.4 -34.7
k = 100 -47.6 -24.4 -25.8 -35.8 -28.1

Average -51.0 -29.5 -30.4 -37.1 -31.4



Sequential Change-Point Detection Based on Direct Density-Ratio Estimation 21

which is commonly used heuristics when dealing with non-stationary time-series data. When
stationarity can be assumed, we can just set these parameters to zeros. Currently, these
parameters need to be chosen beforehand. Our method would be more useful if these tuning
parameters are selected automatically only from data, which is another future work.
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