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Abstract

Estimation of the ratio of probability densities has attracted a great deal of attention
since it can be used for addressing various statistical paradigms. A naive approach to
density-ratio approximation is to first estimate numerator and denominator densities
separately and then take their ratio. However, this two-step approach does not
perform well in practice, and methods for directly estimating density ratios without
density estimation have been explored. In this paper, we first give a comprehensive
review of existing density-ratio estimation methods and discuss their pros and cons.
Then we propose a new framework of density-ratio estimation in which a density-
ratio model is fitted to the true density-ratio under the Bregman divergence. Our
new framework includes existing approaches as special cases, and is substantially
more general. Finally, we develop a robust density-ratio estimation method under
the power divergence, which is a novel instance in our framework.
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1 Introduction

The ratio of probability densities can be used for various statistical data processing pur-
poses (Sugiyama et al., 2009, 2012) such as discriminant analysis (Silverman, 1978), non-
stationarity adaptation (Shimodaira, 2000; Sugiyama and Müller, 2005; Sugiyama et al.,
2007; Quiñonero-Candela et al., 2009; Sugiyama and Kawanabe, 2011), multi-task learn-
ing (Bickel et al., 2008), outlier detection (Hido et al., 2008; Smola et al., 2009; Hido et al.,
2011), two-sample test (Keziou and Leoni-Aubin, 2005; Sugiyama et al., 2011a) change
detection in time series (Kawahara and Sugiyama, 2009), conditional density estimation
(Sugiyama et al., 2010), and probabilistic classification (Sugiyama, 2010).

Furthermore, mutual information—which plays a central role in information theory
(Cover and Thomas, 2006)—can be estimated via density-ratio estimation (Suzuki et al.,
2008, 2009b). Since mutual information is a measure of statistical independence between
random variables, density-ratio estimation can be used also for variable selection (Suzuki
et al., 2009a), dimensionality reduction (Suzuki and Sugiyama, 2010), independent com-
ponent analysis (Suzuki and Sugiyama, 2009), causal inference (Yamada and Sugiyama,
2010), clustering (Kimura and Sugiyama, 2011), and cross-domain object matching (Ya-
mada and Sugiyama, 2011) Thus, density-ratio estimation is a versatile tool for statistical
data processing.

A naive approach to approximating a density-ratio is to separately estimate the two
densities corresponding to the numerator and denominator of the ratio, and then take
the ratio of the estimated densities. However, this naive approach is not reliable in high-
dimensional problems since division by an estimated quantity can magnify the estimation
error of the dividend. To overcome this drawback, various approaches to directly estimat-
ing density-ratios without going through density estimation have been explored recently,
including the moment matching approach (Gretton et al., 2009), the probabilistic clas-
sification approach (Qin, 1998; Cheng and Chu, 2004), the density matching approach
(Sugiyama et al., 2008; Tsuboi et al., 2009; Yamada and Sugiyama, 2009; Nguyen et al.,
2010; Yamada et al., 2010), and the density-ratio fitting approach (Kanamori et al., 2009).

The purpose of this paper is to provide a general framework of density-ratio estimation
that accommodates the above methods. More specifically, we propose a new density-
ratio estimation approach called density-ratio matching—a density-ratio model is fitted
to the true density-ratio function under the Bregman divergence (Bregman, 1967). We
further develop a robust density-ratio estimation method under the power divergence
(Basu et al., 1998), which is a novel instance in our general framework. Note that the
Bregman divergence has been widely used in machine learning literature so far (Collins
et al., 2002; Murata et al., 2004; Tsuda et al., 2005; Dhillon and Sra, 2006; Cayton,
2008; Wu et al., 2009), and the current paper explores a new application of the Bregman
divergence in the framework of density-ratio estimation.

The rest of this paper is organized as follows. After the problem formulation below, we
give a comprehensive review of density-ratio estimation methods in Section 2. In Section 3,
we describe our new framework for density-ratio estimation. Finally, we conclude in
Section 4.
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Problem Formulation: The problem of density-ratio estimation addressed in this pa-
per is formulated as follows. Let X (⊂ Rd) be the data domain, and suppose we are given
independent and identically distributed (i.i.d.) samples {xnu

i }nnu
i=1 from a distribution with

density p∗nu(x) defined on X and i.i.d. samples {xde
j }nde

j=1 from another distribution with
density p∗de(x) defined on X .

{xnu
i }nnu

i=1
i.i.d.∼ p∗nu(x) and {xde

j }nde
j=1

i.i.d.∼ p∗de(x).

We assume that p∗de(x) is strictly positive over the domain X . The goal is to estimate the
density-ratio,

r∗(x) :=
p∗nu(x)

p∗de(x)
,

from samples {xnu
i }nnu

i=1 and {xde
j }nde

j=1. ‘nu’ and ‘de’ indicate ‘numerator’ and ‘denominator’,
respectively.

2 Existing Density-Ratio Estimation Methods

In this section, we give a comprehensive review of existing density-ratio estimation meth-
ods.

2.1 Moment Matching

Here, we describe a framework of density-ratio estimation based on moment matching.

2.1.1 Finite-Order Approach

First, we describe methods of finite-oder moment-matching for density-ratio estimation.
The simplest implementation of moment matching would be to match the first-order

moment (i.e., the mean):

argmin
r

∥∥∥∥∫ xr(x)p∗de(x)dx−
∫
xp∗nu(x)dx

∥∥∥∥2 ,
where ∥·∥ denotes the Euclidean norm. Its non-linear variant can be obtained using some
non-linear function ϕ(x) : Rd → Rt as

argmin
r

MM′(r),

where

MM′(r) :=

∥∥∥∥∫ ϕ(x)r(x)p∗de(x)dx−
∫
ϕ(x)p∗nu(x)dx

∥∥∥∥2 .
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‘MM’ stands for ‘moment matching’. Let us ignore the irrelevant constant in MM′(r) and
define the rest as MM(r):

MM(r) :=

∥∥∥∥∫ ϕ(x)r(x)p∗de(x)dx

∥∥∥∥2
− 2

⟨∫
ϕ(x)r(x)p∗de(x)dx,

∫
ϕ(x)p∗nu(x)dx

⟩
, (1)

where ⟨·, ·⟩ denotes the inner product.
In practice, the expectations over p∗nu(x) and p

∗
de(x) in MM(r) are replaced by sample

averages. That is, for an nde-dimensional vector

r∗de := (r∗(xde
1 ), . . . , r∗(xde

nde
))⊤,

where ⊤ denotes the transpose, an estimator r̂de of r∗de can be obtained by solving the
following optimization problem.

r̂de := argmin
r∈Rnde

M̂M(r), (2)

where

M̂M(r) :=
1

n2
de

r⊤Φ⊤
deΦder −

2

ndennu

r⊤Φ⊤
deΦnu1nnu . (3)

1n denotes the n-dimensional vector with all ones. Φnu and Φde are the t×nnu and t×nde

design matrices defined by

Φnu := (ϕ(xnu
1 ), . . . ,ϕ(xnu

nnu
)) and Φde := (ϕ(xde

1 ), . . . ,ϕ(xde
nde

)),

respectively. Taking the derivative of the objective function (3) with respect to r and
setting it to zero, we have

2

n2
de

Φ⊤
deΦder −

2

ndennu

Φ⊤
deΦnu1nnu = 0t,

where 0t denotes the t-dimensional vector with all zeros. Solving this equation with
respect to r, one can obtain the solution analytically as

r̂de =
nde

nnu

(Φ⊤
deΦde)

−1Φ⊤
deΦnu1nnu .

One may add a normalization constraint

1

nde

1⊤
nde
r = 1

to the optimization problem (2). Then the optimization problem becomes a convex
linearly-constrained quadratic program. Since there is no known method for obtaining the
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analytic-form solution for convex linearly-constrained quadratic programs, a numerical
solver may be needed to compute the solution. Furthermore, a non-negativity constraint

r ≥ 0nde

and/or an upper bound for a positive constant B, i.e.,

r ≤ B1nde

may also be incorporated in the optimization problem (2), where inequalities for vectors
are applied in the element-wise manner. Even with these modifications, the optimization
problem is still a convex linearly-constrained quadratic program, so its solution can be
numerically computed by standard optimization software.

The above fixed-design method gives estimates of the density-ratio values only at the
denominator sample points {xde

j }nde
j=1. Below, we consider the induction setup, where the

entire density-ratio function r∗(x) is estimated (Qin, 1998; Kanamori et al., 2012).
We use the following linear density-ratio model for density-ratio function learning:

r(x) =
b∑

ℓ=1

θℓψℓ(x) = ψ(x)
⊤θ, (4)

where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. We
assume that the basis functions are non-negative.

ψ(x) ≥ 0b.

Then model outputs at {xde
j }nde

j=1 are expressed in terms of the parameter vector θ as

(r(xde
1 ), . . . , r(xde

nde
))⊤ = Ψ⊤

deθ,

where Ψde is the b× nde design matrix defined by

Ψde := (ψ(xde
1 ), . . . ,ψ(xde

nde
)). (5)

Then, following Eq.(2), the parameter θ is learned as follows.

θ̂ := argmin
θ∈Rb

[
1

n2
de

θ⊤ΨdeΦ
⊤
deΦdeΨ

⊤
deθ − 2

ndennu

θ⊤ΨdeΦ
⊤
deΦnu1nnu

]
. (6)

Taking the derivative of the above objective function with respect to θ and setting it to
zero, we have the solution θ̂ analytically as

θ̂ =
nde

nnu

(ΨdeΦ
⊤
deΦdeΨ

⊤
de)

−1ΨdeΦ
⊤
deΦnu1nnu .
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One may include a normalization constraint, a non-negativity constraint (given that the
basis functions are non-negative), and a regularization constraint to the optimization
problem (6):

1

nde

1⊤
nde

Ψ⊤
deθ = 1, θ ≥ 0b, and θ ≤ B1b.

Then the optimization problem becomes a convex linearly-constrained quadratic program,
whose solution can be obtained by a standard numerical solver.

The upper-bound parameter B, which works as a regularizer, may be optimized by
cross-validation (CV) with respect to the moment-matching error MM defined by Eq.(1).
Availability of CV would be one of the advantages of the inductive method (i.e., learning
the entire density-ratio function).

2.1.2 Infinite-Order Approach: KMM

Matching a finite number of moments does not necessarily lead to the true density-ratio
function r∗(x), even if infinitely many samples are available. In order to guarantee that the
true density-ratio function can always be obtained in the large-sample limit, all moments
up to the infinite order need to be matched. Here we describe a method of infinite-oder
moment-matching called kernel mean matching (KMM), which allows one to efficiently
match all the moments using kernel functions (Huang et al., 2007; Gretton et al., 2009).

The basic idea of KMM is essentially the same as the finite-order approach, but a
universal reproducing kernel K(x,x′) (Steinwart, 2001) is used as a non-linear transfor-
mation. The Gaussian kernel

K(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
(7)

is an example of universal reproducing kernels. It has been shown that the solution of
the following optimization problem agrees with the true density-ratio (Huang et al., 2007;
Gretton et al., 2009):

min
r∈H

∥∥∥∥∫ K(x, ·)p∗nu(x)dx−
∫
K(x, ·)r(x)p∗de(x)dx

∥∥∥∥2
H
,

where H denotes a universal reproducing kernel Hilbert space and ∥ ·∥H denotes its norm.
An empirical version of the above problem is expressed as

min
r∈Rnde

[
1

n2
de

r⊤Kde,der −
2

ndennu

r⊤Kde,nu1nnu

]
,

where Kde,de and Kde,nu denote the kernel Gram matrices defined by

[Kde,de]j,j′ = K(xde
j ,x

de
j′ ) and [Kde,nu]j,i = K(xde

j ,x
nu
i ), (8)
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respectively. In the same way as the finite-order case, the solution can be obtained
analytically as

r̂de =
nde

nnu

K−1
de,deKde,nu1nnu . (9)

If necessary, one may include a non-negativity constraint, a normalization constraint,
and an upper bound in the same way as the finite-order case. Then the solution can
be numerically obtained by solving a convex linearly-constrained quadratic programming
problem.

For a linear density-ratio model (4), an inductive variant of KMM is formulated as

min
θ∈Rb

[
1

n2
de

θ⊤ΨdeKde,deΨ
⊤
deθ − 2

ndennu

θ⊤ΨdeKde,nu1nnu

]
,

and the solution θ̂ is given by

θ̂ =
nde

nnu

(ΨdeKde,deΨde)
−1ΨdeKde,nu1nnu .

2.1.3 Remarks

The infinite-order moment matching method, kernel mean matching (KMM), can effi-
ciently match all the moments by making use of universal reproducing kernels. Indeed,
KMM has an excellent theoretical property that it is consistent (Huang et al., 2007; Gret-
ton et al., 2009). However, KMM has a limitation in model selection—there is no known
method for determining the kernel parameter (i.e., the Gaussian kernel width). A popular
heuristic of setting the Gaussian width to the median distance between samples (Schölkopf
and Smola, 2002) would be useful in some cases, but this may not always be reasonable.

In the above, moment matching was performed in terms of the squared norm, which
led to an analytic-form solution (if no constraint is imposed). As shown in Kanamori
et al. (2012), moment matching can be systematically generalized to various divergences.

2.2 Probabilistic Classification

Here, we describe a framework of density-ratio estimation through probabilistic classifica-
tion.

2.2.1 Basic Framework

The basic idea of the probabilistic classification approach is to obtain a probabilistic
classifier that separates numerator samples {xnu

i }nnu
i=1 and denominator samples {xde

j }nde
j=1.

Let us assign a label y = +1 to {xnu
i }nnu

i=1 and y = −1 to {xde
j }nde

j=1, respectively. Then
the two densities p∗nu(x) and p

∗
de(x) are written as

p∗nu(x) = p∗(x|y = +1) and p∗de(x) = p∗(x|y = −1),
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respectively. Note that y is regarded as a random variable here. An application of Bayes’
theorem,

p∗(x|y) = p∗(y|x)p∗(x)
p∗(y)

,

yields that the density-ratio r∗(x) can be expressed in terms of y as follows:

r∗(x) =
p∗nu(x)

p∗de(x)
=

(
p∗(y = +1|x)p∗(x)

p∗(y = +1)

)(
p∗(y = −1|x)p∗(x)

p∗(y = −1)

)−1

=
p∗(y = −1)

p∗(y = +1)

p∗(y = +1|x)
p∗(y = −1|x)

.

The ratio p∗(y = −1)/p∗(y = +1) may be simply approximated by the ratio of the sample
size:

p∗(y = −1)

p∗(y = +1)
≈ nde/(nde + nnu)

nnu/(nde + nnu)
=
nde

nnu

.

The ‘class’-posterior probability p∗(y|x) may be approximated by separating {xnu
i }nnu

i=1 and
{xde

j }nde
j=1 using a probabilistic classifier. Thus, given an estimator of the class-posterior

probability, p̂(y|x), a density-ratio estimator r̂(x) can be constructed as

r̂(x) =
nde

nnu

p̂(y = +1|x)
p̂(y = −1|x)

. (10)

A practical advantage of the probabilistic classification approach would be its easy
implementability. Indeed, one can directly use standard probabilistic classification algo-
rithms for density-ratio estimation. Another, more important advantage of the proba-
bilistic classification approach is that model selection (i.e., tuning the basis functions and
the regularization parameter) is possible by standard cross-validation since the estimation
problem involved in this framework is a standard supervised classification problem.

Below, two probabilistic classification algorithms are described. For making the expla-
nation simple, we consider a set of paired samples {(xk, yk)}nk=1, where, for n = nnu+nde,

(x1, . . . ,xn) := (xnu
1 , . . . ,x

nu
nnu
,xde

1 , . . . ,x
de
nde

),

(y1, . . . , yn) := (+1, . . . ,+1︸ ︷︷ ︸
nnu

,−1, . . . ,−1︸ ︷︷ ︸
nde

).

2.2.2 Logistic Regression

Here, a popular probabilistic classification algorithm called logistic regression (Hastie
et al., 2001) is explained.

A logistic regression classifier employs a parametric model of the following form for
expressing the class-posterior probability p∗(y|x),

p(y|x;θ) = 1

1 + exp (−yψ(x)⊤θ)
,
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where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. The
parameter vector θ is determined so that the penalized log-likelihood is maximized, which
can be expressed as the following minimization problem:

θ̂ := argmin
θ∈Rb

[
n∑

k=1

log
(
1 + exp

(
−ykψ(xk)

⊤θ
))

+ λθ⊤θ

]
, (11)

where λθ⊤θ is a penalty term included for regularization purposes.
Since the objective function in Eq.(11) is convex, the global optimal solution can be

obtained by a standard non-linear optimization technique such as the gradient descent
method or (quasi-)Newton methods (Hastie et al., 2001; Minka, 2007). Finally, a density-
ratio estimator r̂LR(x) is given by

r̂LR(x) =
nde

nnu

1 + exp
(
ψ(x)⊤θ̂

)
1 + exp

(
−ψ(x)⊤θ̂

) =
nde

nnu

exp
(
ψ(x)⊤θ̂

)
,

where ‘LR’ stands for ‘logistic regression’.
Suppose that the logistic regression model p(y|x;θ) satisfies the following two condi-

tions:

• The constant function is included in the basis functions, i.e., there exists θ◦ such
that

ψ(x)⊤θ◦ = 1.

• The model is correctly specified, i.e., there exists θ∗ such that

p(y|x;θ∗) = p∗(y|x).

Then it was proved that the logistic regression approach is optimal among a class of
semi-parametric estimators in the sense that the asymptotic variance is minimized (Qin,
1998). However, when the model is misspecified (which would be the case in practice), the
density matching approach explained in Section 2.3 would be more preferable (Kanamori
et al., 2010).

When multi-class logistic regression classifiers are used, density-ratios among multiple
densities can be estimated simultaneously (Bickel et al., 2008). This is useful, e.g., for
solving multi-task learning problems (Caruana et al., 1997).

2.2.3 Least-Squares Probabilistic Classifier

Although the performance of these general-purpose non-linear optimization techniques
has been improved together with the evolution of computer environment in the last
decade, training logistic regression classifiers is still computationally expensive. Here,
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an alternative probabilistic classification algorithm called least-squares probabilistic clas-
sifier (LSPC; Sugiyama, 2010) is described. LSPC is computationally more efficient than
logistic regression, with comparable accuracy in practice.

In LSPC, the class-posterior probability p∗(y|x) is modeled as

p(y|x;θ) :=
b∑

ℓ=1

θℓψ(x, y) = ψ(x, y)⊤θ,

where ψ(x, y) (∈ Rb) is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. The class label y takes a value in {1, . . . , c}, where c is the number of classes.

The basic idea of LSPC is to express the class-posterior probability p∗(y|x) in terms of
the equivalent density-ratio expression: p∗(x, y)/p∗(x). Then the density-ratio estimation
method called unconstrained least-squares importance fitting (uLSIF; Kanamori et al.,
2009) is used for estimating this density-ratio. Since uLSIF will be reviewed in detail in
Section 2.4.3, we only describe the final solution here.

Let

Ĥ :=
1

n

n∑
k=1

c∑
y=1

ψ(xk, y)ψ(xk, y)
⊤ and ĥ :=

1

n

n∑
k=1

ψ(xk, yk).

Then the uLSIF solution is given analytically as θ̂ = (Ĥ + λIb)
−1ĥ, where λ (≥ 0) is the

regularization parameter and Ib is the b-dimensional identity matrix. In order to assure
that the output of LSPC is a probability, the outputs are normalized and negative outputs
are rounded up to zero (Yamada et al., 2011):

p̂(y|x) = max(0,ψ(x, y)⊤θ̂)∑c
y′=1max(0,ψ(x, y′)⊤θ̂)

.

A standard choice of basis functions ψ(x, y) would be a kernel model:

p(y|x;θ) =
n∑

ℓ=1

θ
(y)
ℓ K(x,xℓ), (12)

where K(x,x′) is some kernel function such as the Gaussian kernel (7). Then the matrix

Ĥ becomes block-diagonal. Thus, we only need to train a model with n parameters
separately c times for each class y = 1, . . . , c. Since all the diagonal block matrices are
the same, the computational complexity for computing the solution is O(n3 + cn2).

Let us further reduce the number of kernels in model (12). To this end, we focus on
a kernel function K(x,x′) that is “localized”. Examples of such localized kernels include
the popular Gaussian kernel. The idea is to reduce the number of kernels by locating the
kernels only at samples belonging to the target class:

p(y|x;θ) =
ny∑
ℓ=1

θ
(y)
ℓ K(x,x

(y)
ℓ ), (13)
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where ny is the number of training samples in class y and {x(y)
k }ny

k=1 is the training input
samples in class y. The rationale behind this model simplification is as follows. By
definition, the class-posterior probability p∗(y|x) takes large values in the regions where
samples in class y are dense; conversely, p∗(y|x) takes smaller values (i.e., close to zero)
in the regions where samples in class y are sparse. When a non-negative function is
approximated by a localized kernel model, many kernels may be needed in the region
where the output of the target function is large; on the other hand, only a small number
of kernels would be enough in the region where the output of the target function is close
to zero. Following this heuristic, many kernels are allocated in the region where p∗(y|x)
takes large values, which can be achieved by Eq.(13).

This model simplification allows one to further reduce the computational cost since
the size of the target blocks in matrix Ĥ is further reduced. In order to determine the
ny-dimensional parameter vector θ(y) = (θ

(y)
1 , . . . , θ

(y)
ny )

⊤ for each class y, we only need to
solve the following system of ny linear equations:

(Ĥ
(y)

+ λIny)θ
(y) = ĥ

(y)
, (14)

where Ĥ
(y)

is the ny × ny matrix, and ĥ
(y)

is the ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

1

ny

ny∑
k=1

K(x
(y)
k ,x

(y)
ℓ )K(x

(y)
k ,x

(y)
ℓ′ ) and ĥ

(y)
ℓ :=

1

ny

ny∑
k=1

K(x
(y)
k ,x

(y)
ℓ ).

Let θ̂
(y)

be the solution of Eq.(14). Then the final solution is given by

p̂(y|x) =
max

(
0,

ny∑
ℓ=1

θ̂
(y)
ℓ K(x,x

(y)
ℓ )

)
c∑

y′=1

max

(
0,

ny′∑
ℓ=1

θ̃
(y′)
ℓ K(x,x

(y′)
ℓ )

) . (15)

For the simplified model (13), the computational complexity for computing the solution
is O(cn3

y)—when ny = n/c for all y, this is equal to O(c−2n3). Thus, this approach is
computationally highly efficient for multi-class problems with large c.

A MATLAB R⃝ implementation of LSPC is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LSPC/

2.2.4 Remarks

Density-ratio estimation by probabilistic classification can successfully avoid density es-
timation by casting the problem of density-ratio estimation as the problem of estimating
the ‘class’-posterior probability. An advantage of the probabilistic classification approach
over the moment matching approach explained in Section 2.1 is that cross-validation can
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be used for model selection. Furthermore, existing software packages of probabilistic
classification algorithms can be directly used for density-ratio estimation.

The probabilistic classification approach with logistic regression was shown to have
a suitable theoretical property (Qin, 1998): if the logistic regression model is correctly
specified, the probabilistic classification approach is optimal among a broad class of semi-
parametric estimators. However, this strong theoretical property is not true when the
correct model assumption is not fulfilled.

An advantage of the probabilistic classification approach is that it can be used for
estimating density-ratios among multiple densities by multi-class probabilistic classifiers.
In this context, the least-squares probabilistic classifier (LSPC) would be practically useful
due to its computational efficiency.

2.3 Density Matching

Here, we describe a framework of density-ratio estimation by density matching under the
KL divergence.

2.3.1 Basic Framework

Let r(x) be a model of the true density-ratio r∗(x) = p∗nu(x)/p
∗
de(x). Then the numerator

density p∗nu(x) may be modeled by pnu(x) = r(x)p∗de(x). Now let us consider the KL
divergence from p∗nu(x) to pnu(x):

KL′(p∗nu∥pnu) :=
∫
p∗nu(x) log

p∗nu(x)

pnu(x)
dx = C −KL(r),

where C :=
∫
p∗nu(x) log

p∗nu(x)
p∗de(x)

dx is a constant irrelevant to r, and KL(r) is the relevant
part:

KL(r) :=

∫
p∗nu(x) log r(x)dx ≈ 1

nnu

nnu∑
i=1

log r(xnu
i ).

Since pnu(x) is a probability density function, its integral should be one:

1 =

∫
pnu(x)dx =

∫
r(x)p∗de(x)dx ≈ 1

nde

nde∑
j=1

r(xde
j ).

Furthermore, the density pnu(x) should be non-negative, which can be achieved by
r(x) ≥ 0 for all x. Combining these equations together, we have the following optimiza-
tion problem.

max
r

1

nnu

nnu∑
i=1

log r(xnu
i )

s.t.
1

nde

nde∑
j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.
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This formulation is called the KL importance estimation procedure (KLIEP; Sugiyama
et al., 2008).

Possible hyper-parameters in KLIEP (such as basis parameters and regularization
parameters) can be optimized using cross-validation with respect to the KL divergence,
where the numerator samples {xnu

i }nnu
i=1 appearing in the objective function may only be

cross-validated (Sugiyama et al., 2008).
Below, practical implementations of KLIEP for various density-ratio models are de-

scribed.

2.3.2 Linear and Kernel Models

Let us employ a linear model for density-ratio estimation.

r(x) =
b∑

ℓ=1

θℓψℓ(x) = ψ(x)
⊤θ, (16)

where ψ(x) : Rd → Rb is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. Then the KLIEP optimization problem for the linear model is expressed as follows
(Sugiyama et al., 2008).

max
θ∈Rb

1

nnu

nnu∑
i=1

log(ψ(xnu
i )⊤θ) s.t. ψ

⊤
deθ = 1 and θ ≥ 0b,

where ψde :=
1

nde

∑nde

j=1ψ(x
de
j ).

Since the above optimization problem is convex, there exists the unique global optimum
solution. Furthermore, the KLIEP solution tends to be sparse, i.e., many parameters take
exactly zero, because of the non-negativity constraint. Such sparsity would contribute to
reducing the computation time when computing estimated density-ratio values. As can
be confirmed from the above optimization problem, the denominator samples {xde

j }nde
j=1

appear only in terms of the basis-transformed mean ψde. Thus, KLIEP for linear models
is computationally efficient even when the number nde of denominator samples is very
large.

The performance of KLIEP depends on the choice of the basis functions ψ(x). As
explained below, the use of the following Gaussian kernel model would be reasonable:

r(x) =
nnu∑
ℓ=1

θℓK(x,xnu
ℓ ), (17)

where K(x,x′) is the Gaussian kernel (7). The reason why the numerator samples
{xnu

i }nnu
i=1, not the denominator samples {xde

j }nde
j=1, are chosen as the Gaussian centers

is as follows. By definition, the density-ratio r∗(x) tends to take large values if p∗de(x)
is small and p∗nu(x) is large. Conversely, r∗(x) tends to be small (i.e., close to zero) if
p∗de(x) is large and p∗nu(x) is small. When a non-negative function is approximated by a
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Gaussian kernel model, many kernels may be needed in the region where the output of
the target function is large. On the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following
this heuristic, many kernels are allocated in the region where p∗nu(x) takes large values,
which can be achieved by setting the Gaussian centers at {xnu

i }nnu
i=1.

The KLIEP methods for linear/kernel models are referred to as linear KLIEP (L-
KLIEP) and kernel KLIEP (K-KLIEP), respectively. A MATLAB R⃝ implementation of
the K-KLIEP algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/

2.3.3 Log-Linear Models

Another popular model choice would be the log-linear model (Tsuboi et al., 2009;
Kanamori et al., 2010):

r(x;θ, θ0) = exp
(
ψ(x)⊤θ + θ0

)
, (18)

where θ0 is a normalization parameter. From the normalization constraint

1

nde

nde∑
j=1

r(xde
j ;θ, θ0) = 1,

θ0 is determined as

θ̂0 = − log

(
1

nde

nde∑
j=1

exp
(
ψ(xde

j )⊤θ
))

.

Then the density-ratio model is expressed as

r(x;θ) =
exp

(
ψ(x)⊤θ

)
1

nde

∑nde

j=1 exp
(
ψ(xde

j )⊤θ
) .

By definition, outputs of the log-linear model r(x;θ) are non-negative for all x. Thus,
we do not need the non-negativity constraint on the parameter. Then the KLIEP opti-
mization criterion is expressed as

max
θ∈Rb

[
ψ

⊤
nuθ − log

(
1

nde

nde∑
j=1

exp(ψ(xde
j )⊤θ)

)]
,

where ψnu := 1
nnu

∑nnu

i=1ψ(x
nu
i ). This is an unconstrained convex optimization problem,

so the global optimal solution can be obtained by, e.g., the gradient method and (quasi-
)Newton methods. Since the numerator samples {xnu

i }nnu
i=1 appear only in terms of the

basis-transformed mean ψnu, KLIEP for log-linear models is computationally efficient
even when the number nnu of numerator samples is very large (cf. KLIEP for linear/kernel
models is computationally efficient when nde is very large; see Section 2.3.2).

The KLIEP method for log-linear models is called log-linear KLIEP (LL-KLIEP).
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2.3.4 Gaussian Mixture Models

In the Gaussian kernel model (17), the Gaussian shape is spherical and its width is con-
trolled by a single width parameter σ. It is possible to use correlated Gaussian kernels, but
choosing the covariance matrix via cross-validation would be computationally intractable.

Another option is to also estimate the covariance matrix directly from data. For this
purpose, the Gaussian mixture model comes in handy (Yamada and Sugiyama, 2009):

r(x; {θk,µk,Σk}ck=1) =
c∑

k=1

θkK(x;µk,Σk), (19)

where c is the number of mixing components, {θk}ck=1 are mixing coefficients, {µk}ck=1

are means of Gaussian functions, {Σk}ck=1 are covariance matrices of Gaussian functions,
and K(x;µ,Σ) is the Gaussian kernel with mean µ and covariance matrix Σ:

K(x;µ,Σ) := exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (20)

Note that Σ should be positive definite, i.e., all the eigenvectors of Σ should be strictly
positive.

For the Gaussian mixture model (19), the KLIEP optimization problem is expressed
as

max
{θk,µk,Σk}ck=1

1

nnu

nnu∑
i=1

log

(
c∑

k=1

θkK(xnu
i ;µk,Σk)

)

s.t.
1

nde

nde∑
j=1

c∑
k=1

θkK(xde
j ;µk,Σk) = 1,

θk ≥ 0 and Σk ≻ O for k = 1, . . . , c,

where Σk ≻ O means that Σk is positive definite.
The above optimization problem is non-convex, and there is no known method for

obtaining the global optimal solution. In practice, a local optimal solution may be nu-
merically obtained by, e.g., a fixed-point method.

The KLIEP method for Gaussian mixture models is called Gaussian-mixture KLIEP
(GM-KLIEP).

2.3.5 Probabilistic PCA Mixture Models

The Gaussian mixture model explained above would be more flexible than
linear/kernel/log-linear models and suitable for approximating correlated density-ratio
functions. However, when the target density-ratio function is (locally) rank-deficient, its
behavior could be unstable since inverse covariance matrices are included in the Gaussian
function (see Eq.(20)). To cope with this problem, the use of a mixture of probabilis-
tic principal component analyzers (PPCA; Tipping and Bishop, 1999) was proposed for
density-ratio estimation (Yamada et al., 2010).
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The PPCA mixture model is defined as

r(x; {θk,µk, σ
2
k,W k}ck=1) =

c∑
k=1

θkK(x;µk, σ
2
k,W k),

where c is the number of mixing components and {θk}ck=1 are mixing coefficients.
K(x;µ, σ2,W ) is a PPCA model defined by

K(x;µ, σ2,W ) = (2πσ2)−
d
2det(C)−

1
2 exp

(
−1

2
(x− µ)⊤C−1(x− µ)

)
,

where ‘det’ denotes the determinant, µ is the mean of the Gaussian function, σ2 is the
variance of the Gaussian function,W is a d×m ‘projection’ matrix onto a m-dimensional
latent space (where m ≤ d), and C =WW⊤ + σ2Id.

Then the KLIEP optimization criterion is expressed as

max
{θk,µk,σ

2
k,W k}ck=1

1

nnu

nnu∑
i=1

log

(
c∑

k=1

θkK(xnu
i ;µk, σ

2
k,W k)

)

s.t.
1

nde

nde∑
j=1

c∑
k=1

θkK(xde
j ;µk, σ

2
k,W k) = 1,

θk ≥ 0 for k = 1, . . . , c.

The above optimization is non-convex, so a local optimal solution may be found by
some algorithm in practice. When the dimensionality of the latent space, m, is equal
to the entire dimensionality d, PPCA models are reduced to ordinary Gaussian models.
Thus, PPCA models can be regarded as an extension of Gaussian models to (locally)
rank-deficient data.

The KLIEP method for PPCA mixture models is called PPCA-mixture KLIEP (PM-
KLIEP).

2.3.6 Remarks

Density-ratio estimation by density matching under the KL divergence allows one to
avoid density estimation when estimating density-ratios (Section 2.3.1). Furthermore,
cross-validation with respect to the KL divergence is available for model selection.

The method, called the KL importance estimation procedure (KLIEP), is applicable
to a variety of models such as linear models, kernel models, log-linear models, Gaussian
mixture models, and probabilistic principal-component-analyzer mixture models.

2.4 Density-Ratio Fitting

Here, we describe a framework of density-ratio estimation by least-squares density-ratio
fitting (Kanamori et al., 2009).
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2.4.1 Basic Framework

The model r(x) of the true density-ratio function r∗(x) = p∗nu(x)/p
∗
de(x) is learned so

that the following squared error SQ′ is minimized:

SQ′(r) :=
1

2

∫
(r(x)− r∗(x))2 p∗de(x)dx.

=
1

2

∫
r(x)2p∗de(x)dx−

∫
r(x)p∗nu(x)dx+

1

2

∫
r∗(x)p∗nu(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by SQ:

SQ(r) :=
1

2

∫
r(x)2p∗de(x)dx−

∫
r(x)p∗nu(x)dx.

Approximating the expectations in SQ by empirical averages, we obtain the following
optimization problem:

min
r

[
nde∑
j=1

r(xde
j )2 − 1

nnu

nnu∑
i=1

r(xnu
i )

]
. (21)

We refer to this formulation as least-squares importance fitting (LSIF). Possible hyper-
parameters (such as basis parameters and regularization parameters) can be optimized
by cross-validation with respect to the SQ criterion (Kanamori et al., 2009).

Below, two implementations of LSIF for the following linear/kernel models are de-
scribed:

r(x) =
b∑

ℓ=1

θℓψℓ(x) = ψ(x)
⊤θ,

where ψ(x) : Rd → Rb is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. Since this model is the same form as that used in KLIEP for linear/kernel models
(Section 2.3.2), we may use the same basis design idea described there.

For the above linear/kernel models, Eq.(21) is expressed as

min
θ∈Rb

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ

]
,

where

Ĥ :=
1

nde

nde∑
j=1

ψ(xde
j )ψ(xde

j )⊤ and ĥ :=
1

nnu

nnu∑
i=1

ψ(xnu
i ). (22)
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2.4.2 Implementation with Non-Negativity Constraint

Here, we describe an implementation of LSIF with non-negativity constraint.
Let us impose non-negativity constraint θ ≥ 0b since the density-ratio function is

non-negative by definition. Let us further add the following regularization term to the
objective function:

1⊤
b θ = ∥θ∥1 :=

b∑
ℓ=1

|θℓ|.

The term 1⊤
b θ works as the ℓ1-regularizer if it is combined with the non-negativity con-

straint. Then the optimization problem is expressed as follows.

min
θ∈Rb

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ + λ1⊤

b θ

]
s.t. θ ≥ 0b,

where λ (≥ 0) is the regularization parameter. We refer to this method as constrained
LSIF (cLSIF; Kanamori et al., 2009). The cLSIF optimization problem is a convex
quadratic program, so the unique global optimal solution may be computed by a standard
optimization software.

We can also use the ℓ2-regularizer θ
⊤θ, instead of the ℓ1-regularizer 1⊤

b θ, without
changing the computational property (i.e., the optimization problem is still a convex
quadratic program). However, using the ℓ1-regularizer would be more advantageous since
the solution tends to be sparse, i.e., many parameters take exactly zero (Williams, 1995;
Tibshirani, 1996; Chen et al., 1998). Furthermore, as shown in Kanamori et al. (2009),
the use of the ℓ1-regularizer allows one to compute the entire regularization path effi-
ciently (Best, 1982; Efron et al., 2004; Hastie et al., 2004), which highly improves the
computational cost in the model selection phase.

An R implementation of cLSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/

2.4.3 Implementation without Non-Negativity Constraint

Here, we describe another implementation of LSIF without the non-negativity constraint
called unconstrained LSIF (uLSIF).

Without the non-negativity constraint, the linear regularizer 1⊤
b θ used in cLSIF does

not work as a regularizer. For this reason, a quadratic regularizer θ⊤θ is adopted here.
Then we have the following optimization problem.

min
θ∈Rb

[
1

2
θ⊤Ĥθ − ĥ

⊤
θ +

λ

2
θ⊤θ

]
. (23)

Eq.(23) is an unconstrained convex quadratic program, and the solution can be computed
analytically by solving the following system of linear equations:

(Ĥ + λIb)θ = ĥ,
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where Ib is the b-dimensional identity matrix. The solution θ̂ of the above equation is
given by

θ̂ = (Ĥ + λIb)
−1ĥ.

Since the non-negativity constraint θ ≥ 0b was dropped, some of the obtained param-
eters could be negative. To compensate for this approximation error, the solution may be
modified as follows (Kanamori et al., 2012):

max(0,ψ(x)⊤θ̂).

This is the solution of the approximation method called unconstrained LSIF (uLSIF;
Kanamori et al., 2009). An advantage of uLSIF is that the solution can be analytically
computed just by solving a system of linear equations. Therefore, its computation is
stable when λ is not too small.

A practically important advantage of uLSIF over cLSIF is that the score of leave-one-
out cross-validation (LOOCV) can be computed analytically (Kanamori et al., 2009)—
thanks to this property, the computational complexity for performing LOOCV is the same
order as just computing a single solution.

A MATLAB R⃝ implementation of uLSIF is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/uLSIF/

and an R implementation of uLSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/

2.4.4 Remarks

One can successfully avoid density estimation by least-squared density-ratio fitting. The
least-squares methods for linear/kernel models are computationally more advantageous
than alternative approaches such as moment matching (Section 2.1), probabilistic classifi-
cation (Section 2.2), and density matching (Section 2.3). Indeed, the constrained method
(cLSIF) for the ℓ1-regularizer is equipped with a regularization path tracking algorithm.
Furthermore, the unconstrained method (uLSIF) allows one to compute the density-ratio
estimator analytically; the leave-one-out cross-validation score can also be computed in a
closed form. Thus, the overall computation of uLSIF including model selection is highly
efficient.

The fact that uLSIF has an analytic-form solution is actually very useful beyond
its computational efficiency. When one wants to optimize some criterion defined us-
ing a density-ratio estimate (e.g., mutual information, see Cover and Thomas, 2006),
the analytic-form solution of uLSIF allows one to compute the derivative of the target
criterion analytically. Then one can develop, e.g., gradient-based and (quasi-)Newton al-
gorithms for optimization. This property can be successfully utilized, e.g., in identifying
the central subspace in sufficient dimension reduction (Suzuki and Sugiyama, 2010), find-
ing independent components in independent component analysis (Suzuki and Sugiyama,
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2011), performing dependence-minimizing regression in causality learning (Yamada and
Sugiyama, 2010), and identifying the hetero-distributional subspace in direct density-ratio
estimation with dimensionality reduction (Sugiyama et al., 2011b).

3 Unified Framework by Density-Ratio Matching

As reviewed in the previous section, various density-ratio estimation methods have been
developed so far. In this section, we propose a new framework of density-ratio estimation
by density-ratio matching under the Bregman divergence (Bregman, 1967), which includes
various useful divergences (Banerjee et al., 2005; Stummer, 2007). This framework is a
natural extension of the least-squares approach described in Section 2.4, and includes the
existing approaches reviewed in the previous section as special cases (Section 3.2). Then
we provide interpretation of density-ratio matching from two different views in Section 3.3.
Finally, we give a new instance of density-ratio matching based on the power divergence
in Section 3.4.

3.1 Basic Framework

A basic idea of density-ratio matching is to directly fit a density-ratio model r(x) to the
true density-ratio function r∗(x) under some divergence. At a glance, this density-ratio
matching problem is equivalent to the regression problem, which is aimed at estimating a
real-valued function. However, density-ratio matching is essentially different from regres-
sion since samples of the true density-ratio function are not available. Here, we employ the
Bregman (BR) divergence for measuring the discrepancy between the true density-ratio
function and the density-ratio model.

The BR divergence is an extension of the Euclidean distance to a class of divergences
that share similar properties. Let f be a differentiable and strictly convex function. Then
the BR divergence associated with f from t∗ to t is defined as

BR′
f (t

∗∥t) := f(t∗)− f(t)− ∂f(t)(t∗ − t),

where ∂f is the derivative of f . Note that

f(t) + ∂f(t)(t∗ − t)

is the value of the first-order Taylor expansion of f around t evaluated at t∗. Thus, the
BR divergence evaluates the difference between the value of f at point t∗ and its linear
extrapolation from t (see Figure 1). BR′

f (t
∗∥t) is a convex function with respect to t∗,

but not necessarily convex with respect to t.
Here the discrepancy from the true density-ratio function r∗ to a density-ratio model

r is measured using the BR divergence as

BR′
f (r

∗∥r) :=
∫
p∗de(x)

(
f(r∗(x))− f(r(x))

− ∂f(r(x))(r∗(x)− r(x))
)
dx. (24)
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t
f̂−f(t)f(t∗) t∗ BR′f (t∗‖t).∂f (t)(t∗ − t)

Figure 1: Bregman divergence BR′
f (t

∗∥t).

A motivation for this choice is that the BR divergence allows one to directly obtain an
empirical approximation for any f . Indeed, let us first extract a relevant part of BR′

f (r
∗∥r)

as

BR′
f (r

∗∥r) = BRf (r) + C,

where C :=
∫
p∗de(x)f(r

∗(x))dx is a constant independent of r, and

BRf (r) :=

∫
p∗de(x)

(
∂f(r(x))r(x)− f(r(x))

)
dx−

∫
p∗nu(x)∂f(r(x))dx. (25)

Then an empirical approximation B̂Rf (r) of BRf (r) is given by

B̂Rf (r) :=
1

nde

nde∑
j=1

(
∂f(r(xde

j ))r(xde
j )− f(r(xde

j ))
)
− 1

nnu

nnu∑
i=1

∂f(r(xnu
i )). (26)

This immediately gives the following optimization criterion.

min
r

B̂Rf (r) ,

where r is searched within some class of functions.

3.2 Existing Methods as Density-Ratio Matching

Here, we show that various density-ratio estimation methods reviewed in the previous
section can be accommodated in the density-ratio matching framework (see Table 1).

3.2.1 Least-Squares Importance Fitting

Here, we show that the least-squares importance fitting (LSIF) approach introduced in
Section 2.4.1 is an instance of density-ratio matching. More specifically, there exists a
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Table 1: Summary of density-ratio estimation methods. In the table, ‘LSIF’, ’KMM’, ‘LR’,
and ’KLIEP’ stand for ‘least-squares importance fitting’, ‘kernel mean matching’, ‘logistic
regression’, and ‘Kullback-Leibler Importance Estimation Procedure’, respectively.
Method (Section) f(t) Model selection Optimization

LSIF (3.2.1) (t− 1)2/2 Available Analytic

KMM (3.2.2) (t− 1)2/2
Partially

unavailable
Analytic

LR (3.2.3) t log t− (1 + t) log(1 + t) Available Convex
KLIEP (3.2.4) t log t− t Available Convex

Robust (3.4) (t1+α − t)/α, α > 0 Available
Convex (0 < α ≤ 1)
Non-convex (α > 1)

BR divergence such that the optimization problem of density-ratio matching is reduced
to that of LSIF.

When

f(t) =
1

2
(t− 1)2,

BR (24) is reduced to the squared (SQ) distance:

SQ′(t∗∥t) := 1

2
(t∗ − t)2.

Following Eqs.(25) and (26), let us denote SQ without an irrelevant constant term by

SQ (r) and its empirical approximation by ŜQ (r), respectively:

SQ (r) :=
1

2

∫
p∗de(x)r(x)

2dx−
∫
p∗nu(x)r(x)dx,

ŜQ (r) :=
1

2nde

nde∑
j=1

r(xde
j )2 − 1

nnu

nnu∑
i=1

r(xnu
i ).

This agrees with the LSIF formulation given in Section 2.4.1.

3.2.2 Kernel Mean Matching

Here, we show that the solution of the moment matching method, kernel mean match-
ing (KMM) introduced in Section 2.1, actually agrees with that of unconstrained LSIF
(uLSIF; see Section 2.4.3) for specific kernel models. Since uLSIF was shown to be an in-
stance of density-ratio matching in Section 3.2.1, the KMM solution can also be obtained
in the density-ratio matching framework.

Let us consider the following kernel density-ratio model:

r(x) =

nde∑
ℓ=1

θℓK(x,xde
ℓ ), (27)
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where K(x,x′) is a universal reproducing kernel (Steinwart, 2001) such as the Gaussian
kernel (7). Note that uLSIF and KLIEP use the numerator samples {xnu

i }nnu
i=1 as Gaussian

centers, while the model (27) adopts the denominator samples {xde
j }nde

j=1 as Gaussian cen-

ters. For the density-ratio model (27), the matrix Ĥ and the vector ĥ defined by Eq.(22)
are expressed as

Ĥ =
1

nde

K2
de,de and ĥ =

1

nnu

Kde,nu1nnu ,

where Kde,de and Kde,nu are defined in Eq.(8). Then the (unregularized) uLSIF solution
(see Section 2.4.3 for details) is expressed as

θ̂uLSIF = Ĥ
−1
ĥ =

nde

nnu

K−2
de,deKde,nu1nnu . (28)

On the other hand, let us consider an inductive variant of KMM for the kernel model
(27) (see Section 2.1.2). For the density-ratio model (27), the design matrixΨde defined by
Eq.(5) agrees withKde,de. Then the KMM solution is given as follows (see Section 2.1.2):

θ̂KMM =
nde

nnu

(ΨdeKde,deΨde)
−1ΨdeKde,nu1nnu = θ̂uLSIF.

3.2.3 Logistic Regression

Here, we show that the logistic regression approach introduced in Section 2.2.2 is an
instance of density-ratio matching. More specifically, there exists a BR divergence such
that the optimization problem of density-ratio matching is reduced to that of the logistic
regression approach.

When

f(t) = t log t− (1 + t) log(1 + t),

BR (24) is reduced to the binary Kullback-Leibler (BKL) divergence:

BKL′(t∗∥t) := (1 + t∗) log
1 + t

1 + t∗
+ t∗ log

t

t∗
.

The name ‘BKL’ comes from the fact that BKL′(t∗∥t) is expressed as

BKL′(t∗∥t) = (1 + t∗)KLbin

(
1

1 + t∗

∥∥∥∥ 1

1 + t

)
,

where KLbin is the KL divergence for binary random variables defined as

KLbin(p, q) := p log
p

q
+ (1− p) log

1− p

1− q

for 0 < p, q < 1. Thus, BKL′ agrees with KLbin up to the constant factor (1 + t∗).
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Following Eqs.(25) and (26), let us denote BKL without an irrelevant constant term

by BKL (r) and its empirical approximation by B̂KL (r), respectively:

BKL (r) := −
∫
p∗de(x) log

1

1 + r(x)
dx−

∫
p∗nu(x) log

r(x)

1 + r(x)
dx,

B̂KL (r) := − 1

nde

nde∑
j=1

log
1

1 + r(xde
j )

− 1

nnu

nnu∑
i=1

log
r(xnu

i )

1 + r(xnu
i )

. (29)

Eq.(29) is a generalized expression of logistic regression (Qin, 1998). Indeed, when nde =
nnu, the ordinary logistic regression formulation (11) can be obtained from Eq.(29) (up
to a regularizer) if the log-linear density-ratio model (18) without the constant term θ0 is
used.

3.2.4 Kullback-Leibler Importance Estimation Procedure

Here, we show that the KL importance estimation procedure (KLIEP) introduced in Sec-
tion 2.3.1 is an instance of density-ratio matching. More specifically, there exists a BR
divergence such that the optimization problem of density-ratio matching is reduced to
that of the KLIEP approach.

When

f(t) = t log t− t,

BR (24) is reduced to the unnormalized Kullback-Leibler (UKL) divergence:

UKL′(t∗∥t) := t∗ log
t∗

t
− t∗ + t.

Following Eqs.(25) and (26), let us denote UKL without an irrelevant constant term by

UKL (r) and its empirical approximation by ÛKL (r), respectively:

UKL (r) :=

∫
p∗de(x)r(x)dx−

∫
p∗nu(x) log r(x)dx, (30)

ÛKL (r) :=
1

nde

nde∑
j=1

r(xde
j )− 1

nnu

nnu∑
i=1

log r(xnu
i ). (31)

Let us further impose that the ratio model r(x) is non-negative for all x and is normalized
with respect to {xde

j }nde
j=1:

1

nde

nde∑
j=1

r(xde
j ) = 1.
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Then the optimization criterion is reduced to as follows.

max
r

1

nnu

nnu∑
i=1

log r(xnu
i )

s.t.
1

nde

nde∑
j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.

This agrees with the KLIEP formulation reviewed in Section 2.3.1.

3.3 Interpretation of Density-Ratio Matching

Here, we show the correspondence between the density-ratio matching approach and a di-
vergence estimation method, and the correspondence between the density-ratio matching
approach and a moment-matching approach.

3.3.1 Divergence Estimation View

We first show that our density-ratio matching formulation can be interpreted as diver-
gence estimation based on the Ali-Silvey-Csiszár (ASC) divergence (Ali and Silvey, 1966;
Csiszár, 1967), which is also known as the f -divergence.

Let us consider the ASC divergence for measuring the discrepancy between two prob-
ability density functions. An ASC divergence is defined using a convex function f such
that f(1) = 0 as follows:

ASCf (p
∗
nu∥p∗de) :=

∫
p∗de(x)f

(
p∗nu(x)

p∗de(x)

)
dx. (32)

The ASC divergence is reduced to the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) if f(t) = t log t, and the Pearson (PE) divergence (Pearson, 1900) if f(t) =
1
2
(t− 1)2.
Let ∂f(t) be the sub-differential of f at a point t (∈ R), which is a set defined as

follows (Rockafellar, 1970):

∂f(t) := {z ∈ R | f(s) ≥ f(t) + z(s− t), ∀s ∈ R}.

If f is differentiable at t, then the sub-differential is reduced to the ordinary derivative.
Although the sub-differential is a set in general, for simplicity, we treat ∂f(r) as a single
element if there is no confusion. Below, we assume that f is closed, i.e., its epigraph is a
closed set (Rockafellar, 1970).

Let f ∗ be the conjugate dual function associated with f defined as

f ∗(u) := sup
t
[tu− f(t)] = − inf

t
[f(t)− tu].
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Since f is a closed convex function, we also have

f(t) = − inf
u
[f ∗(u)− tu]. (33)

For the KL divergence where f(t) = t log t, the conjugate dual function is given by
f ∗(u) = exp(u − 1). For the PE divergence where f(t) = (t − 1)2/2, the conjugate dual
function is given by f ∗(u) = u2/2 + u.

Substituting Eq.(33) into Eq.(32), we have the following lower bound (Keziou, 2003):

ASCf (p
∗
nu∥p∗de) = − inf

g
ASC′

f (g),

where

ASC′
f (g) :=

∫
f ∗(g(x))p∗de(x)dx−

∫
g(x)p∗nu(x)dx. (34)

By taking the derivative of the integrand for each x and equating it to zero, we can show
that the infimum of ASC′

f is attained at g such that

∂f ∗(g(x)) =
p∗nu(x)

p∗de(x)
= r∗(x).

Thus, minimizing ASC′
f (g) yields the true density-ratio function r∗(x).

For some g, there exists r such that

g = ∂f(r).

Then f ∗(g) is expressed as

f ∗(g) = sup
s

[
s∂f(r)− f(s)

]
.

According to the variational principle (Jordan et al., 1999), the supremum in the right-
hand side of the above equation is attained at s = r. Thus, we have

f ∗(g) = r∂f(r)− f(r).

Then the lower bound ASC′
f (g) defined by Eq.(34) can be expressed as

ASC′
f (g) =

∫
p∗de(x)

(
r(x)∂f(r(x))− f(r(x))

)
dx−

∫
∂f(r(x))p∗nu(x)dx.

This is equivalent to the criterion BRf defined by Eq.(25). Thus, density-ratio matching
under the BR divergence can be interpreted as divergence estimation under the ASC
divergence.



Density-Ratio Matching under the Bregman Divergence 27

3.3.2 Moment Matching View

Next, we investigate the correspondence between the density-ratio matching approach
and a moment-matching approach. To this end, we focus on the ideal situation where the
true density-ratio function r∗ is included in the density-ratio model r.

The non-linear version of finite-order moment matching (see Section 2.1.1) learns the
density-ratio model r so that the following criterion is minimized:∥∥∥∥∫ ϕ(x)r(x)p∗de(x)dx−

∫
ϕ(x)p∗nu(x)dx

∥∥∥∥2 ,
where ϕ(x) : Rd → Rm is some vector-valued function. Under the assumption that
the density-ratio model r can represent the true density-ratio r∗, we have the following
estimation equation:∫

ϕ(x)r(x)p∗de(x)dx−
∫
ϕ(x)p∗nu(x)dx = 0m, (35)

where 0m denotes the m-dimensional vector with all zeros.
On the other hand, the density-ratio matching approach described in Section 3.1 learns

the density-ratio model r so that the following criterion is minimized:∫
p∗de(x)∂f(r(x))r(x)dx−

∫
p∗de(x)f(r(x))dx−

∫
p∗nu(x)∂f(r(x))dx.

Taking the derivative of the above criterion with respect to parameters in the density-ratio
model r and equate it to zero, we have the following estimation equation:∫

p∗de(x)r(x)∇r(x)∂2f(r(x))dx−
∫
p∗nu(x)∇r(x)∂2f(r(x))dx = 0b,

where ∇ denotes the differential operator with respect to parameters in the density-ratio
model r, and b is the number of parameters. This implies that putting

ϕ(x) = ∇r(x)∂2f(r(x))

in Eq.(35) gives the same estimation equation as density-ratio matching, resulting in the
same optimal solution.

3.4 Basu’s Power Divergence for Robust Density-Ratio Estima-
tion

Finally, we introduce a new instance of density-ratio matching based on Basu’s power
divergence (BA divergence; Basu et al., 1998).
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3.4.1 Derivation

For α > 0, let

f(t) =
t1+α − t

α
.

Then BR (24) is reduced to the BA divergence:

BA′
α(t

∗∥t) := tα(t− t∗)− t∗(tα − (t∗)α)

α
.

Following Eqs.(25) and (26), let us denote BA′
α without an irrelevant constant term by

BAα (r) and its empirical approximation by B̂Aα (r), respectively:

BAα (r) :=

∫
p∗de(x)r(x)

α+1dx−
(
1 +

1

α

)∫
p∗nu(x)r(x)

αdx+
1

α
,

B̂Aα (r) :=
1

nde

nde∑
j=1

r(xde
j )α+1 −

(
1 +

1

α

)
1

nnu

nnu∑
i=1

r(xnu
i )α +

1

α
.

The density-ratio model r is determined so that B̂Aα(r) is minimized.
When α = 1, the BA divergence is reduced to the twice SQ divergence (see Section 2.4):

B̂A1 = 2ŜQ.

Similarly, the fact

lim
α→0

tα − 1

α
= log t

implies that the BA divergence tends to the UKL divergence as α→ 0 (see Section 3.2.4):

lim
α→0

B̂Aα (r) =
1

nde

nde∑
j=1

r(xde
j )− 1

nnu

nnu∑
i=1

log r(xnu
i ) = ÛKL (r) .

Thus, the BA divergence essentially includes the SQ and UKL divergences as special cases,
and is substantially more general.

3.4.2 Robustness

Let us take the derivative of B̂Aα (r) with respect to parameters included in the density-
ratio model r, and equate it to zero. Then we have the following estimation equation:

1

nde

nde∑
j=1

r(xde
j )α∇r(xde

j )− 1

nnu

nnu∑
i=1

r(xnu
i )α−1∇r(xnu

i ) = 0b, (36)
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where ∇ is the differential operator with respect to parameters in the density-ratio model
r, b denotes the number of parameters, and 0b denotes the b-dimensional vector with all
zeros.

As explained in Section 3.4.1, the BA method with α → 0 corresponds to KLIEP
(using the UKL divergence). According to Eq.(31), the estimation equation of KLIEP is
given as follows (this also agrees with Eq.(36) with α = 0):

1

nde

nde∑
j=1

∇r(xde
j )− 1

nnu

nnu∑
i=1

r(xnu
i )−1∇r(xnu

i ) = 0b.

Comparing this with Eq.(36), we see that the BA method can be regarded as a weighted
version of KLIEP according to r(xde

j )α and r(xnu
i )α. When r(xde

j ) and r(xnu
i ) are less than

1, the BA method down-weights the effect of those samples. Thus, ‘outlying’ samples
relative to the density-ratio model r tend to have less influence on parameter estimation,
which will lead to robust estimators (Basu et al., 1998).

Since LSIF corresponds to α = 1, LSIF is more robust against outliers than KLIEP
(which corresponds to α→ 0) in the above sense, and BA with α > 1 would be even more
robust.

3.4.3 Numerical Examples

Here we illustrate the behavior of the robust density-ratio estimation method based on
the BA divergence using artificial data sets.

Let the numerator and denominator densities be defined as follows (Figure 2(a)):

p∗nu(x) = 0.7N
(
x; 0, 0.252

)
+ 0.3N

(
x; 1, 0.52

)
and p∗de(x) = N(x; 0, 12),

where N(x;µ, σ2) denotes the Gaussian density with mean µ and variance σ2,. We draw
nnu = nde = 300 samples from each density, which are illustrated in Figure 2(b).

Here, we employ the Gaussian-kernel density-ratio model (17), and determine the

model parameters so that B̂Aα (r) with a quadratic regularizer is minimized under the
non-negativity constraint:

min
θ∈Rb

[
1

nde

nde∑
j=1

(
nnu∑
ℓ=1

θℓK(xnu
j ,x

nu
ℓ )

)α+1

−
(
1 +

1

α

)
1

nnu

nnu∑
i=1

(
nnu∑
ℓ=1

θℓK(xde
i ,x

nu
ℓ )

)α

+ λθ⊤θ

]
s.t. θ ≥ 0b. (37)

Note that this optimization problem is convex for 0 < α ≤ 1. In our implementation,
we solve the above optimization problem by gradient-projection, i.e., the parameters are
iteratively updated by gradient descent with respect to the objective function, and the
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Figure 2: Numerical examples.

solution is projected back to the feasible region by rounding-up negative parameters to
zero. Before solving the optimization problem (37), we run uLSIF (see Section 2.4.3)
and obtain cross-validation estimates of the Gaussian width σ and the regularization
parameter λ. We then fix the Gaussian width and the regularization parameter in the BA
method to these values, and solve the optimization problem (37) by gradient-projection
with θ = 1b/b as the initial solution.

Figure 2(c) shows the true and estimated density-ratio functions by the BA methods
for α = 0, 1, 2, 3. The true density-ratio function has two peaks—higher one at x = 0 and
lower one at around x = 1.2. The graph shows that, as α increases, estimated density-
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ratio functions tend to focus on approximating the higher peak and ignore the lower peak.
Thus, if numerator samples drawn from the right-hand Gaussian (i.e., N (x; 1, 0.52)) are
regarded as outliers, the BA methods with larger α are more robust against these outliers.

We further investigate the issue of robustness against outliers more systematically. Let

p∗nu(x) = (1− ρ)N
(
x; 0, 0.252

)
+ ρN

(
x; 1, 0.52

)
,

p∗de(x) = (1− η)N(x; 0, 12) + ηN(x; 0, 0.52),

where ρ and η are the numerator and denominator outlier ratio, respectively; samples
drawn from the second densities N (x; 1, 0.52) and N(x; 0, 0.52) are regarded as outliers.
Let nnu = nde = 300, and we evaluate how the accuracy of density-ratio estimation is in-
fluenced by outliers. In the first set of experiments, we fix the denominator outlier ratio to
η = 0 (i.e., no outlier) and change the numerator outlier ratio as ρ = 0, 0.05, 0.1, . . . , 0.3.
In the second set of experiments, we fix the numerator outlier ratio to ρ = 0 (i.e., no
outlier) and change the denominator outlier ratio as η = 0, 0.05, 0.1, . . . , 0.3. The approx-
imation error of a density-ratio estimator r̂ is evaluated by UKL (r̂) defined by Eq.(30),
which correspond to the BA divergence with α → 0 as explained in Section 3.4.1. Here,
UKL (r̂) is numerically approximated using 1000 samples independently taken following
p∗nu(x) with ρ = 0 (i.e., no outliers) and 1000 samples independently taken following
p∗de(x) with η = 0 (i.e., no outliers). Note that these samples are not used for obtaining
a density-ratio estimator r̂. For obtaining density-ratio estimators, we use off-the-shelf
MATLAB implementation of KLIEP (which corresponds to the BA method with α→ 0)
and uLSIF (which corresponds to the BA method with α = 1) available from the web
(see Section 2.3 and Section 2.4). This renders a more practical setup of density-ratio
estimation.

The median and standard deviation of UKL values for KLIEP and uLSIF over 100
runs are plotted in Figure 3. Note that the standard deviation is divided by 5 in the
plots for clear visibility. The graphs show that KLIEP works better than uLSIF when the
outlier ratio is small. This is natural consequences since KLIEP tries to minimizes UKL
(see Section 3.2.4). However, as the outlier ratio increases, the approximation error of
KLIEP grows rapidly. On the other hand, the approximation error of uLSIF grows rather
mildly, showing the robustness of uLSIF against outliers. This phenomenon well agrees
with the argument in Section 3.4.2.

However, the error bars of uLSIF are much larger than KLIEP. This would be caused
by the fact that the ‘effective’ number of samples used in uLSIF is smaller than that of
KLIEP due to the down-weighting effect explained in Section 3.4.2. Thus, the statistical
efficiency of uLSIF would be lower than KLIEP, which is a common trade-off in robust
statistical methods (Huber, 1981).

Another observation from these experimental results is that numerator outliers more
strongly degrade the accuracy of KLIEP than denominator outliers.
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Figure 3: The median and standard deviation of UKL values for KLIEP and uLSIF over
100 runs when the number of outlier samples is changed. For clear visibility, the standard
deviation is divided by 5 in the plots.

4 Conclusions

In this paper, we addressed the problem of density-ratio estimation. We first provided a
comprehensive review of density-ratio estimation methods, including the moment match-
ing approach (Section 2.1), the probabilistic classification approach (Section 2.2), the den-
sity matching approach (Section 2.3), and the density-ratio fitting approach (Section 2.4).
Then we proposed a novel framework of density-ratio estimation by density-ratio fitting
under the Bregman divergence (Section 3.1). We showed that our novel framework ac-
commodates the existing approaches reviewed above, and is substantially more general.
Within this novel framework, we developed a robust density-ratio estimation method
based on Basu’s power divergence.

The power divergence method allows us to systematically compare the robustness of
the density matching approach based on the KL divergence (KLIEP) and the density-ratio
fitting approach based on the Pearson divergence (uLSIF). However, the robustness of the
probabilistic classification approach is still unknown, which needs to be investigated in
our future work.

Experimentally, we observed that numerator outliers tend to more significantly de-
grade the accuracy of KLIEP than denominator samples, while uLSIF is reasonably stable
for both cases. It is interesting to investigate this experimental tendency theoretically,
together with convergence properties of the robust method.

In the power divergence method, the choice of robustness parameter α is an open issue.
Although there seems to be no universal way for this (Basu et al., 1998; Jones et al., 2001;
Fujisawa and Eguchi, 2008), a practical approach would be to use cross-validation over a
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fixed divergence such as the squared distance.
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