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Abstract

We investigate the learning rate of multiple
kernel leaning (MKL) with ℓ1 and elastic-net
regularizations. The elastic-net regulariza-
tion is a composition of an ℓ1-regularizer for
inducing the sparsity and an ℓ2-regularizer
for controlling the smoothness. We focus on
a sparse setting where the total number of
kernels is large but the number of non-zero
components of the ground truth is relatively
small, and show sharper convergence rates
than the learning rates ever shown for both ℓ1
and elastic-net regularizations. Our analysis
shows there appears a trade-off between the
sparsity and the smoothness when it comes
to selecting which of ℓ1 and elastic-net reg-
ularizations to use; if the ground truth is
smooth, the elastic-net regularization is pre-
ferred, otherwise the ℓ1 regularization is pre-
ferred.

1 Introduction

Learning with kernels such as support vector ma-
chines has been demonstrated to be a promising ap-
proach, given that kernels were chosen appropriately
(Schölkopf and Smola, 2002, Shawe-Taylor and Cris-
tianini, 2004). So far, various strategies have been em-
ployed for choosing appropriate kernels, ranging from
simple cross-validation (Chapelle et al., 2002) to more
sophisticated “kernel learning” approaches (Ong et al.,
2005, Argyriou et al., 2006, Bach, 2009, Cortes et al.,
2009b, Varma and Babu, 2009).

Multiple kernel learning (MKL) is one of the system-
atic approaches to learning kernels, which tries to
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find the optimal linear combination of prefixed base-
kernels by convex optimization (Lanckriet et al., 2004).
The seminal paper by Bach et al. (2004) showed that
this linear-combination MKL formulation can be inter-
preted as ℓ1-mixed-norm regularization (i.e., the sum
of the norms of the base kernels). Based on this inter-
pretation, several variations of MKL were proposed,
and promising performance was achieved by ‘inter-
mediate’ regularization strategies between the sparse
(ℓ1) and dense (ℓ2) regularizers, e.g., a mixture of
ℓ1-mixed-norm and ℓ2-mixed-norm called the elastic-
net regularization (Shawe-Taylor, 2008, Tomioka and
Suzuki, 2009) and ℓp-mixed-norm regularization with
1 < p < 2 (Micchelli and Pontil, 2005, Kloft et al.,
2009).

Together with the active development of practical
MKL optimization algorithms, theoretical analysis of
MKL has also been extensively conducted. For ℓ1-
mixed-norm MKL, Koltchinskii and Yuan (2008) es-

tablished the learning rate d
1−s
1+s n−

1
1+s + d log(M)/n

under rather restrictive conditions, where n is the
number of samples, d is the number of non-zero com-
ponents of the ground truth, M is the number of
kernels, and s (0 < s < 1) is a constant represent-
ing the complexity of the reproducing kernel Hilbert
spaces (RKHSs). Their conditions include a smooth-
ness assumption of the ground truth. For elastic-net
regularization (which we call elastic-net MKL), Meier
et al. (2009) gave a near optimal convergence rate

d (n/ log(M))
− 1

1+s . Recently, Koltchinskii and Yuan
(2010) showed that MKL with a variant of ℓ1-mixed-
norm regularization (which we call L1-MKL) achieves
the minimax optimal convergence rate, which success-
fully captured sharper dependency with respect to
log(M) than the bound of Meier et al. (2009) and es-

tablished the bound dn− 1
1+s + d log(M)/n. Another

line of research considers the cases where the ground
truth is not sparse, and bounds the Rademacher
complexity of a candidate kernel class by a pseudo-
dimension of the kernel class (Srebro and Ben-David,
2006, Ying and Campbell, 2009, Cortes et al., 2009a,
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Table 1: Relation between our analysis and existing analyses.
regularizer smoothness (q) minimaxity convergence rate

Koltchinskii and Yuan (2008) ℓ1 q = 1 ? d
1−s
1+s n− 1

1+s + d log(M)
n

Meier et al. (2009) Elastic-net q = 0 not optimal d
(

log(M)
n

) 1
1+s

Koltchinskii and Yuan (2010) ℓ1 q = 0 ℓ∞-ball (d+R1,f∗)n− 1
1+s + d log(M)

n

This paper Elastic-net 0 ≤ q ≤ 1 ℓ2-ball
(
d
n

) 1+q
1+q+s R

2s
1+q+s

2,g∗ + d log(M)
n

ℓ1 q = 0 ℓ1-ball d
1−s
1+s n− 1

1+sR
2s

1+s

1,f∗ + d log(M)
n

Kloft et al., 2010).

In this paper, we focus on the sparse setting (i.e., the
total number of kernels is large, but the number of
non-zero components of the ground truth is relatively
small), and derive sharp learning rates for both L1-
MKL and elastic-net MKL. Our new learning rates,

(L1-MKL) d
1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ +
d log(M)

n
,

(Elastic-net MKL) d
1+q

1+q+sn−
1+q

1+q+sR
2s

1+q+s

2,g∗ +
d log(M)

n
,

are faster than all the existing bounds, where R1,f∗

is the ℓ1-mixed-norm of the truth, R2,g∗ is a kind of
ℓ2-mixed-norm of the truth, and q (0 ≤ q ≤ 1) is a
constant depending on the smoothness of the ground
truth.

Our contributions are summarized as follows:

(a) The sharpest existing bound for L1-MKL given by
Koltchinskii and Yuan (2010) achieves the minimax
rate on the ℓ∞-mixed-norm ball (Raskutti et al., 2009,
2010). Our work follows this line and show that the
learning rates for L1-MKL and elastic-net MKL fur-
ther achieve the minimax rates on the ℓ1-mixed-norm
ball and ℓ2-mixed-norm ball respectively, both of which
are faster than that on the ℓ∞-mixed-norm ball. This
result implies that the bound by Koltchinskii and Yuan
(2010) is tight only when the ground truth is evenly
spread in the non-zero components.

(b) We included the smoothness q of the ground truth
into our learning rate, where the ground truth is said to
be smooth if it is represented as a convolution of a cer-
tain function and an integral kernel (see Assumption
2). Intuitively, for larger q, the truth is smoother. We
show that elastic-net MKL properly makes use of the
smoothness of the truth: The smoother the truth is,
the faster the convergence rate of elastic-net MKL is.
That is, the resultant convergence rate of elastic-net
MKL becomes as if the complexity of RKHSs was s

1+q

instead of the true complexity s. Meier et al. (2009)
and Koltchinskii and Yuan (2010) assumed q = 0 and
Koltchinskii and Yuan (2008) considered a situation of
q = 1. Our analysis covers both of those situations,
and is more general since any 0 ≤ q ≤ 1 is allowed.

(c) We show that there is a trade-off between the
sparsity and the smoothness of the estimator. While
L1-MKL gives a sparser solution than elastic-net, a
smoother solution is generated by elastic-net MKL.
Our analysis claims that when the smoothness q of
the truth is small (say q = 0), L1-MKL achieves a
faster convergence rate than elastic-net MKL. On the
other hand, if the truth is smooth, the learning rate of
elastic-net MKL could be faster than L1-MKL.

The relation between our analysis and existing analy-
ses is summarized in Table 1.

2 Preliminaries

In this section, we formulate elastic-net MKL, and
summarize mathematical tools that are needed for our
theoretical analysis.

Formulation Suppose we are given n samples
{(xi, yi)}ni=1 where xi belongs to an input space X
and yi ∈ R. We denote the marginal distribution of
X by Π. We consider an MKL regression problem in
which the unknown target function is represented as
f(x) =

∑M
m=1 fm(x), where each fm belongs to a dif-

ferent RKHS Hm (m = 1, . . . ,M) with kernel km over
X × X .

The elastic-net MKL we consider in this paper is the
version considered in Meier et al. (2009):

f̂ = argmin
fm∈Hm

(m=1,...,M)

1

n

N∑
i=1

(
yi−

M∑
m=1

fm(xi)

)2

+
M∑

m=1

(
λ
(n)
1 ∥fm∥n + λ

(n)
2 ∥fm∥Hm+λ

(n)
3 ∥fm∥2Hm

)
,

(1)

where ∥fm∥n :=
√

1
n

∑n
i=1 fm(xi)2 and ∥fm∥Hm is the

RKHS norm of fm in Hm. The regularizer is the

mixture of ℓ1-term
∑M

m=1(λ
(n)
1 ∥fm∥n + λ

(n)
2 ∥fm∥Hm)

and ℓ2-term
∑M

m=1 λ
(n)
3 ∥fm∥2Hm

. In that sense, we
say that the regularizer is of the elastic-net type1

1There is another version of MKL with elastic-net
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(Zou and Hastie, 2005). Here the ℓ1-term is a mix-
ture of the empirical L2-norm ∥fm∥n and the RKHS
norm ∥fm∥Hm . Koltchinskii and Yuan (2010) consid-
ered ℓ1-regularization that contains only the ℓ1-term:∑

m λ
(n)
1 ∥fm∥n+λ

(n)
2 ∥fm∥Hm . To distinguish the situ-

ations of λ
(n)
3 = 0 and λ

(n)
3 > 0, we refer to the learning

method (1) with λ
(n)
3 = 0 as L1-MKL and that with

λ
(n)
3 > 0 as elastic-net MKL.

By the representer theorem (Kimeldorf and Wahba,

1971), the solution f̂ can be expressed as a linear

combination of nM kernels: ∃αm,i ∈ R , f̂m(x) =∑n
i=1 αm,ikm(x, xi). Thus, using the Gram matrix

Km = (km(xi, xj))i,j , the regularizer in (1) is ex-
pressed as

∑M
m=1

(
λ
(n)
1

√
α⊤

m

KmKm

n
αm + λ

(n)
2

√
α⊤

mKmαm

+ λ
(n)
3 α⊤

mKmαm

)
,

where αm = (αm,i)
n
i=1 ∈ Rn. Thus, we can solve

the problem by an SOCP (second-order cone program-
ming) solver as in Bach et al. (2004), the coordinate
descent algorithms (Meier et al., 2008) or the alter-
nating direction method of multipliers (Boyd et al.,
2011).

Notations and Assumptions Here, we present
several assumptions used in our theoretical analysis
and prepare notations.

Let H = H1⊕· · ·⊕HM . We utilize the same notation
f ∈ H indicating both the vector (f1, . . . , fM ) and

the function f =
∑M

m=1 fm (fm ∈ Hm). This is a
little abuse of notation because the decomposition f =∑M

m=1 fm might not be unique as an element of L2(Π).
However, this will not cause any confusion. We denote
by f∗ ∈ H the ground truth satisfying the following
assumption (the decomposition f∗ =

∑M
m=1 f

∗
m of the

truth might not be unique but we fix one possibility).

Assumption 1. (Basic Assumptions)

(A1-1) There exists f∗ = (f∗1 , . . . , f
∗
M ) ∈ H such that

E[Y |X] =
∑M

m=1 f
∗
m(X), and the noise ϵ := Y −

f∗(X) is bounded as |ϵ| ≤ L.

(A1-2) For each m = 1, . . . ,M , Hm is separable and
supX∈X |km(X,X)| ≤ 1.

regularization considered in Shawe-Taylor (2008) and

Tomioka and Suzuki (2009), that is, λ
(n)
2

∑M
m=1 ∥fm∥Hm +

λ
(n)
3

∑M
m=1 ∥fm∥2Hm

(i.e., there is no ∥fm∥n term in the
regularizer). However, we focus on Eq. (1) because the
above one is too loose to properly bound the irrelevant
components of the estimated function.

The first assumption in (A1-1) ensures the model H
is correctly specified, and the technical assumption
|ϵ| ≤ L allows ϵf to be Lipschitz continuous with re-
spect to f . These assumptions are not essential, and
can be relaxed to misspecified models and unbounded
noise such as Gaussian noise (Raskutti et al., 2010).
However, for the sake of simplicity, we assume these
conditions. It is known that the assumption (A1-2)
gives the relation ∥fm∥∞ ≤ ∥fm∥Hm (see Chapter 4 of
Steinwart and Christmann (2008)).

We define an operator Tm : Hm → Hm as

⟨fm, Tmgm⟩Hm := E[fm(X)gm(X)],

where fm, gm ∈ Hm. Due to Mercer’s theorem, there
are an orthonormal system {ϕℓ,m}ℓ,m in L2(Π) and
the spectrum {µℓ,m}ℓ,m such that km has the following
spectral representation:

km(x, x′) =
∞∑
ℓ=1

µℓ,mϕℓ,m(x)ϕℓ,m(x′). (2)

By this spectral representation, the inner product of
the RKHS Hm can be expressed as ⟨fm, gm⟩Hm =∑∞

ℓ=1 µ
−1
ℓ,m⟨fm, ϕℓ,m⟩L2(Π)⟨ϕℓ,m, gm⟩L2(Π).

Assumption 2. (Convolution Assumption)
There exist a real number 0 ≤ q ≤ 1 and g∗m ∈ Hm

such that

(A2) f∗m(x) =

∫
X
k(q/2)m (x, x′)g∗m(x′)dΠ(x′),

(∀m = 1, . . . ,M),

where k
(q/2)
m (x, x′) =

∑∞
k=1 µ

q/2
k,mϕk,m(x)ϕk,m(x′).

This is equivalent to the following operator represen-
tation:

f∗m = T
q
2
mg

∗
m.

We define g∗ ∈ H as g∗ = (g∗1 , · · · , g∗M ) and g∗ =∑M
m=1 g

∗
m.

The constant q represents the smoothness of the truth
f∗m because f∗m is a convolution of the integral ker-

nel k
(q/2)
m and g∗m, and high frequency components are

suppressed as q becomes large. Therefore, as q be-
comes larger, f∗ becomes “smoother”. The assump-
tion (A2) was considered in Caponnetto and de Vito
(2007) to analyze the convergence rate of least-squares
estimators in a single kernel setting. In MKL settings,
Koltchinskii and Yuan (2008) showed a fast learning
rate of MKL, and Bach (2008) employed the assump-
tion for q = 1 to show the consistency of MKL. Propo-
sition 9 of Bach (2008) gave a sufficient condition to
fulfill (A2) with q = 1 for translation invariant kernels
km(x, x′) = hm(x−x′). Meier et al. (2009) considered
a situation with q = 0 on Sobolev space; the analysis
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of Koltchinskii and Yuan (2010) also corresponds to
q = 0. Note that (A2) with q = 0 imposes nothing on
the smoothness about the truth, and our analysis also
covers this case.

We show in Appendix A (supplementary material)
that as q increases, the space of the functions that sat-
isfy (A2) becomes “simpler”. Thus, it might be natu-
ral to expect that, under the Convolution Assumption
(A2), the learning rate becomes faster as q increases.
Although this conjecture is actually true, it is not obvi-
ous because the Convolution Assumption only restricts
the ground truth, not the search space.

Next we introduce a parameter representing the com-
plexity of RKHSs.

Assumption 3. (Spectral Assumption) There ex-
ist 0 < s < 1 and c such that

(A3) µj,m ≤ cj−
1
s , (1 ≤ ∀j, 1 ≤ ∀m ≤M),

where {µj,m}∞j=1 is the spectrum of the kernel km (see
Eq.(2)).

It was shown that the spectral assumption (A3) is
equivalent to the classical covering number assump-
tion2 (Steinwart et al., 2009), but the spectral formu-
lation gives a clearer insight for the complexity of the
set of the smooth functions introduced in Assumption
2 (see Appendix A). If the spectral assumption (A3)
holds, there exists a constant C that depends only on
s and c such that

N (ε,BHm , L2(Π)) ≤ Cε−2s, (1 ≤ ∀m ≤M), (3)

and the converse is also true (see Theorem 15 of
Steinwart et al. (2009) and Steinwart and Christmann
(2008) for details). Therefore, if s is large, at least one
of the RKHSs is “complex”; and if s is small, all the
RKHSs are “simple”. A more detailed characteriza-
tion of the covering number in terms of the spectrum
is provided in Appendix A in the supplementary ma-
terial. The covering number of the space of functions
that satisfy the Convolution Assumption (A2) is also
provided there.

We denote by I0 the indices of truly active kernels, i.e.,

I0 := {m | ∥f∗m∥Hm > 0}.

We define the number of truly active components as
d := |I0|. For f =

∑M
m=1 fm ∈ H and a subset of

indices I ⊆ {1, . . . ,M}, we define HI = ⊕m∈IHm and
denote by fI ∈ HI the restriction of f to an index set

2The ϵ-covering number N (ϵ,BHm , L2(Π)) with respect
to L2(Π) is the minimal number of balls with radius ϵ
needed to cover the unit ball BHm in Hm (van der Vaart
and Wellner, 1996).

I, i.e., fI =
∑

m∈I fm. For a given set of indices I ⊆
{1, . . . ,M}, we introduce a quantity κ(I) representing
the correlation of RKHSs inside the indices I:

κ(I) := sup

{
κ ≥ 0

∣∣∣ κ ≤ ∥∑m∈I fm∥2L2(Π)∑
m∈I ∥fm∥2L2(Π)

,

∀fm ∈ Hm (m ∈ I)

}
.

Similarly, we define the canonical correlations of
RKHSs between I and Ic as follows:

ρ(I) := sup

{
⟨fI , gIc⟩L2(Π)

∥fI∥L2(Π)∥gIc∥L2(Π)

∣∣∣ fI ∈ HI , gIc ∈ HIc ,

fI ̸= 0, gIc ̸= 0

}
.

These quantities give a connection between the L2(Π)-
norm of f ∈ H and the L2(Π)-norm of {fm}m∈I as
shown in the following lemma. The proof is given in
Appendix B in the supplementary material.

Lemma 1. For all I ⊆ {1, . . . ,M}, we have

∥f∥2L2(Π) ≥ (1− ρ(I)2)κ(I)

(∑
m∈I

∥fm∥2L2(Π)

)
. (4)

We impose the following assumption for κ(I0) and
ρ(I0).

Assumption 4. (Incoherence Assumption) For
the truly active components I0, κ(I0) is strictly positive
and ρ(I0) is strictly less than 1:

(A4) 0 < κ(I0)(1− ρ2(I0)).

This condition is known as the incoherence condition
(Koltchinskii and Yuan, 2008, Meier et al., 2009), i.e.,
RKHSs are not too dependent on each other. In addi-
tion to the lower bound (4), we also obtain an upper

bound of the L2(Π)-norm of f̂ − f∗ using the L2(Π)-

norms of {f̂m − f∗m}m∈I0 . Thus, by the incoherence
condition and Lemma 1, we may focus on bound-
ing the L2(Π)-norm of the “low-dimensional” compo-

nents {f̂m − f∗m}m∈I0 , instead of all the components.
Koltchinskii and Yuan (2010) considered a weaker con-
dition including the restricted isometry (Candes and
Tao, 2007) instead of (A4). Such a weaker condition
is also applicable to our analysis, but we employ (A4)
for simplicity.

Finally, we impose the following technical assumption
related to the sup-norm of the members in the RKHSs.

Assumption 5. (Sup-norm Assumption) Along
with the Spectral Assumption (A3), there exists a con-
stant C1 such that

(A5) ∥fm∥∞ ≤ C1∥fm∥1−s
L2(Π)∥fm∥

s
Hm

,
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(∀fm ∈ Hm,m = 1, . . . ,M),

where s is the exponent defined in the Spectral Assump-
tion (A3).

This assumption might look a bit strong, but this is
satisfied if the RKHS is a Sobolev space or is contin-
uously embeddable in a Sobolev space. For example,
the RKHSs of Gaussian kernels are continuously em-
bedded in all Sobolev spaces, and thus satisfy the sup-
norm Assumption (A5). More generally, RKHSs with
γ-times continuously differentiable kernels on a closed
Euclidean ball in Rd are also continuously embedded
in a Sobolev space, and satisfy the sup-norm Assump-
tion (A5) with s = d

2γ (see Corollary 4.36 of Steinwart

and Christmann (2008)). Therefore, this assumption
is common for practically used kernels. A more gen-
eral necessary and sufficient condition in terms of real
interpolation is shown in Bennett and Sharpley (1988).
Steinwart et al. (2009) used this assumption to show
the optimal convergence rates for regularized regres-
sion with a single kernel function where the true func-
tion is not contained in the model, and one can find
detailed discussions about the assumption there.

3 Convergence Rate Analysis

In this section, we present our main result.

3.1 The Convergence Rate of L1-MKL and
Elastic-net MKL

Here we derive the learning rate of the estimator f̂
defined by Eq. (1). We may suppose that the num-
ber of kernels M and the number of active kernels
d are increasing with respect to the number of sam-
ples n. Our main purpose of this section is to show
that the learning rate can be faster than the existing
bounds. The existing bound has already been shown
to be optimal on the ℓ∞-mixed-norm ball (Koltchin-
skii and Yuan, 2010, Raskutti et al., 2010). Our claim
is that the convergence rates can further achieve the
minimax optimal rates on the ℓ1-mixed-norm ball and
ℓ2-mixed-norm ball, which are faster than that on the
ℓ∞-mixed-norm ball.

Define η(t) for t > 0 and ξn(λ) for given λ > 0 as

η(t) := max(1,
√
t, t/
√
n), (5a)

ξn := ξn(λ) = max

(
λ− s

2√
n
, λ− 1

2

n
1

1+s
,
√

log(M)
n

)
. (5b)

For a given function f ∈ H and 1 ≤ p ≤ ∞, we define
the ℓp-mixed-norm of f as

Rp,f :=
(∑M

m=1 ∥fm∥
p
Hm

) 1
p

.

Then we obtain the convergence rate of L1- and elastic-
net MKL as follows.

Theorem 2 (Convergence Rate of L1-MKL and
Elastic-net MKL). Suppose Assumptions 1–5 are
satisfied. Then there exist constants C̃ and ψs de-
pending on s, c, L, C1, ρ(I0), κ(I0) such that, for all n
sufficiently large, the following convergence rates hold:

(L1-MKL) If λ
(n)
1 = ψsη(t)ξn(λ), λ

(n)
2 = λ

(n)
1 λ

1
2 ,

λ
(n)
3 = 0, where λ = d

1−s
1+s n−

1
1+sR

− 2
1+s

1,f∗ , the general-
ization error of L1-MKL is bounded as

∥f̂ − f∗∥2L2(Π) ≤ C̃

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗

+d
s−1
1+s n−

1
1+sR

2
1+s

1,f∗ +
d log(M)

n

)
η(t)2, (6)

with high probability.

(Elastic-net MKL) If λ
(n)
1 = ψsη(t)ξn(λ), λ

(n)
2 =

λ
(n)
1 λ

1
2 , λ

(n)
3 = λ, where λ = d

1
1+q+sn−

1
1+q+sR

− 2
1+q+s

2,g∗ ,
the generalization error of elastic-net MKL is bounded
as

∥f̂ − f∗∥2L2(Π) ≤ C̃

(
d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗

+d
q+s

1+q+sn−
1+q

1+q+s−
q(1−s)

(1+s)(1+q+s)R
2

1+q+s

2,g∗ +
d log(M)

n

)
η(t)2,

(7)

with high probability.

The rigorous statement and the proof of Theorem 2
is provided in Appendix E in the supplementary ma-
terial. The bounds presented in the theorem can be
further simplified under additional weak conditions: If
R1,f∗ ≤ Cd with a constant C (this holds if ∥f∗m∥Hm ≤
C for all m), then the first term in the learning rate
(6) of L1-MKL dominates the second term, and thus
Eq. (6) becomes

∥f̂ − f∗∥2L2(Π)

≤Op

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ +
d log(M)

n

)
. (8)

Similarly, as for the bound of elastic-net MKL, if
R2

2,g∗ ≤ Cn
q

1+s d with a constant C (this holds if

∥g∗m∥Hm ≤
√
C for all m), then Eq. (7) becomes

∥f̂ − f∗∥2L2(Π)

≤Op

(
d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗ +
d log(M)

n

)
. (9)

We note that, as s becomes smaller (the RKHSs be-
come simpler), both learning rates of L1-MKL and
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elastic-net MKL become faster if R1,f∗ , R2,g∗ ≥ 1. Al-
though the solutions of both L1-MKL and elastic-net
MKL are derived from the same optimization frame-
work (1), there appears two convergence rates (8) and
(9) that posses different characteristics depending on

λ
(n)
3 = 0 or not. There appears no dependency on the

smoothness parameter q in the bound (8) of L1-MKL,
while the bound (9) of elastic-net MKL depends on q.
Let us compare these two learning rates on the two
situations: q = 0 and q > 0.

(i) (q = 0) In this situation, the true function f∗ is not
smooth and g∗ = f∗ from the definition of q (see As-
sumption 2 for the definition of g∗). The terms with

respect to d are d
1−s
1+s for L1-MKL (8) and d

1
1+s for

elastic-net MKL (9). Thus, L1-MKL has milder de-
pendency on d. This might reflect the fact that L1-
MKL tends to generate sparser solutions. Moreover,
one can check that the learning rate of L1-MKL (8)
is better than that of elastic-net MKL (9) because
Jensen’s inequality R1,f∗ ≤

√
dR2,f∗ gives

d
1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ ≤ d
1

1+sn−
1

1+sR
2s

1+s

2,f∗ .

Therefore, when the truth is non-smooth, L1-MKL is
preferred.

(ii) (q > 0) We see that, as q becomes large (the truth
becomes smooth), the convergence rate of elastic-net
MKL becomes faster. The convergence rate with re-

spect to n is n−
1+q

1+q+s for elastic-net MKL that is

faster than that of L1-MKL (n−
1

1+s ). This shows that
elastic-net MKL properly captures the smoothness of
the truth f∗ using the additional ℓ2-regularization
term. As we observed above, L1-MKL converges faster
than L2-MKL when q = 0. However, if f∗ is suffi-
ciently smooth (g∗ is small), as q increases, there ap-
pears “phase-transition”, that is, the convergence rate
of elastic-net MKL turns out to be faster than that of

L1-MKL (d
1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ ≥ d
1+q

1+q+sn−
1+q

1+q+sR
2s

1+q+s

2,g∗ ).
This indicates that, when the truth f∗ is smooth,
elastic-net MKL is preferred.

An interesting observation here is that depending on
the smoothness q of the truth, the preferred regular-
ization changes. This is due to the trade-off between
the sparsity and the smoothness. Below, we show that
these bounds (8) and (9) achieve the minimax opti-
mal rates on the ℓ1-mixed-norm ball and the ℓ2-mixed-
norm ball, respectively.

3.2 Minimax Learning Rate

Here we consider a simple setup to investigate the min-
imax rate. First, we assume that the input space X
is expressed as X = X̃M for some space X̃ . Second,
all the RKHSs {Hm}Mm=1 are the same as an RKHS H̃

defined on X̃ . Finally, we assume that the marginal
distribution Π of input is the product of a probabil-
ity distribution Q, i.e., Π = QM . Thus, an input
x = (x̃(1), . . . , x̃(M)) ∈ X = X̃M is concatenation
of M random variables {x̃(m)}Mm=1 independently and
identically distributed from the distribution Q. More-
over, the function class H is assumed to be a class
of functions f such that f(x) = f(x̃(1), . . . , x̃(M)) =∑M

m=1 fm(x̃(m)), where fm ∈ H̃ for all m. Without
loss of generality, we may suppose that all functions
in H̃ are centered: EX̃∼Q[f(X̃)] = 0 (∀f ∈ H̃). Fur-
thermore, we assume that the spectrum of the kernel
k̃ corresponding to the RKHS H̃ decays at the rate of
−1

s . That is, in addition to Assumption 3, we impose
the following lower bound on the spectrum: There ex-
ist c′, c (> 0) such that

c′j−
1
s ≤ µj ≤ cj−

1
s , (10)

where {µj}j is the spectrum of the kernel k̃ (see
Eq.(2)). We also assume that the noise {ϵi}ni=1 is gen-
erated by the Gaussian distribution with mean 0 and
standard deviation σ.

Let H0(d) be the set of functions with d non-zero com-
ponents in H defined by H0(d) := {(f1, . . . , fM ) ∈ H |
#{m | ∥fm∥Hm ̸= 0} ≤ d}, where # denotes the car-
dinality of the set. We define the ℓp-mixed-norm ball
(p ≥ 1) with radius R in H0(d) as

Hd,q
ℓp

(R) :=

{
f =

M∑
m=1

fm

∣∣∣ ∃(g1, . . . , gM ) ∈ H0(d),

fm = T
q
2
mgm,

(∑M
m=1 ∥gm∥

p
Hm

) 1
p ≤ R

}
.

In Raskutti et al. (2010), the minimax learning rate

on Hd,0
ℓ∞

(R) (i.e., p =∞ and q = 0) was derived3. We
show (a lower bound of) the minimax learning rate for
more general settings (1 ≤ p ≤ ∞ and 0 ≤ q ≤ 1) in
the following theorem.

Theorem 3. Let s̃ = s
1+q . Assume d ≤ M/4. Then

the minimax learning rates are lower bounded as fol-
lows. If the radius of the ℓp-mixed-norm ball Rp sat-

isfies Rp ≥ d
1
p

√
log(M/d)

n , there exists a constant C̃1

such that

inf
f̂

sup
f∗∈Hd,q

ℓp
(Rp)

E[∥f̂ − f∗∥2L2(Π)]

≥C̃1

(
d1−

2s̃
p(1+s̃)n−

1
1+s̃R

2s̃
1+s̃
p +

d log(M/d)

n

)
, (11)

where ‘inf ’ is taken over all measurable functions of
the samples {(xi, yi)}ni=1 and the expectation is taken
for the sample distribution.

3The set FM,d,H(R) in Raskutti et al. (2010) corre-

sponds to Hd,0
ℓ∞

(R) in the current paper.
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A proof of Theorem 3 is provided in Appendix H in
the supplementary material.

Substituting q = 0 and p = 1 into the minimax learn-
ing rate (11), we see that the learning rate (8) of L1-
MKL achieves the minimax optimal rate of the ℓ1-
mixed-norm ball for q = 0. Moreover, the learning rate
of L1-MKL (that is minimax optimal on the ℓ1-mixed-
norm ball) is fastest among all the optimal minimax
rates on ℓp-mixed-norm ball for p ≥ 1 when q = 0. To

see this, let Rp,f∗ :=
(∑

m ∥f∗m∥
p
Hm

) 1
p ; then we always

have R1,f∗ ≤ d1−
1
pRp,f∗ ≤ dR∞,f∗ due to Jensen’s

inequality, and consequently we have

d
1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ ≤ d1−
2s

p(1+s)n−
1

1+sR
2s

1+s

p,f∗

≤ dn− 1
1+sR

2s
1+s

∞,f∗ . (12)

On the other hand, the learning rate (9) of elastic-net
MKL achieves the minimax optimal rate (11) on the
ℓ2-mixed-norm ball (p = 2). When q = 0, the rate of
elastic-net MKL is slower than that of L1-MKL, but
the optimal rate is achieved over the whole range of
smoothness parameter 0 ≤ q ≤ 1, which is advanta-
geous against L1-MKL. Moreover, the optimal rate on
the ℓ2-mixed-norm ball is still faster than that on the
ℓ∞-mixed-norm ball due to the relation (12).

The learning rates of both L1 and elastic-net MKL
coincide with the minimax optimal rate of the ℓ∞-
mixed-norm ball when the truth is homogeneous. For
simplicity, assume q = 0. If ∥f∗m∥Hm = 1 (∀m ∈ I0)
and f∗m = 0 (otherwise), then Rp,f∗ = d

1
p . Thus,

both rates are dn− 1
1+s + d log(M)

n that is the minimax
rate on the ℓ∞-mixed-norm ball. We also notice that
this homogeneous situation is the only situation where
those convergence rates coincide with each other. As
seen later, the existing bounds are the minimax rate
on the ℓ∞-mixed-norm ball, and thus are tight only in
the homogeneous setting.

3.3 Optimal Parameter Selection

We need the knowledge of parameters such as
q, s, d,R1,f∗ , R2,g∗ to obtain the optimal learning rate
shown in Theorem 2. However this is not realistic in
practice.

To overcome this problem, we give an algorithmic pro-
cedure such as cross-validation to achieve the optimal
learning rate. Roughly speaking, we split the data
into the training set and the validation set and utilize
the validation set to choose the optimal parameter.
Given the data D = {(xi, yi)}ni=1, the training set Dtr

is generated by using the half of the given data Dtr =
{(xi, yi)}n

′

i=1 where n
′ = ⌊n2 ⌋ and the remaining data is

used as the validation set Dte = {(xi, yi)}ni=n′+1. Let

f̂Λ be the estimator given by our MKL formulation

(1) where the parameter setting Λ = (λ
(n)
1 , λ

(n)
2 , λ

(n)
3 )

is employed and the training set Dtr is used instead of
the whole data set D.

We utilize a clipped estimator to let the estimator
bounded so that the validation procedure is effective.
Given the estimator f̂Λ and a positive real B > 0, the
clipped estimator f̃Λ is given as

f̃Λ(x) :=


B (B ≤ f̂Λ(x)),
f̂Λ(x) (−B < f̂Λ(x) < B),

−B (f̂Λ(x) ≤ −B).

To appropriately choose B, we assume that we can
roughly estimate the range of y, and B is set to satisfy
|y| < B almost surely. This assumption is not unreal-
istic because if we set B sufficiently large so that we
have maxi |yi| < B, then with high probability such
B satisfies |y| < B (a.s.). Instead of estimating the
range of y, we can set B as ∥f∗m∥∞ + L ≤ B because
∥f∗m∥∞+L bounds the range of y from above (see As-
sumption 1 for the definition of L). For simplicity, we
assume that B is greater than (but proportional to)
∥f∗m∥∞ + L. It should be noted that the clipped esti-
mator does not make the generalization error worse:

∥f̃Λ − f∗∥L2(Π) ≤ ∥f̂Λ − f∗∥L2(Π),

because |f̃Λ(x)−f∗(x)| ≤ |f̂Λ(x)−f∗(x)| for all x ∈ X .

Now, for a finite set of parameter candidates Θn ⊂
R+ ×R+ ×R+, we choose an optimal parameter that
minimizes the error on the validation set:

ΛDte := argmin
Λ∈Θn

1

|Dte|
∑

(xi,yi)∈Dte

(f̃Λ(xi)− yi)2. (13)

Then we can show that the estimator f̃ΛDte
achieves

the optimal learning rate. To show that, we deter-
mine the finite set Θn of the candidate parameters as
follows: Let Γn := {1/n2, 2/n2, . . . , 1} and

Θn = {(λ1, λ2, λ3) | λ1, λ3 ∈ Γn, λ2 = λ1λ
1
2
3 }

∪{(λ1, λ2, λ3) | λ1, λ ∈ Γn, λ2 = λ1λ
1
2 , λ3 = 0}.

With this parameter set, we have the following theo-
rem that shows the optimality of the validation proce-
dure (13).

Theorem 4. Assume R1,f∗ , R2,g∗ ≥ 1 and
∥f∗m∥Hm , ∥g∗m∥Hm ≤ C with some constant C, then
under the same settings as Theorem 2, we have

∥f̃ΛDte
− f∗∥2L2(Π)
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≤ Op

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ ∧ d
1+q

1+q+sn−
1+q

1+q+sR
2s

1+q+s

2,g∗

+
d log(M)

n
+
B2 log(1 + n)

n

)
,

where a ∧ b means min{a, b}.

This can be shown by combining our bound in Theo-
rem 2 and the technique used in Theorem 7.2 of Stein-
wart and Christmann (2008). According to Theorem
4, the estimator f̃ΛDte

with the validated parameter
ΛDte achieves the minimum learning rate among the
oracle bound for L1-MKL (8) and that for elastic-net
MKL (9) if B is sufficiently small. Therefore, our
bound is almost attainable (at the cost of the term
B2 log(1+n)

n ) by a simple executable algorithm.

3.4 Comparison with Existing Bounds

Finally, we compare out bound with the existing
bounds. Roughly speaking, the difference from the
existing bounds is summarized in the following two
points (see also Table 1 summarizing the relations be-
tween our analysis and existing analyses):

(a) Our learning rate achieves the minimax rates of
the ℓ1-mixed-norm ball or the ℓ2-mixed-norm ball,
instead of the ℓ∞-mixed-norm ball.

(b) Our bound includes the smoothing parameter q
(Assumption 2), and thus is more general and
faster than existing bounds.

The first bound on the convergence rate of MKL was
derived by Koltchinskii and Yuan (2008), which as-
sumed q = 1 and 1

d

∑
m∈I0

(∥g∗m∥2Hm
/∥f∗m∥2Hm

) ≤ C.
Under these rather strong conditions, they showed the

bound d
1−s
1+s n−

1
1+s + d log(M)

n . Our convergence rate
of L1-MKL achieves this learning rate without the
two strong conditions. Moreover, for the smooth case
q = 1, we have shown that elastic-net MKL has a faster

rate n−
2

2+s instead of n−
1

1+s with respect to n.

The second bound was given by Meier et al. (2009),

which showed d (log(M)/n)
1

1+s for elastic-net regular-
ization under q = 0. Their bound almost achieves the
minimax rate on the ℓ∞-mixed-norm ball except the
additional log(M) term. Compared with our bound,
their bound has the log(M) term and the rate with

respect to d is larger than d
1

1+s in our learning rate of
elastic-net MKL. Moreover, our result for elastic-net
MKL covers all 0 ≤ q ≤ 1.

Most recently, Koltchinskii and Yuan (2010) presented

the bound n−
1

1+s (d +
∑

m∈I0
∥f∗m∥Hm) + d log(M)

n for

L1-MKL and q = 0. Their bound achieves the min-
imax rate on the ℓ∞-mixed-norm ball, but is not as
tight as our bound (8) of L1-MKL because by Young’s
inequality we always have

d
1−s
1+s (

∑
m∈I0

∥f∗m∥Hm)
2s

1+s ≤ d+
∑
m∈I0

∥f∗m∥Hm .

However, their bound is d
2s

1+s times slower than ours
if the ground truth is inhomogeneous. For example,
when ∥f∗m∥Hm = m−1 (m ∈ I0 = {1, . . . , d}) and

f∗m = 0 (otherwise), their bound is n−
1

1+s d+ d log(M)
n ,

while our bound for L1-MKL is n−
1

1+s d
1−s
1+s + d log(M)

n .
Moreover they assumed the global boundedness, that
is, the sup-norm of f∗ is bounded by a constant:
∥f∗∥∞ = ∥

∑M
m=1 f

∗
m∥∞ ≤ C. This assumption is

standard and does not affect the convergence rate in
single kernel learning settings. However, in MKL set-
tings, it is pointed out that the rate is not minimax
optimal in large d regime (in particular d = Ω(

√
n))

under the global boundedness (Raskutti et al., 2010).
Our analysis omits the global boundedness by utilizing
the Sup-norm Assumption (Assumption 5).

All the bounds explained above focused on either q = 0
or 1. On the other hand, our analysis is more general
in that the whole range of 0 ≤ q ≤ 1 is allowed.

4 Conclusion

We presented a new learning rate of both L1-MKL
and elastic-net MKL, which is faster than the existing
bounds of several MKL formulations. According to our
bound, the learning rates of L1-MKL and elastic-net
MKL achieve the minimax optimal rates on the ℓ1-
mixed-norm ball and the ℓ2-mixed-norm ball respec-
tively, instead of the ℓ∞-mixed-norm ball. We also
showed that a procedure like cross validation gives the
optimal choice of the parameters. We observed that,
depending on the smoothness of the ground truth, pre-
ferred methods (L1-MKL or elastic-net MKL) change.
This theoretical insight supports the recent experimen-
tal results (Cortes et al., 2009a, Kloft et al., 2009,
Tomioka and Suzuki, 2009) such that intermediate reg-
ularization between ℓ1 and ℓ2 often shows favorable
performances.
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—Appendix–Supplementary Material—
Fast Learning Rate of Multiple Kernel Learning:

Trade-Off between Sparsity and Smoothness

A Covering Number

Here, we give a detailed characterization of the covering number in terms of the spectrum using the operator Tm.
Accordingly, we give the complexity of the set of functions satisfying the Convolution Assumption (Assumption
2). We extend the domain and the range of the operator Tm to the whole space of L2(Π), and define its power
T β
m : L2(Π)→ L2(Π) for β ∈ [0, 1] as

T β
mf :=

∞∑
k=1

µβ
k,m⟨f, ϕk,m⟩L2(Π)ϕk,m, (f ∈ L2(Π)).

Moreover, we define a Hilbert space Hm,β as

Hm,β := {
∑∞

k=1 bkϕk,m |
∑∞

k=1 µ
−β
k,mb

2
k ≤ ∞},

and equip this space with the Hilbert space norm ∥
∑∞

k=1 bkϕk,m∥Hm,β
:=
√∑∞

k=1 µ
−β
k,mb

2
k. One can check that

Hm,1 = Hm. Here we define, for R > 0,

Hq
m(R) := {fm = T

q
2
mgm | gm ∈ Hm, ∥gm∥Hm ≤ R}. (14)

Then we obtain the following lemma.

Lemma 5. Hq
m(1) is equivalent to the unit ball of Hm,1+q: Hq

m(1) = {fm ∈ Hm,1+q | ∥fm∥Hm,1+q ≤ 1}.

This can be shown as follows. For all fm ∈ Hq
m(1), there exists gm ∈ Hm such that fm = T

q
2
mgm and ∥gm∥Hm ≤

1. Thus, gm = (T
q
2
m)−1fm =

∑∞
k=1 µ

− q
2

k,m⟨f, ϕk,m⟩L2(Π)ϕk,m and 1 ≥ ∥gm∥Hm =
∑∞

k=1 µ
−1
k,m⟨g, ϕk,m⟩2L2(Π) =∑∞

k=1 µ
−(1+q)
k,m ⟨f, ϕk,m⟩2L2(Π). Therefore, f ∈ Hm is in Hq

m(1) if and only if the norm of f in Hm,1+q is well-
defined and not greater than 1.

Now Theorem 15 of Steinwart et al. (2009) gives an upper bound of the covering number of the unit ball BHm,β

in Hm,β as logN (ε,BHm,β
, L2(Π)) ≤ Cε−2 s

β , where C is a constant depending on c, s, β. This inequality with
β = 1 corresponds to Eq. (3). Moreover, substituting β = 1 + q into the above equation, we have

N (ε,Hq
m(1), L2(Π)) ≤ Cε−2 s

1+q . (15)

B Proof of Lemma 1

Proof. (Lemma 1) For J = Ic, we have

Pf2 = ∥fI∥2L2(Π) + 2⟨fI , fJ⟩L2(Π) + ∥fJ∥2L2(Π) ≥ ∥fI∥
2
L2(Π) − 2ρ(I)∥fI∥L2(Π)∥fJ∥L2(Π) + ∥fJ∥2L2(Π)

≥ (1− ρ(I)2)∥fI∥2L2(Π) ≥ (1− ρ(I)2)κ(I)

(∑
m∈I

∥fm∥2L2(Π)

)
, (16)

where we used Cauchy-Schwarz’s inequality in the last line.

C Useful Inequalities

Here we describe some inequalities that are used in the proofs many times.

Young’s inequality: for all a, b ∈ R and all α ∈ [0, 1], we have

aαb1−α ≤ αa+ (1− α)b.
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Hölder’s inequality: for all a, b ∈ RM and all 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1, we have

a⊤b ≤ ∥a∥ℓp∥a∥ℓq

where ∥a′∥ℓp is the ℓp-norm of the vector a′: ∥a′∥ℓp = (
∑M

m=1 |am|p)
1
p for (1 ≤ p < ∞) and ∥a′∥ℓ∞ =

maxm{|am|}. The special case of Hölder’s inequality for p = q = 2 is the Cauchy-Schwarz inequality.

D Talagrand’s Concentration Inequality

The following proposition is a key tool for our analysis.

Proposition 6. (Talagrand’s Concentration Inequality (Talagrand, 1996, Bousquet, 2002)) Let G be
a function class on X that is separable with respect to ∞-norm, and {xi}ni=1 be i.i.d. random variables with
values in X . Furthermore, let B ≥ 0 and U ≥ 0 be B := supg∈G E[(g−E[g])2] and U := supg∈G ∥g∥∞, then there

exists a universal constant K such that, for Z := supg∈G
∣∣ 1
n

∑n
i=1 g(xi)− E[g]

∣∣, we have

P

(
Z ≥ K

[
E[Z] +

√
Bt

n
+
Ut

n

])
≤ e−t. (17)

E Proof of Theorem 2

To prove Theorem 2, we start from the following relation that is derived from the fact that f̂ minimizes the
objective function (1):

1

n

n∑
i=1

(f̂(xi)− yi)2 +
M∑

m=1

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)

≤ 1

n

n∑
i=1

(f∗(xi)− yi)2+
∑
m∈I0

(λ
(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

). (18)

Through a simple calculation, we obatin

∥f̂ − f∗∥2L2(Π) +
M∑

m=1

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)

≤
(
∥f̂ − f∗∥2L2(Π) − ∥f̂ − f

∗∥2n
)
+

1

n

n∑
n=1

M∑
m=1

ϵi(f̂m(xi)− f∗m(xi))

+
∑
m∈I0

(λ
(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

).

To bound the right hand side, we will show the following two bounds for the first two terms (Theorems 7 and 8):∣∣∣∣∣ 1n
n∑

i=1

ϵi(f̂m(xi)− f∗m(xi))

∣∣∣∣∣ ≤ Op

[
ξn(λ)

(
∥f̂m − f∗m∥L2(Π) + λ

1
2 ∥f̂m − f∗m∥Hm

)]
, (19)∣∣∣∣∥∥∥∑M

m=1(f
∗
m − f̂m)

∥∥∥2
n
−
∥∥∥∑M

m=1(f
∗
m − f̂m)

∥∥∥2
L2(Π)

∣∣∣∣
≤ op

√nξn(λ)2
[

M∑
m=1

(
∥f∗m − f̂m∥L2(Π) + λ

1
2 ∥f∗m − f̂m∥Hm

)]2 , (20)

for an arbitrary fixed λ > 0. Substituting these relations in to Eq. (18) yields the following inequality:

∥f̂ − f∗∥2L2(Π) +
M∑

m=1

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)
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≤op

{
√
nξn(λ)

2

[
M∑

m=1

(
∥f∗m − f̂m∥L2(Π) + λ

1
2 ∥f∗m − f̂m∥Hm

)]2}

+Op

{
M∑

m=1

ξn(λ)(∥f̂m− f∗m∥L2(Π)+ λ
1
2 ∥f̂m − f∗m∥Hm)

}
+
∑
m∈I0

(λ
(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

).

This is our start point. We show the convergence rates of both elastic-net MKL and L1-MKL from this type of
inequality. Thus we require inequalities like Eq. (19) and Eq. (20).

Remind the definition of η(t):

η(t) := max(1,
√
t, t/
√
n). (21)

We define

ϕs := max
{
2KL(Cs + 1 + C1),K

[
8K(Cs + 1 + C1) + C1 + C2

1

]
, 1
}
, (22)

where K is the universal constant appeared in Talagrand’s concentration inequality (Proposition 6). and Cs is
a constant depending on s and C that will be given in Lemma 15. Moreover we define

ζn(r, λ) := min

(
r2 log(M)

nξn(λ)4ϕ2s
,

r

ξn(λ)2ϕs

)
.

Finally we introduce two events E1(t) and E2(r) for given λ > 0 as

E1(t) =

{∣∣∣∣∣ 1n
n∑

i=1

ϵifm(xi)

∣∣∣∣∣ ≤ η(t)ϕsξn (∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

)
, ∀fm ∈ Hm, ∀m = 1, . . . ,M

}
,

E2(r) =

{∣∣∣∣∣∣
∥∥∥∥∥

M∑
m=1

fm

∥∥∥∥∥
2

n

−

∥∥∥∥∥
M∑

m=1

fm

∥∥∥∥∥
2

L2(Π)

∣∣∣∣∣∣ ≤ max(ϕs
√
nξ2n, r)

[
M∑

m=1

(
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

)]2
,

∀fm ∈ Hm, ∀m = 1, . . . ,M

}
.

Then the following Theorems 7 and 8 indicate that the events E1(t) and E2(r) hold with probabilities greater

than 1 − exp(−t) and 1 − exp(−ζn(r, λ)) respectively if log(M)√
n
≤ 1. Thus substituting f̂m − f∗m into fm in the

definition of E1(t) and E2(r), we obtain Eq. (19) and Eq. (20).

Theorem 7. Under the Basic Assumption, the Spectral Assumption and the Supnorm Assumption, when
log(M)√

n
≤ 1, we have for all λ > 0 and all t ≥ 1

P (E1(t)) ≥ 1− exp(−t).

Theorem 8. Under the Spectral Assumption and the Supnorm Assumption, when log(M)√
n
≤ 1, for all λ > 0 and

all r > 0 we have

P (E2(r)) ≥ 1− exp(−ζn(r, λ)).

The proofs of these two theorems will be given in Appendix F.

Next we give a bound of irrelevant components (m ∈ Ic0) of f̂ (that should vanish or neglectably small) in terms

of the relevant components (f̂m, f
∗
m form ∈ I0) in Lemma 9. Using Theorems 7, 8 and Lemma 9, we can show the

convergence rate of elastic-net MKL and L1-MKL; the rate of elastic-net MKL will be shown in Theorem 10 and
Corollary 11 and that of L1-MKL will be shown in Theorem 12 and Corollary 13. To prove the convergence rates,
we first give upper bounds of the generalization errors that depend on the choice of regularization parameters
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λ
(n)
1 , λ

(n)
2 , and λ

(n)
3 in Theorems 10 and 12. Then we substitute optimal regularization parameters into these

results in Corollaries 11 and 13. The assertion of Theorem 2 is directly obtained from Corollaries 11 and 13.

Now we show the statement of Lemma 9 that bounds irrelevant components (m ∈ Ic0) of f̂ in terms of the

relevant components (f̂m, f
∗
m for m ∈ I0).

Lemma 9. Set λ
(n)
1 = 4ϕsη(t)ξn(λ) and λ

(n)
2 = λ

1
2λ

(n)
1 for arbitrary λ > 0 and set λ

(n)
3 > 0 be an arbitrary

positive. Then for all n and r satisfying log(M)√
n
≤ 1 and max(ϕs

√
nξ2n, r) ≤ 1

8 , we have

M∑
m=1

(λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

)

≤8
∑
m∈I0

{
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

+

λ
(n)
3

1+q
2 ∥g∗m∥Hm

(
∥f∗m − f̂m∥L2(Π) + λ

(n)
3

1
2 ∥f∗m − f̂m∥Hm

)}
, (23)

and

M∑
m=1

(
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

)
≤
∑
m∈I0

(
8λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + 8λ

(n)
2 ∥f∗m∥Hm + 4λ

(n)
3 ∥f∗m∥2Hm

)
, (24)

on the events E1(t) and E2(r).

The proof will be given in Appendix G.

We are ready to show the convergence rates of elastic-net MKL and L1-MKL. The following Theorem 10 and
Corollary 11 gives the convergence rate of elastic-net MKL (the rate of L1-MKL will be shown in Theorem 12
and Corollary 13).

Theorem 10. Suppose Assumptions 1–5 are satisfied. Let λ
(n)
1 = 4ϕsη(t)ξn(λ), λ

(n)
2 = λ

1
2λ

(n)
1 , λ

(n)
3 = λ for

arbitrary λ > 0. In this setting, for all n and r satisfying log(M)√
n
≤ 1 and

256max(ϕs
√
nξ2n, r)

(
d+

λ
(n)
3

1+q

λ
(n)
1

2

∑M
m=1 ∥g∗m∥2Hm

)
(1− ρ(I0)2)κ(I0)

≤ 1

8
, (25)

we have

∥f̂ − f∗∥2L2(Π) ≤
104

(1− ρ(I0))2κ(I0)

(
dλ

(n)
1

2
+ λ

(n)
3

1+q
M∑

m=1

∥g∗m∥2Hm

)
, (26)

with probability 1− exp(−t)− exp(−ζn(r, λ)) for all t ≥ 1.

Proof. (Theorem 10) Notice that the assumption (25) implies max(ϕs
√
nξ2n, r) ≤ 1

8 . Thus the condition in
Lemma 9 is met. In the proof of Lemma 9, we will show that the following inequality holds on the events E1(t)
and E2(r) (Eq. (60)):

∥f̂ − f∗∥2L2(Π) +
1

2

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

λ
(n)
3 ∥f̂m−f∗m∥2Hm

≤(∥f̂ − f∗∥2L2(Π) − ∥f̂ − f
∗∥2n) +

M∑
m=1

η(t)ϕsξn(∥f̂m− f∗m∥L2(Π)+ λ
1
2 ∥f̂m − f∗m∥Hm)
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+
∑
m∈I0

[
3

2
(λ

(n)
1 ∥f∗m− f̂m∥L2(Π)+λ

(n)
2 ∥f∗m− f̂m∥Hm) + 2λ

(n)
3 ⟨f∗m, f∗m− f̂m⟩Hm

]
.

Here on the event E2(r), the above inequality gives

∥f̂ − f∗∥2L2(Π) +
1

2

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

λ
(n)
3 ∥f̂m−f∗m∥2Hm

≤max(ϕs
√
nξ2n, r)

(
M∑

m=1

(∥f̂m − f∗m∥L2(Π) + λ
1
2 ∥f̂m − f∗m∥Hm)

)2

︸ ︷︷ ︸
(i)

+

M∑
m=1

η(t)ϕsξn(∥f̂m− f∗m∥L2(Π)+ λ
1
2 ∥f̂m − f∗m∥Hm)︸ ︷︷ ︸

(ii)

+
∑
m∈I0

32(λ(n)1 ∥f∗m− f̂m∥L2(Π) + λ
(n)
2 ∥f∗m− f̂m∥Hm)︸ ︷︷ ︸

(iii)

+2λ
(n)
3 ⟨f∗m, f∗m− f̂m⟩Hm︸ ︷︷ ︸

(iv)

 . (27)

From now on, we bound the terms (i) to (iv) in the RHS. By the assumption, we have λ
(n)
3

1
2
= λ

1
2 = λ

(n)
2 /λ

(n)
1 .

This and Eq. (23) yield

M∑
m=1

(λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm)

≤8
∑
m∈I0

(
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm+

λ
(n)
3

1+q
2 ∥g∗m∥Hm

(
∥f∗m − f̂m∥L2(Π) + λ

(n)
3

1
2 ∥f∗m − f̂m∥Hm

))

=8
∑
m∈I0

(
1 +

λ
(n)
3

1+q
2 ∥g∗m∥Hm

λ
(n)
1

)(
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

)
. (28)

Step 1. (Bound of the first term (i) in the RHS of Eq. (27)) By Eq. (28) and λ
1
2 = λ

(n)
3

1
2
= λ

(n)
2 /λ

(n)
1 , the term

(i) on the RHS of Eq. (27) can be upper bounded as

max(ϕs
√
nξ2n, r)

(
M∑

m=1

(∥f̂m − f∗m∥L2(Π) + λ
(n)
3

1
2 ∥f̂m − f∗m∥Hm)

)2

≤max(ϕs
√
nξ2n, r)

8
∑
m∈I0

1 +
λ
(n)
3

1+q
2 ∥g∗m∥Hm

λ
(n)
1

(∥f∗m − f̂m∥L2(Π) + λ
(n)
3

1
2 ∥f∗m − f̂m∥Hm

)2

. (29)

By Cauchy-Schwarz’s inequality and (a+ b)2 ≤ 2(a2 + b2),∑
m∈I0

1 +
λ
(n)
3

1+q
2 ∥g∗m∥Hm

λ
(n)
1

(∥f∗m − f̂m∥L2(Π) + λ
(n)
3

1
2 ∥f∗m − f̂m∥Hm

)2

≤
∑
m∈I0

1 +
λ
(n)
3

1+q
2 ∥g∗m∥Hm

λ
(n)
1

2 ∑
m∈I0

(
∥f∗m − f̂m∥L2(Π) + λ

(n)
3

1
2 ∥f∗m − f̂m∥Hm

)2
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≤4
∑
m∈I0

1 +
λ
(n)
3

1+q
∥g∗m∥2Hm

λ
(n)
1

2

 ∑
m∈I0

(
∥f̂m − f∗m∥2L2(Π) + λ

(n)
3 ∥f̂m − f∗m∥2Hm

)
.

Thus the RHS of (29) is further bounded by

256max(ϕs
√
nξ2n, r)

d+ λ
(n)
3

1+q∑M
m=1 ∥g∗m∥2Hm

λ
(n)
1

2

 ∑
m∈I0

(
∥f̂m − f∗m∥2L2(Π) + λ

(n)
3 ∥f̂m − f∗m∥2Hm

)
(4)

≤256max(ϕs
√
nξ2n, r)

d+ λ
(n)
3

1+q∑M
m=1 ∥g∗m∥2Hm

λ
(n)
1

2

( ∥f̂ − f∗∥2L2(Π)

(1− ρ(I0)2)κ(I0)
+
∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
, (30)

where we used Eq. (4) in Lemma 1 in the last line. By the assumption (25), we have

128max(ϕs
√
nξ2n, r)

(
d+

λ
(n)
3

1+q ∑M
m=1 ∥g∗

m∥2
Hm

λ
(n)
1

2

)
/(1− ρ(I0)2)κ(I0) ≤ 1

8 . Hence the RHS of the above inequality

is bounded by 1
8

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
.

Step 2. (Bound of the second term (ii) in the RHS of Eq. (27)) By Eq. (28), we have on the event E1

M∑
m=1

η(t)ϕsξn

(
∥f̂m − f∗m∥L2(Π) + λ

1
2 ∥f̂m − f∗m∥Hm

)

≤
∑
m∈I0

8

1 +
λ
(n)
3

1+q
2 ∥g∗m∥Hm

λ
(n)
1

 η(t)ϕsξn

(
∥f̂m − f∗m∥L2(Π) + λ

(n)
3

1
2 ∥f̂m − f∗m∥Hm

)

≤ 256ϕ2sη(t)
2ξ2n

(1− ρ(I0)2)κ(I0)

d+ λ
(n)
3

1+q

λ
(n)
1

2

M∑
m=1

∥g∗m∥2Hm


+

(1− ρ(I0)2)κ(I0)
16

∑
m∈I0

(
∥f̂m − f∗m∥L2(Π) + λ

(n)
3

1
2 ∥f̂m − f∗m∥Hm

)2

≤ 16

(1− ρ(I0)2)κ(I0)

(
dλ

(n)
1

2
+λ

(n)
3

1+q
M∑

m=1

∥g∗m∥2Hm

)

+
1

8

(
∥f̂ − f∗∥2L2(Π)+

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
, (31)

where we used (a + b)2 ≤ 2(a2 + b2) and (1 − ρ(I0)2)κ(I0)
∑

m∈I0
∥f̂m − f∗m∥2L2(Π) ≤ ∥f̂ − f

∗∥2L2(Π) (Lemma 1)
in the last inequality.

Step 3. (Bound of the third term (iii) in the RHS of Eq. (27)) By Cauchy-Schwarz inequality and λ
(n)
3

1
2
=

λ
(n)
2 /λ

(n)
1 , we have∑

m∈I0

3

2
(λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f̂m − f∗m∥Hm)

≤ 72

2(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2
+

(1− ρ(I0)2)κ(I0)
8

∑
m∈I0

(
∥f̂m − f∗m∥2L2(Π) + λ

(n)
3 ∥f̂m − f∗m∥2Hm

)
(4)

≤ 36

(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2
+

1

8

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
. (32)

Step 4. (Bound of the last term (iv) in the RHS of Eq. (27)) By Eq. (61) in the proof of Lemma 9 (Appendix
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G), and Cauchy-Schwarz inequality, we have∑
m∈I0

2λ
(n)
3 ⟨f∗m, f∗m − f̂m⟩Hm

(61)

≤ 2
∑
m∈I0

λ
(n)
3

1+q
2 ∥g∗m∥Hm(∥f̂m − f∗m∥L2(Π) + λ

(n)
3

1
2 ∥f̂m − f∗m∥Hm)

≤
16
∑M

m=1 ∥g∗m∥2Hm

(1− ρ(I0)2)κ(I0)
λ
(n)
3

1+q
+

(1− ρ(I0)2)κ(I0)
8

∑
m∈I0

(
∥f̂m − f∗m∥2L2(Π) + λ

(n)
3 ∥f̂m − f∗m∥2Hm

)
(4)

≤
16
∑M

m=1 ∥g∗m∥2Hm

(1− ρ(I0)2)κ(I0)
λ
(n)
3

1+q
+

1

8

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
, (33)

where we used
∑

m∈I0
∥g∗m∥2Hm

=
∑M

m=1 ∥g∗m∥2Hm
because g∗m = 0 for m ∈ Ic0 .

Step 5. (Combining all the bounds) Substituting the inequalities (30), (31), (32) and (33) to Eq. (27), we obtain

∥f̂ − f∗∥2L2(Π) +
∑
m∈I0

λ
(n)
3 ∥f̂m−f∗m∥2Hm

≤ 16

(1− ρ(I0)2)κ(I0)

(
dλ

(n)
1

2
+ λ

(n)
3

1+q
R2

g∗

)
+

36

(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2

+
16R2

g∗

(1− ρ(I0)2)κ(I0)
λ
(n)
3

1+q
+

1

2

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)

≤ 52

(1− ρ(I0)2)κ(I0)

(
dλ

(n)
1

2
+ λ

(n)
3

1+q
M∑

m=1

∥g∗m∥2Hm

)

+
1

2

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
.

Moving the term 1
2

(
∥f̂ − f∗∥2L2(Π) +

∑
m∈I0

λ
(n)
3 ∥f̂m − f∗m∥2Hm

)
in the RHS to the left, we obtain the assertion.

The probability bound is given by Theorems 7 and 8.

Substituting λ = d
1

1+q+sn−
1

1+q+sR
− 2

1+q+s

2,g∗ into the bound in Theorem 10, we obtain the convergence rate of
elastic-net MKL (7) in Theorem 2 as in the following Corollary 11.

Corollary 11. Suppose Assumptions 1–5 are satisfied, and set

λ = d
1

1+q+sn−
1

1+q+sR
− 2

1+q+s

2,g∗ .

Then there exist constants C̃1, C̃2 and ψs depending on s, c, L, C1, ρ(I0), κ(I0) such that if λ
(n)
1 , λ

(n)
2 and λ

(n)
3

are set as λ
(n)
1 = ψsη(t)ξn(λ), λ

(n)
2 = λ

(n)
1 λ

1
2 , λ

(n)
3 = λ, then for all n satisfying log(M)√

n
≤ 1 and

C̃1ϕs
√
nξn(λ)

2d ≤ 1, (34)

we have

∥f̂ − f∗∥2L2(Π)

≤C̃2

(
d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗ +
d log(M)

n
+d

q+s
1+q+sn−

1+q
1+q+s−

q(1−s)
(1+s)(1+q+s)R

2
1+q+s

2,g∗

)
η(t)2. (35)

with probability 1− exp(−t)− exp(−ζn( 1
C̃1d

, λ)) for all t ≥ 1.

Proof. (Corollary 11) We set ψs = 4ϕs and suppose the following relation is met:

256max(ϕs
√
nξ2n, r)

(
d+

λ
(n)
3

1+q

λ
(n)
1

2

∑M
m=1 ∥g∗m∥2Hm

)
(1− ρ(I0)2)κ(I0)

≤ 1

8
. (36)
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Then the assumptions for Theorem 10 are met. Once we assume the above condition (36) is satisfied (later we
show this is satisfied), we can apply Theorem 10 that says

∥f̂ − f∗∥2L2(Π) ≲ dλ
(n)
1

2
+ λ

(n)
3

1+q
R2

2,g∗ .

When λ = d
1

1+q+sn−
1

1+q+sR
− 2

1+q+s

2,g∗ ,

λ
(n)
1 = ψsξn(λ)η(t) = ψs

(
λ−

s
2

√
n
∨ λ−

1
2

n
1

1+s

∨
√

log(M)

n

)
η(t).

Therefore

dλ
(n)
1

2
= ψ2

s

(
dλ−s

n
∨ dλ

−1

n
2

1+s

∨ d log(M)

n

)
η(t)2

= ψ2
s

d1− s
1+q+sn

s
1+q+sR

2s
1+q+s

2,g∗

n
∨
d1−

1
1+q+sn

1
1+q+sR

− 2
1+q+s

2,g∗

n
2

1+s

∨ d log(M)

n

 η(t)2

= ψ2
s

(
d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗ ∨ d
q+s

1+q+sn−
1+q

1+q+s−
q(1−s)

(1+s)(1+q+s)R
2

1+q+s

2,g∗ ∨ d log(M)

n

)
η(t)2,

and

λ
(n)
3

1+q
R2

2,g∗ = d
1+q

1+q+sn−
1+q

1+q+sR
− 2(1+q)

1+q+s+2

2,g∗ = d
1+q

1+q+sn−
1+q

1+q+sR
2s

1+q+s

2,g∗ .

By Eq. (26) in Theorem 10, we have

∥f̂ − f∗∥2L2(Π)

≤ 104

(1− ρ(I0))2κ(I0)

(
dλ

(n)
1

2
+ λ

(n)
3

1+q
M∑

m=1

∥g∗m∥2Hm

)

≤ 104(ψ2
s + 1)η(t)2

(1− ρ(I0))2κ(I0)

(
d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗ + d
q+s

1+q+sn−
1+q

1+q+s−
q(1−s)

(1+s)(1+q+s)R
2

1+q+s

2,g∗ +
d log(M)

n

)
.

Thus by setting C̃2 as

C̃2 =
104(ψ2

s + 1)

(1− ρ(I0))2κ(I0)
,

we obtain the inequality (35).

Finally we show the condition (34) yields the condition (36) for appropriately chosen C̃1 and r. Note that

λ
(n)
3

1+q

λ
(n)
1

2 R2
2,g∗ ≤ d

1+q
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗

/
ψ2
s

(
d−

s
1+q+sn−

1+q
1+q+sR

2s
1+q+s

2,g∗

)
η(t)2 ≤ d

ψ2
sη(t)

2
.

Here by the definitions (21) and (22) of η(t) and ϕs, we have η(t) ≥ 1 and ψs = 4ϕs ≥ 1. Thus

λ
(n)
3

1+q

λ
(n)
1

2 R2
2,g∗ ≤

d

ψ2
sη(t)

2
≤ d.

Therefore the condition (36) is satisfied if the following inequality holds:

256max(ϕs
√
nξ2n, r) (d+ d)

(1− ρ(I0)2)κ(I0)
≤ 1

8
.

Thus by setting C̃1 = 8×512
(1−ρ(I0)2)κ(I0)

and r = 1
C̃1d

, the condition (34) gives the condition (36). Substituting this

r into the claim of Theorem 10, we obtain the assertion.
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The next theorem and Corollary 13 give the convergence rate of L1-MKL. Note that for the convergence rate of
L1-MKL, we don’t include the Convolution Assumption (Assumption 2), that is, the smoothness parameter q
does not appear in the rate of L1-MKL.

Theorem 12. Suppose Assumptions 1 and 3–5 are satisfied, Let λ
(n)
1 = 4ϕsη(t)ξn(λ), λ

(n)
2 = λ

1
2λ

(n)
1 for arbitrary

λ > 0 and λ
(n)
3 = 0. In this setting, for all n and r satisfying log(M)√

n
≤ 1 and

128max(ϕs
√
nξ2n, r)d

(1− ρ(I0)2)κ(I0)
≤ 1

8
, (37)

we have

∥f̂ − f∗∥2L2(Π) ≤
606

(1− ρ(I0))2κ(I0)

dλ(n)1

2
+ λ

(∑
m∈I0

∥f∗m∥Hm

)2
 , (38)

with probability 1− exp(−t)− exp(−ζn(r, λ)) for all t ≥ 1.

Proof. (Theorem 12) Notice again that the assumption (37) implies r ≤ 1
8 . Thus the assertion of Lemma 9

holds. We assume the events E1(t) and E2(r) are met. By Theorems 7 and 8, the probability of E1(t) ∪ E2(r) is
bounded from below by 1− exp(−t)− exp(−ζn(r, λ)).

We start from Eq. (27) in the proof of Theorem 10 with λ
(n)
3 = 0:

∥f̂ − f∗∥2L2(Π) +
1

2

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm)

≤max(ϕs
√
nξ2n, r)

(
M∑

m=1

(∥f̂m − f∗m∥L2(Π) + λ
1
2 ∥f̂m − f∗m∥Hm)

)2

︸ ︷︷ ︸
(i)

+
M∑

m=1

η(t)ϕsξn(∥f̂m− f∗m∥L2(Π)+ λ
1
2 ∥f̂m − f∗m∥Hm)︸ ︷︷ ︸

(ii)

+
∑
m∈I0

3

2
(λ

(n)
1 ∥f∗m− f̂m∥L2(Π) + λ

(n)
2 ∥f∗m− f̂m∥Hm)︸ ︷︷ ︸

(iii)

. (39)

As in the proof of Theorem 10, we bound each term (i) to (iv) as follows.

Step 1. (Bound of the first term (i) in the RHS of Eq. (39)) By Eq. (24) in Lemma 9 and the relation (a+ b)2 ≤
2(a2 + b2), the term (i) on the RHS of Eq. (39) can be upper bounded as

max(ϕs
√
nξ2n, r)

(
M∑

m=1

(∥f̂m − f∗m∥L2(Π) + λ
1
2 ∥f̂m − f∗m∥Hm)

)2

(24)

≤ max(ϕs
√
nξ2n, r)

(
8
∑
m∈I0

(
∥f∗m − f̂m∥L2(Π) + λ

1
2 ∥f∗m∥Hm

))2

≤128max(ϕs
√
nξ2n, r)

(∑
m∈I0

∥f∗m − f̂m∥L2(Π)

)2

+ 128max(ϕs
√
nξ2n, r)λ

(∑
m∈I0

∥f∗m∥Hm

)2

≤128max(ϕs
√
nξ2n, r)

(1− ρ(I0)2)κ(I0)
(1− ρ(I0)2)κ(I0)d

∑
m∈I0

∥f∗m − f̂m∥2L2(Π)
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+ 128max(ϕs
√
nξ2n, r)λ

(∑
m∈I0

∥f∗m∥Hm

)2

(4)

≤ 128max(ϕs
√
nξ2n, r)d

(1− ρ(I0)2)κ(I0)
∥f∗ − f̂∥2L2(Π) + 128max(ϕs

√
nξ2n, r)d

λ

d

(∑
m∈I0

∥f∗m∥Hm

)2

, (40)

where we used (1 − ρ(I0)
2)κ(I0)

∑
m∈I0

∥f̂m − f∗m∥2L2(Π) ≤ ∥f̂ − f∗∥2L2(Π) (Eq. (4) in Lemma 1) in the last

inequality. By the assumption (37), we have
128max(ϕs

√
nξ2n,r)d

(1−ρ(I0)2)κ(I0)
≤ 1

8 . Hence the RHS of the above inequality is

bounded by 1
8

[
∥f̂ − f∗∥2L2(Π) +

λ
d (
∑

m∈I0
∥f∗m∥Hm)2

]
.

Step 2. (Bound of the second term (ii) in the RHS of Eq. (39)) By Eq. (24) in Lemma 9 and the relations

η(t)ϕsξn = λ
(n)
1 /4, λ

(n)
2 = λ

1
2λ

(n)
1 , we have on the event E1

M∑
m=1

η(t)ϕsξn

(
∥f̂m − f∗m∥L2(Π) + λ

1
2 ∥f̂m − f∗m∥Hm

)
=

M∑
m=1

1

4

(
λ
(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f̂m − f∗m∥Hm

)
(24)

≤
∑
m∈I0

2
(
λ
(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f∗m∥Hm

)

≤ 8dλ
(n)
1

2

(1− ρ(I0)2)κ(I0)
+

(1− ρ(I0)2)κ(I0)
8

∑
m∈I0

∥f̂m − f∗m∥2L2(Π) + 2
∑
m∈I0

λ
(n)
2 ∥f∗m∥Hm

(4)

≤ 8dλ
(n)
1

2

(1− ρ(I0)2)κ(I0)
+

1

8
∥f̂ − f∗∥2L2(Π) + 2

∑
m∈I0

λ
(n)
2 ∥f∗m∥Hm (41)

where we used 2ab ≤ a2+b2 in the third inequality and (1−ρ(I0)2)κ(I0)
∑

m∈I0
∥f̂m−f∗m∥2L2(Π) ≤ ∥f̂ −f

∗∥2L2(Π)

(Eq. (4) in Lemma 1) in the last inequality.

Step 3. (Bound of the third term (iii) in the RHS of Eq. (39)) By Eq. (24), we have∑
m∈I0

3

2
(λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f̂m − f∗m∥Hm)

≤
M∑

m=1

3

2
(λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f̂m − f∗m∥Hm)

(24)

≤
∑
m∈I0

12(λ
(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f∗m∥Hm)

≤ 8× 36dλ
(n)
1

2

(1− ρ(I0)2)κ(I0)
+

(1− ρ(I0)2)κ(I0)
8

∑
m∈I0

∥f̂m − f∗m∥2L2(Π) + 12
∑
m∈I0

λ
(n)
2 ∥f∗m∥Hm

≤ 288dλ
(n)
1

2

(1− ρ(I0)2)κ(I0)
+

1

8
∥f̂ − f∗∥2L2(Π) + 12

∑
m∈I0

λ
(n)
2 ∥f∗m∥Hm

, (42)

where we used the same technique as in Eq. (41), that is, we used 2ab ≤ a2 + b2 in the third inequality and

(1− ρ(I0)2)κ(I0)
∑

m∈I0
∥f̂m − f∗m∥2L2(Π) ≤ ∥f̂ − f

∗∥2L2(Π) (Lemma 1) in the last inequality.

Step 4. (Combining all the bounds) Substituting the inequalities (40), (41) and (42) to Eq. (39), we obtain

∥f̂ − f∗∥2L2(Π)
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≤ 8 + 288

(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2
+ (2 + 12)λ

(n)
2

∑
m∈I0

∥f∗m∥Hm +
λ

8d

(∑
m∈I0

∥f∗m∥Hm

)2

+
3

8
∥f̂ − f∗∥2L2(Π).

Moving the term 3
8∥f̂ − f

∗∥2L2(Π) in the RHS to the left, we obtain

1

2
∥f̂ − f∗∥2L2(Π)

≤ 296

(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2
+ 14λ

(n)
2

∑
m∈I0

∥f∗m∥Hm +
λ

8d

(∑
m∈I0

∥f∗m∥Hm

)2

.

Finally, since the relation λ
(n)
2 = λ

(n)
1 λ

1
2 yields

λ
(n)
2

∑
m∈I0

∥f∗m∥Hm = λ
(n)
1 λ

1
2

∑
m∈I0

∥f∗m∥Hm ≤
1

2

dλ(n)1

2
+
λ

d

(∑
m∈I0

∥f∗m∥Hm

)2
 ,

the last inequality indicates

1

2
∥f̂ − f∗∥2L2(Π) ≤

296 + 7

(1− ρ(I0)2)κ(I0)
dλ

(n)
1

2
+

(
7 +

1

8

)
λ

d

(∑
m∈I0

∥f∗m∥Hm

)2

≤ 303

(1− ρ(I0)2)κ(I0)

dλ(n)1

2
+
λ

d

(∑
m∈I0

∥f∗m∥Hm

)2
 ,

where we used (1− ρ(I0)2)κ(I0) ≤ 1.

Substituting λ = d
1−s
1+s n−

1
1+sR

− 2
1+s

1,f∗ which minimizes the bound obtained in Theorem 12 into the bound of
Theorem 12 we obtain the convergence rate (6) of L1-MKL in Theorem 2 as in the following Corollary 13.

Corollary 13. Suppose Assumptions 1 and 3–5 are satisfied, and set

λ = d
1−s
1+s n−

1
1+sR

− 2
1+s

1,f∗ .

Then there exist constants C̃1, C̃2 and ψs depending on s, c, L, C1, ρ(I0), κ(I0) such that if λ
(n)
1 , λ

(n)
2 and λ

(n)
3

are set as λ
(n)
1 = ψsη(t)ξn(λ), λ

(n)
2 = λ

(n)
1 λ

1
2 , λ

(n)
3 = 0, then for all n satisfying log(M)√

n
and

C̃1ϕs
√
nξn(λ)

2d ≤ 1, (43)

we have

∥f̂ − f∗∥2L2(Π) ≤ C̃2

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ + d
s−1
1+s n−

1
1+sR

2
1+s

1,f∗ +
d log(M)

n

)
η(t)2. (44)

with probability 1− exp(−t)− exp(−ζn( 1
C̃1d

, λ)) for all t ≥ 1.

Proof. (Corollary 13) The proof is similar to that of Corollary 11. Suppose we set ψs = 4ϕs and

128max(ϕs
√
nξ2n, r)d

(1− ρ(I0)2)κ(I0)
≤ 1

8
(45)

is satisfied. This inequality (45) is met from Eq. (43) if we set C̃1 = 8×128
(1−ρ(I0)2)κ(I0)

and r = 1
C̃1d

. Then the

assumptions for Theorem 12 are satisfied. Therefore we can apply Theorem 12 that says the following inequality
holds:

∥f̂ − f∗∥2L2(Π) ≲ dλ
(n)
1

2
+
λ

d
R2

1,f∗ ,
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with probability 1− exp(−t)− exp(−ζn( C̃1

d , λ)) for all t ≥ 1. When λ = d
2

1+sn−
1

1+sR
− 2

1+s

1,f∗ ,

dλ
(n)
1

2
= ψ2

s

(
dλ−s

n
∨ dλ

−1

n
2

1+s

∨ d log(M)

n

)
η(t)2

= ψ2
s

d1− 2s
1+sn

s
1+sR

2s
1+s

1,f∗

n
∨
d1−

2
1+sn

1
1+sR

2
1+s

1,f∗

n
2

1+s

∨ d log(M)

n

 η(t)2

= ψ2
s

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ ∨ d
s−1
1+s n−

1
1+sR

2
1+s

1,f∗ ∨
d log(M)

n

)
η(t)2,

and

λ

d
R2

1,f∗ = d
2

1+s−1n−
1

1+sR
2− 2

1+s

1,f∗ = d
1−s
1+s n−

1
1+sR

2s
1+s

1,g∗ .

By Eq. (38) in Theorem 12, we have

∥f̂ − f∗∥2L2(Π)

≤ 606

(1− ρ(I0))2κ(I0)

dλ(n)1

2
+ λ

(∑
m∈I0

∥f∗m∥Hm

)2


≤ 606(ψ2
s + 1)

(1− ρ(I0))2κ(I0)

(
d

1−s
1+s n−

1
1+sR

2s
1+s

1,f∗ + d
s−1
1+s n−

1
1+sR

2
1+s

1,f∗ +
d log(M)

n

)
η(t)2.

Thus by setting C̃2 as

C̃2 =
606(ψ2

s + 1)

(1− ρ(I0))2κ(I0)
,

we obtain the assertion (44).

Theorem 2 is immediately derived from the combination of Corollaries 11 and 13 by setting C̃ as the maximum
of C̃2 appeared in both corollaries.

F Proofs of Theorems 7 and 8

Here we give the proofs of Theorems 7 and 8. The proof shares the same spirit with Meier et al. (2009) and
Koltchinskii and Yuan (2010), but we give the proofs for the sake of completeness.

For a Hilbert space G ⊂ L2(P ), let the i-th entropy number ei(G → L(P )) be the infimum of ϵ > 0 for which
N (ϵ,BG , L2(P )) ≤ 2i−1, where BG is the unit ball of G. One can check that if the spectral assumption (A3)
holds, the i-th entropy number is bounded as

ei(Hm → L2(Π)) ≤ c̃i−
1
2s . (46)

where c̃ is a constant depends on s and c.

We denote by {σi}ni=1 the Rademacher random variable that is an i.i.d. random variable such that σi ∈ {±1}.
It is known that, for a set of measurable functions F that is separable with respect to ∞-norm, the Rademacher
complexity E[supf∈F

1
n

∑n
i=1 σif(xi)] of F bounds the supremum of the discrepancy between the empirical and

population means of all functions f ∈ F (see Lemma 2.3.1 of van der Vaart and Wellner (1996)):

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(xi)− E[f ])

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

σif(xi)

∣∣∣∣∣
]
, (47)

where the expectations are taken for both {xi}ni=1 and {σi}ni=1.

The following proposition is the key in our analysis.
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Proposition 14. Let Bδ,a,b ⊂ Hm be a set such that Bδ,a,b = {fm ∈ Hm | ∥fm∥L2(Π) ≤ δ, ∥fm∥Hm ≤ a, ∥fm∥∞ ≤
b}. Assume the Spectral Assumption (A3), then there exist constants c̃s, C

′
s depending only s and c such that

E

[
sup

fm∈Bδ,a,b

∣∣∣∣∣ 1n
n∑

i=1

σifm(xi)

∣∣∣∣∣
]
≤ C ′

s

(
δ1−s(c̃sa)

s

√
n

∨ (c̃sa)
2s

1+s b
1−s
1+s n−

1
1+s

)
.

Proof. (Proposition 14) LetDn be the empirical distribution: Dn = 1
n

∑n
i=1 δxi . To bound empirical processes,

a bound of the entropy number with respect to the empirical L2-norm is needed. Corollary 7.31 of Steinwart
and Christmann (2008) gives the following upper bound: under the condition (46), there exists a constant cs > 0
only depending on s such that

EDn∼Πn [ei(Hm → L2(Dn))] ≤ csc̃i−
1
2s .

Finally this and Theorem 7.16 of Steinwart and Christmann (2008) gives the assertion.

Using Proposition 14 and the peeling device, we obtain the following lemma (see also Meier et al. (2009)).

Lemma 15. Under the Spectral Assumption (Assumption 3), there exists a constant Cs depending only on s
and C such that for all λ > 0

E

[
sup

fm∈Hm:∥fm∥Hm≤1

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2

]
≤ Cs

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
.

Proof. (Lemma 15) Let Hm(δ) := {fm ∈ Hm | ∥fm∥Hm ≤ 1, ∥fm∥L2(Π) ≤ δ} and z = 21/s > 1. Then by
noticing ∥fm∥∞ ≤ ∥fm∥Hm , Proposition 14 gives

E

[
sup

fm∈Hm:∥fm∥Hm≤1

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2

]

≤E

[
sup

fm∈Hm(λ1/2)

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2

]
+

∞∑
k=1

E

[
sup

fm∈Hm(zkλ1/2)\Hm(zk−1λ1/2)

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2

]

≤C ′
s

λ 1−s
2 c̃ss

λ
1
2
√
n
∨ c̃

2s
1+s
s

n
1

1+sλ
1
2

+

∞∑
k=0

C ′
s

zk(1−s)λ
1−s
2 c̃ss√

nzkλ
1
2

∨ c̃
2s

1+s
s

n
1

1+s zkλ
1
2


=C ′

s

(
c̃ss

√
λ−s

n
∨ c̃

2s
1+s
s

(
λ−

1
2

n
1

1+s

))
+

∞∑
k=0

C ′
s

(
c̃ssz

−sk

√
λ−s

n
∨ c̃

2s
1+s
s z−k

(
λ−

1
2

n
1

1+s

))

≤2C ′
s

(
1

1− z−s
c̃ss

√
λ−s

n
+

1

1− z−1
c̃

2s
1+s
s

(
λ−

1
2

n
1

1+s

))
= 2C ′

s

(
2c̃ss

√
λ−s

n
+

21/s

21/s − 1
c̃

2s
1+s
s

(
λ−

1
2

n
1

1+s

))

≤2C ′
s

(
2c̃ss +

21/s

21/s − 1
c̃

2s
1+s
s

)(√
λ−s

n
∨

(
λ−

1
2

n
1

1+s

))
.

By setting Cs ← 2C ′
s

(
2c̃ss +

21/s

21/s−1
c̃

2s
1+s
s

)
, we obtain the assertion.

The above lemma immediately gives the following corollary.

Corollary 16. Under the Spectral Assumption (Assumption 3), for all λ > 0

E

[
sup

fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

]
≤ Cs

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
,

where Cs is the constant appeared in the statement of Lemma 15, and we employed a convention such that 0
0 = 0.

Proof. (Corollary 16) Dividing the denominator and the numerator in the supremand in the LHS by ∥fm∥Hm
,

the inequality reduces to Lemma 15.
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This corollary gives the following lemma.

Lemma 17. Under the Spectral Assumption (Assumption 3), for all λ > 0

E

[
sup

fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

]
≤ 2CsL

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
,

where Cs is the constant appeared in the statement of Lemma 15.

Proof. (Lemma 17) Here we write Pf = E[f ] and Pnf = 1
n

∑n
i=1 f(xi, yi) for a function f . Notice that

Pϵfm = 0, thus 1
n

∑n
i=1 ϵifm(xi) = (Pn − P )(ϵfm). By contraction inequality (Ledoux and Talagrand, 1991,

Theorem 4.12), we obtain

E

[
sup

fm∈Hm

|(P − Pn)(ϵfm)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

]

=E

[
sup

fm∈Hm

∣∣∣∣∣(P − Pn)
ϵfm

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

∣∣∣∣∣
]

(47)

≤ 2E

[
sup

fm∈Hm

∣∣∣∣∣ 1
n

∑n
n=1 σiϵifm(xi)

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

∣∣∣∣∣
]

≤2LE

[
sup

fm∈Hm

∣∣∣∣∣ 1
n

∑n
n=1 σifm(xi)

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

∣∣∣∣∣
]

(∵ contraction inequality)

≤2CsL

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
. (∵ Corollary 16)

This gives the assertion.

From now on, we refer to Cs as the constant appeared in the statement of Lemma 15. We are ready to show
Theorem 7 that gives the probability of E1(t).

Proof. (Theorem 7) Since

∥fm∥L2(Π)

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

≤ 1, (48)

∥fm∥∞
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≤
C1∥fm∥1−s

L2(Π)∥fm∥
s
Hm

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

Young

≤
C1λ

− s
2 (∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

≤ C1λ
− s

2 , (49)

applying Talagrand’s concentration inequality (Proposition 6), we obtain

P

(
sup

fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ K

[
2CsLξn +

√
L2t

n
+
C1Lλ

− s
2 t

n

])
≤ e−t.

Therefore the uniform bound over all m = 1, . . . ,M is given as

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ K

[
2CsLξn +

√
L2t

n
+
C1Lλ

− s
2 t

n

])

≤
M∑

m=1

P

(
sup

fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ K

[
2CsLξn +

√
L2t

n
+
C1Lλ

− s
2 t

n

])
≤Me−t.
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Setting t← t+ log(M), we have

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ K

[
2CsLξn +

√
L2(t+ log(M))

n
+
C1Lλ

− s
2 (t+ log(M))

n

])
≤ e−t. (50)

Now √
L2(t+ log(M))

n
+
C1Lλ

− s
2 (t+ log(M))

n
≤ L

√
t

n
+ L

√
log(M)

n
+
C1Lλ

− s
2

√
n

(
t√
n
+

log(M)√
n

)
≤ ξn

(
L
√
t+ L+ C1L

t√
n
+ C1L

)
≤ ξn (2L+ 2C1L) η(t).

where we used log(M)√
n
≤ 1 in the second inequality. Thus Eq. (50) implies

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ K(2CsL+ 2L+ 2C1L)ξnη(t)

)
≤ e−t.

By substituting ϕ̃s ← 2KL(Cs + 1 + C1), we obtain

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 ϵifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

≥ ϕ̃sξnη(t)

)
≤ e−t. (51)

Since ϕ̃s ≤ ϕs by the definition, we obtain the assertion.

By Theorem 7, we obtain the expectation of the quantity maxm supfm∈Hm

| 1
n

∑n
i=1 ϵifm(xi)|

∥fm∥L2(Π)+λ
1
2 ∥fm∥Hm

, as in the fol-

lowing lemma.

Lemma 18. Under the Basic Assumption, the Spectral Assumption and the Supnorm Assumption, when
log(M)√

n
≤ 1, we have for all λ > 0

E

[
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

]
≤ 8K(Cs + 1 + C1)ξn(λ). (52)

Proof. Let ϕ̃s = 2K(Cs + 1 + C1). Substituting σi into ϵi in Eq. (51), Eq. (51) gives that

E

max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|√
∥fm∥2L2(Π) + λ∥fm∥2Hm

 ≤ ϕ̃sξn +

∞∑
t=0

e−tϕ̃sξnη(t+ 1)

≤ ϕ̃sξn + ϕ̃sξn

∞∑
t=0

e−t(t+ 1) ≤ 4ϕ̃sξn,

where we used η(t + 1) = max{1,
√
t+ 1, (t + 1)/

√
n} ≤ t + 1 in the second inequality. Thus we obtain the

assertion.

Next we show Theorem 8 that gives the probability bound of E2(r).

Proof. (Theorem 8) By the symmetrization argument,

E

 sup
fm∈Hm

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2




Fast Learning Rate of Multiple Kernel Learning

(47)

≤ 2E

 sup
fm∈Hm

∣∣∣ 1n ∑n
i=1 σi(

∑M
m=1 fm(xi))

2
∣∣∣(∑M

m=1(∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

)
)2


≤ sup
fm∈Hm

∥∥∥∑M
m=1 fm

∥∥∥
∞∑M

m=1(∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm)

× 2E

 sup
fm∈Hm

∣∣∣ 1n ∑n
i=1 σi(

∑M
m=1 fm(xi))

∣∣∣∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

 , (53)

where we used the contraction inequality in the last line (Ledoux and Talagrand, 1991, Theorem 4.12). Here we
notice that ∥∥∥∥∥

M∑
m=1

fm

∥∥∥∥∥
∞

≤
M∑

m=1

C1∥fm∥1−s
L2(Π)∥fm∥

s
Hm
≤

M∑
m=1

C1λ
− s

2 ∥fm∥1−s
L2(Π)(λ

1
2 ∥fm∥2Hm

)s

≤
M∑

m=1

C1λ
− s

2 [(1− s)∥fm∥L2(Π) + sλ
1
2 ∥fm∥Hm ]

≤
M∑

m=1

C1λ
− s

2 (∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm), (54)

where we used Young’s inequality a1−sbs ≤ (1− s)a+ sb in the second line. Thus the RHS of the inequality (53)
can be bounded as

2C1λ
− s

2E

 sup
fm∈Hm

∣∣∣ 1n ∑n
i=1 σi(

∑M
m=1 fm(xi))

∣∣∣∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)


≤2C1λ

− s
2E

[
sup

fm∈Hm

max
m

∣∣ 1
n

∑n
i=1 σifm(xi)

∣∣
∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm

]
,

where we used the relation
∑

m am∑
m bm

≤ maxm(am

bm
) for all am ≥ 0 and bm ≥ 0 with a convention 0

0 = 0. Therefore,

by log(M)√
n
≤ 1 and Eq. (52), the right hand side is upper bounded by 8K(Cs + 1 + C1)λ

− s
2 ξn. Here we again

apply Talagrand’s concentration inequality, then we have

P

(
sup

fm∈Hm

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2
≥ K

[
8K(Cs + 1 + C1)λ

− s
2 ξn +

√
t

n
C1λ

− s
2 +

C2
1λ

−st

n

])
≤ e−t, (55)

where we substituted the following upper bounds of B and U in Talagrand’s inequality (17):

B = sup
fm∈Hm

E


 (

∑M
m=1 fm)2(∑M

m=1(∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm)

)2


2
≤ sup

fm∈Hm

E

 (
∑M

m=1 fm)2(∑M
m=1 ∥fm∥L2(Π)

)2 (∥
∑M

m=1 fm∥∞)2(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2


(54)

≤ sup
fm∈Hm

(∑M
m=1 ∥fm∥L2(Π)

)2
(∑M

m=1 ∥fm∥L2(Π)

)2
(∑M

m=1 C1λ
− s

2 (∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm)

)2
(∑M

m=1(∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm

)
)2

≤C2
1λ

−s,
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where in the second inequality we used the relation E[(
∑M

m=1 fm)2] = E[
∑M

m,m′=1 fmfm′ ] ≤∑M
m,m′=1 ∥fm∥L2(Π)∥fm′∥L2(Π) = (

∑M
m=1 ∥fm∥L2(Π))

2, and

U = sup
fm∈Hm

∥∥∥∥∥∥∥
(
∑M

m=1 fm)2(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2
∥∥∥∥∥∥∥
∞

(54)

≤ sup
fm∈Hm

(
∑M

m=1 C1λ
− s

2 (∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm))2(∑M

m=1(∥fm∥L2(Π) + λ
1
2 ∥fm∥Hm)

)2
≤C2

1λ
−s,

where we used Eq. (54) in the second line. Now notice that

K

[
2C1(2Cs + (C1 + 1)K)λ−

s
2 ξn +

√
t

n
C1λ

− s
2 +

C2
1λ

−st

n

]

≤
√
nK

[
2C1(2Cs + (C1 + 1)K)

λ−
s
2

√
n
ξn +

√
t

log(M)
C1ξn

√
log(M)

n
+
C2

1ξ
2
nt√
n

]

≤
√
nK

[
2C1(2Cs + (C1 + 1)K) +

√
t

log(M)
C1 +

C2
1 t√
n

]
ξ2n.

Therefore Eq. (55) gives the following inequality

sup
fm∈Hm

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2
≤K

[
8K(Cs + 1 + C1) + C1 + C2

1

]√
nξ2n max(1,

√
t/ log(M), t/

√
n).

with probability 1 − exp(−t). Since K
[
8K(Cs + 1 + C1) + C1 + C2

1

]
≤ ϕs from the definition of ϕs, by substi-

tuting t = ζn(r, λ) into this bound, we obtain

sup
fm∈Hm

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)

)2
≤ϕs
√
nξ2n max(1, r/ϕs

√
nξ2n) = max(ϕs

√
nξ2n, r).

This gives the assertion.

G Proof of Lemma 9

On the event E2(r), for all fm ∈ Hm we obtain the upper bound of the regularization term as

λ
(n)
1 ∥fm∥n + λ

(n)
2 ∥fm∥Hm (56)

≤ λ(n)1

√
∥fm∥2L2(Π) +max(ϕs

√
nξ2n, r)(∥fm∥L2(Π) + λ

1
2 ∥fm∥Hm)2 + λ

(n)
2 ∥fm∥Hm

≤ λ(n)1

√
∥fm∥2L2(Π) + 2max(ϕs

√
nξ2n, r)(∥fm∥2L2(Π) + λ∥fm∥2Hm

) + λ
(n)
2 ∥fm∥Hm

≤ λ(n)1

√
5

4
∥fm∥2L2(Π) +

λ

4
∥fm∥2Hm

+ λ
(n)
2 ∥fm∥Hm

≤ λ(n)1

√
5

4
∥fm∥L2(Π) +

λ
(n)
1 λ

1
2

2
∥fm∥Hm + λ

(n)
2 ∥fm∥Hm
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≤ 3

2

(
λ
(n)
1 ∥fm∥L2(Π) + λ

(n)
2 ∥fm∥Hm

)
, (57)

because 2max(ϕs
√
nξ2n, r) ≤ 1

4 and λ
1
2λ

(n)
1 = λ

(n)
2 . On the other hand, we also obtain a lower bound as

λ
(n)
1 ∥fm∥n + λ

(n)
2 ∥fm∥Hm

≥ λ(n)1

√
max{∥fm∥2L2(Π) − 2max(ϕs

√
nξ2n, r)(∥fm∥2L2(Π) + λ∥fm∥2Hm

), 0}+ λ
(n)
2 ∥fm∥Hm

≥ λ(n)1

√
max

{
3

4
∥fm∥2L2(Π) −

1

4
λ∥fm∥2Hm

, 0

}
+ λ

(n)
2 ∥fm∥Hm

=

√
max

{
3

4
λ
(n)
1

2
∥fm∥2L2(Π) −

1

4
λ
(n)
2

2
∥fm∥2Hm

, 0

}
+ λ

(n)
2 ∥fm∥Hm

≥ 1

2

(
λ
(n)
1 ∥fm∥L2(Π) + λ

(n)
2 ∥fm∥Hm

)
, (58)

where in the last inequality we used the relation
√
max( 34a

2 − 1
4b

2, 0) ≥ a−b
2 for all a, b ≥ 0 (this is because,

when a ≥ b, we have
√

max( 34a
2 − 1

4b
2, 0) ≥

√
max( 14a

2 + 1
4b

2, 0) ≥ 1
2 (a− b)).

Note that, since f̂ minimizes the objective function,

∥f̂ − f∗∥2n +
M∑

m=1

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)

≤ 1

n

n∑
n=1

M∑
m=1

ϵi(f̂m(xi)− f∗m(xi))+
∑
m∈I0

(λ
(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

). (59)

Applying the inequalities
∑

m∈I0
(λ

(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm) −

∑
m∈I0

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm) ≤∑

m∈I0
(λ

(n)
1 ∥f̂m − f∗m∥n + λ

(n)
2 ∥f̂m − f∗m∥Hm) and ∥f∗m∥2Hm

− ∥f̂m∥2Hm
= 2⟨f∗m, f∗m− f̂m⟩Hm− ∥f̂m− f∗m∥2Hm

,
the above inequality (59) yields

∥f̂ − f∗∥2n +
∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm)

≤ 1

n

n∑
n=1

M∑
m=1

ϵi(f̂m(xi)− f∗m(xi))

+
∑
m∈I0

[λ
(n)
1 ∥f∗m − f̂m∥n + λ

(n)
2 ∥f∗m − f̂m∥Hm + λ

(n)
3 (2⟨f∗m, f∗m− f̂m⟩Hm− ∥f̂m−f∗m∥2Hm

)].

Thus on the event E2(r), by Eq. (57) and Eq. (58), we have

∥f̂ − f∗∥2n +
1

2

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm)

≤ 1

n

n∑
n=1

M∑
m=1

ϵi(f̂m(xi)− f∗m(xi))+

∑
m∈I0

[
3

2
(λ

(n)
1 ∥f∗m− f̂m∥L2(Π) + λ

(n)
2 ∥f∗m− f̂m∥Hm) + λ

(n)
3 (2⟨f∗m, f∗m− f̂m⟩Hm− ∥f̂m−f∗m∥2Hm

)

]
.

Moreover on the event E1(t), we have

∥f̂ − f∗∥2n +
1

2

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm)
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≤
M∑

m=1

η(t)ϕsξn(∥f̂m− f∗m∥L2(Π) + λ
1
2 ∥f̂m− f∗m∥Hm)+

∑
m∈I0

[
3

2
(λ

(n)
1 ∥f∗m− f̂m∥L2(Π) + λ

(n)
2 ∥f∗m− f̂m∥Hm) + λ

(n)
3 (2⟨f∗m, f∗m− f̂m⟩Hm− ∥f̂m−f∗m∥2Hm

)

]
(60)

⇒
1

4

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm)

≤
∑
m∈I0

[
7

4
(λ

(n)
1 ∥f∗m− f̂m∥L2(Π) + λ

(n)
2 ∥f∗m− f̂m∥Hm) + 2λ

(n)
3 ⟨T

q
2
mg

∗
m, f

∗
m − f̂m⟩Hm

]
,

where we used the relation η(t)ϕsξn = λ
(n)
1 /4 and λ

(n)
2 = λ

(n)
1 λ

1
2 . Finally we bound the last term ⟨T

q
2
mg∗m, f

∗
m −

f̂m⟩Hm . By the Young’s inequality for positive symmetric operator, we have

λ
(n)
3

1−q
T q
m = λ

(n)
3

1
2

(
λ
(n)
3

− 1
2
Tmλ

(n)
3

− 1
2

)q

λ
(n)
3

1
2

⪯ qTm + (1− q)λ(n)3 .

Thus

λ
(n)
3 ⟨f∗m, f∗m − f̂m⟩Hm

=λ
(n)
3 ⟨T

q
2
mg

∗
m, f

∗
m − f̂m⟩Hm

≤λ(n)3

1+q
2 ∥g∗m∥Hm

∥λ(n)3

1−q
2
T

q
2
m(f∗m − f̂m)∥Hm

≤λ(n)3

1+q
2 ∥g∗m∥Hm

√
⟨f∗m − f̂m,

(
qTm + (1− q)λ(n)3

)
f∗m − f̂m⟩

=λ
(n)
3

1+q
2 ∥g∗m∥Hm

√
q∥f∗m − f̂m∥2L2(Π) + (1− q)λ(n)3 ∥f∗m − f̂m∥2Hm

≤λ(n)3

1+q
2 ∥g∗m∥Hm

√
∥f∗m − f̂m∥2L2(Π) + λ

(n)
3 ∥f∗m − f̂m∥2Hm

≤λ(n)3

1+q
2 ∥g∗m∥Hm(∥f∗m − f̂m∥L2(Π) + λ

(n)
3

1
2 ∥f∗m − f̂m∥Hm). (61)

Therefore we have

1

4

∑
m∈Ic

0

(λ
(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm)

≤
∑
m∈I0

[
7

4
(λ

(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

)

+ 2λ
(n)
3

1+q
2 ∥g∗m∥Hm

(
∥f∗m − f̂m∥L2(Π) + λ

(n)
3

1
2 ∥f∗m − f̂m∥Hm

)]
,

with probability 1 − exp(−t) − exp(−ζn(r, λ)). Adding 1
4

∑
m∈I0

(λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm) to

both LHS and RHS of this inequality, the first assertion (23) is obtained.

Next we show the second assertion (24). On the event E1(t), (59) yields

∥f̂ − f∗∥2n +
M∑

m=1

(λ
(n)
1 ∥f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)

≤
M∑

m=1

η(t)ϕsξn(∥f̂m − f∗m∥L2(Π) + λ
1
2 ∥f̂m − f∗m∥Hm)
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+
∑
m∈I0

(λ
(n)
1 ∥f∗m∥n + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

).

Applying ∥f∗m∥n − ∥f̂m∥n ≤ ∥f̂m − f∗m∥n, this gives

∥f̂ − f∗∥2n +
∑
m∈Ic

0

λ
(n)
1 ∥f̂m∥n +

M∑
m=1

(λ
(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f̂m∥2Hm

)

≤
M∑

m=1

η(t)ϕsξn(∥f̂m − f∗m∥L2(Π) + λ
1
2 ∥f̂m − f∗m∥Hm

)

+
∑
m∈I0

(λ
(n)
1 ∥f∗m − f̂m∥n + λ

(n)
2 ∥f̂m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

).

Moreover, on the event E2(r), applying Eq. (57), Eq. (58) and the relations λ
(n)
1 /4 = η(t)ϕsξn and λ

(n)
2 = λ

(n)
1 λ

1
2 ,

we obtain ∑
m∈Ic

0

1

2
(λ

(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

λ
(n)
2 ∥f̂m∥Hm +

M∑
m=1

λ
(n)
3 ∥f̂m∥2Hm

≤
M∑

m=1

1

4
(λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + λ

(n)
2 ∥f̂m − f∗m∥Hm)

+
∑
m∈I0

(
(
3

2
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) +

1

2
λ
(n)
2 ∥f∗m − f̂m∥Hm) + λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
=
∑
m∈Ic

0

1

4
(λ

(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

(
7

4
λ
(n)
1 ∥f̂m − f∗m∥L2(Π) +

3

4
λ
(n)
2 ∥f̂m − f∗m∥Hm

)
+
∑
m∈I0

(
λ
(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
≤
∑
m∈Ic

0

1

4
(λ

(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

(
7

4
λ
(n)
1 ∥f̂m − f∗m∥L2(Π) +

3

4
λ
(n)
2 ∥f̂m∥Hm

)

+
∑
m∈I0

(
7

4
λ
(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
,

where we used ∥f∗m − f̂m∥Hm ≤ ∥f∗m∥Hm + ∥f̂m∥Hm in the last inequality. Moving the terms ∥f̂m∥L2(Π) and

∥f̂m∥Hm in the RHS to the LHS, we have

∑
m∈Ic

0

1

4
(λ

(n)
1 ∥f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm) +

∑
m∈I0

1

4
λ
(n)
2 ∥f̂m∥Hm +

M∑
m=1

λ
(n)
3 ∥f̂m∥2Hm

≤
∑
m∈I0

(
7

4
λ
(n)
1 ∥f̂m − f∗m∥L2(Π) +

7

4
λ
(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
.

Since f∗m = 0 for m ∈ Ic0 , adding
∑

m∈I0
1
4λ

(n)
1 ∥f∗m − f̂m∥L2(Π) to both terms, this inequality yields

M∑
m=1

1

4

(
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f̂m∥Hm

)
≤
∑
m∈I0

(
2λ

(n)
1 ∥f̂m − f∗m∥L2(Π) +

7

4
λ
(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
.

Finally by the relation ∥f̂m∥Hm ≥ ∥f∗m − f̂m∥Hm − ∥f∗m∥Hm , we obtain

M∑
m=1

1

4

(
λ
(n)
1 ∥f∗m − f̂m∥L2(Π) + λ

(n)
2 ∥f∗m − f̂m∥Hm

)
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≤
∑
m∈I0

(
2λ

(n)
1 ∥f̂m − f∗m∥L2(Π) + 2λ

(n)
2 ∥f∗m∥Hm + λ

(n)
3 ∥f∗m∥2Hm

)
.

Thus we obtain the second assertion (24).

H Proof of Theorem 3

Proof. (Theorem 3) The δ-packing numberM(δ,G, L2(P )) of a function class G with respect to L2(P ) norm is
the largest number of functions {f1, . . . , fM} ⊆ G such that ∥fi − fj∥L2(P ) ≥ δ for all i ̸= j. It is easily checked
that

N (δ/2,G, L2(P )) ≤M(δ,G, L2(P )) ≤ N (δ,G, L2(P )). (62)

First we give the assertion about the ℓ∞-mixed-norm ball (p =∞). To simplify the notation, set R = R∞. For

a given δn > 0 and εn > 0, let Q be the δn packing numberM(δn,Hd,q
ℓ∞

(R), L2(Π)) of Hd,q
ℓ∞

(R) and N be the εn

covering number N (εn,Hd,q
ℓ∞

(R), L2(Π)) of Hd,q
ℓ∞

(R). Raskutti et al. (2010) utilized the techniques developed by
Yang and Barron (1999) to show the following inequality in their proof of Theorem 2(b) :

inf
f̂

sup
f∗∈Hd,q

ℓ∞ (R)

E[∥f̂ − f∗∥2L2(Π)] ≥ inf
f̂

sup
f∗∈Hd,q

ℓ∞ (R)

δ2n
2
P [∥f̂ − f∗∥2L2(Π) ≥ δ

2
n/2]

≥ δ2n
2

(
1−

log(N) + n
2σ2 ε

2
n + log(2)

log(Q)

)
.

Now let Q̃m :=M
(
δn/
√
d,Hq

m (R) , L2(Π)
)
(remind the definition of Hq

m (R) (Eq. (14)), and since now Hm is

taken as H̃ for all m, the value Q̃m is common for all m). Thus by taking δn and εn to satisfy

n

2σ2
ε2n ≤ log(N), (63)

4 log(N) ≤ log(Q), (64)

the minimax rate is lower bounded by
δ2n
4 . In Lemma 5 of Raskutti et al. (2010), it is shown that if Q̃1 ≥ 2 and

d ≤M/4, we have

log(Q) ∼ d log(Q̃1) + d log

(
M

d

)
.

By the estimation of the covering number of Hq
m(1) (Eq. (15)), the strong spectrum assumption (Eq. (10)) and

the relation (62), we have

log(Q̃1) ∼
(

δn

R
√
d

)−2 s
1+q

=

(
δn

R
√
d

)−2s̃

.

Thus the conditions (64) and (63) are satisfied if we set δn = Cεn with an appropriately chosen constant C and
we take εn so that the following inequality holds:

nε2n ≲ d1+s̃R2s̃ε−2s̃
n + d log

(
M

d

)
.

It suffices to take

ε2n ∼ dn− 1
1+s̃R

2s̃
1+s̃ +

d log
(
M
d

)
n

. (65)

Note that we have taken R ≥
√

log(M/d)
n , thus Q̃m ≥ 2 is satisfied if we take the constant in Eq. (65) appropriately.

Thus we obtain the assertion for p =∞.

Next we give the assertion about the ℓp-mixed-norm ball. To simplify the notation, set R = Rp. Since Hd,q
ℓp

(R) ⊇
Hd,q

ℓ∞
(R/d

1
p ), we obtain

inf
f̂

sup
f∗∈Hd,q

ℓp
(R)

E[∥f̂ − f∗∥2L2(Π)] ≥ inf
f̂

sup

f∗∈Hd,q
ℓ∞

(R/d
1
p )

E[∥f̂ − f∗∥2L2(Π)].
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Here notice that we have R/d
1
p ≥

√
log(M/d)

n by assumption. Thus we can apply the assertion about the

ℓ∞-mixed-norm ball to bound the RHS of the just above display. We have shown that

inf
f̂

sup
f∗∈Hd,q

ℓ∞
(R/

√
d)

E[∥f̂ − f∗∥2L2(Π)] ≳ dn−
1

1+s̃ (R/d
1
p )

2s̃
1+s̃ +

d log
(
M
d

)
n

= d1−
2s̃

p(1+s̃)n−
1

1+s̃R
2s̃

1+s̃ +
d log

(
M
d

)
n

.

This gives the assertion.


