
 

 

 

Abstract 
We address the problem of unsupervised detection of 

events (e.g., changes or meaningful states of human 

activities) without any similarity test against specific 

models or probability density estimation (e.g., specific 

category learning). Rather than estimating probability 

densities, very difficult to calculate in general settings, we 

formulate the event detection as binary classification with 

density ratio estimation [9] in a hierarchical probabilistic 

framework. The proposed method takes pairs of video 

stream data (i.e., past and current) as input  with differing 

time-scales, generates density ratio models in a way of 

online learning, and judges if there is any ‘meaningful 

difference’ between them based on the multiple density 

ratio estimations. Through experimental studies on 

real-world scenes of specific domains using challenging 

datasets from sports scene (i.e., tennis match) with complex 

background, we demonstrate the potential advantage of our 

approach over the state-of-the-art in terms of precision and 

efficiency. 

1. Introduction 

Analysis of events and human actions is very important 

because of various applications such as content-based video 

retrieval, visual surveillance, and human-computer 

interaction. Event detection and human action recognition 

are both challenging computer vision problems [1, 14]. A 

source of difficulty in recognizing events arises from 

complexity and variations of backgrounds, contexts [26] 

and events themselves as well. Variation of clothes, sizes, or 

postures of people, illumination conditions, occlusion 

conditions, and camera angels are other factors that render 

the problem more challenging. 

The task of automatic semantic categorization of events 

or actions generally demands huge amount of video data 

with ground truth annotations or segmentation of 

streamlined data [7]. In recent years, unsupervised 

approaches have been proposed for learning human action 

categories [12], [16] and also for detecting abnormal 

behavior [20].  

Most action (event) detection methods extract features 

such as optical flow based features [12, 20], spatio-temporal 

features [5, 10-15, 27], or static features including 

appearance, shape, and spatial relations of local features [8, 

18]. Some unsupervised approaches, after extraction of 

those primitive features, utilize codebook representation [2, 

13, 19] effective for describing and discriminating various 

event categories. BoW representation of spatio-temporal 

interest points in particular has received considerable 

attention for the recognition of actions and events as well [2, 

13, 21, 26]. Technologies for detecting semantic events can 

be summarized such as finite state machines, statistical 

models (e.g., HMM [6, 17], Bayesian networks [3]), kernel 

methods [4, 18, 21], and tree-structured classifiers [12]. 

In this paper, we define ‘events’ as changes or 

meaningful states of human activities that can be observed 

as visual contents, something significantly different from 

‘normal’ states which are learned or statistically described 

by using past sequences of video data. We address the 

problem of unsupervised detection of semantic event 

categories by using density ratio in a hierarchical 

framework with differing time-scales. In general, estimation 

of accurate probability densities is known to be very 

difficult, and the proposed method dispenses with direct 

estimation of them (or any models, including matching 

kernels and templates), which correspond to semantic event 

category. 

Main contribution of this paper is twofold. 1) the 

possibility of detecting semantic events by direct estimation 

of probability density ratio which is more accurate than 

estimating the probability densities of corresponding 

category followed with taking their ratio; 2)  a new scheme 

for unsupervised learning of semantic events which requires 

much less sequence data than existing technologies, 

indicating the possibility of on-line learning. 

Using the density ratio estimation [9], obtained from 

pairs of sequence data described by spatio-temporal 

features (i.e. CHLAC [10]), we compute measures of 

‘anomaly’ with differing time-scales, some of which 

possibly reflects semantic action category, a meaningful 

change of actions based on observed, past sequence data as 

reference. Thus, the proposed algorithm does not involve 

any probabilistic generative model, nor does require any 

sophisticated codebook representation as in [2, 13]. In the 
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previous studies, some approach proposed to reduce the 

semantic gap [22]. We do not claim that the proposed 

approach guarantees to detect any semantic events. 

However, we claim that the proposed hierarchical system 

can detect significant changes of visual contents as potential 

events by taking appropriate length of ‘past’ and ‘current’ 

sequential data, since an event can be characterized by 

unique time-scale (e.g., duration defined by the beginning 

and end of event is equivalent to the time-scale). 

The advantage of the proposed scheme is that, in 

principle, it can deal with any complex probability density 

related with event category, since only density ratio does 

matter in the algorithm. Thus, in the training stage, we do 

NOT assume a single person performing only one action 

[13]. 

The remainder of this paper is organized as follows. At 

first, we formulate the video event detection problem based 

on the density-ratio estimation in Section 2. In Section 3, we 

report experimental results on real-world video sequences. 

Finally, we conclude by summarizing our contribution in 

Section 4. 

2. Problem formulation and proposed 

approach 

In this section, we formulate a video event detection 

problem based on the probability density ratio. 

2.1. Problem formulation 

Let )(tx  be a d-dimensional feature vector at time t. Our 

task is to detect whether there exists a change point based on 

video event between two consecutive time intervals, 

respectively called the train and test intervals.  

A naive approach to this problem would be to first 

estimate the train and test probability density functions 

separately from the train and test time series features, and 

then calculate the difference between train and test intervals 

by taking the estimated probability density functions.  

However, since non-parametric density estimation is 

known to be a hard problem [23], this naive approach to 

change point detection via non-parametric density 

estimation may not be effective; directly estimating the 

probability density ratio without estimating the probability 

densities would be more promising. 

Thus, our algorithm is based on the probability density 

ratio of the time series features )(tx  defined by 
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Figure 2: Definition of train and test intervals in a hierarchy 

 

where )(xtep  and )(xtrp  are the probability density 

functions of the test and train time series features, 

respectively. 

Therefore, we can decide whether there is a change point 

based on video event between the train and test intervals by 

monitoring the logarithm of the probability density ratio: 
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where trt  and tet )( tetr tt <  are respectively the starting 

time points of the train and test intervals, The score of S 

serves as a measure of ‘anomaly’ assuming that the train 

data indicating ‘normal’ state, and it is also a measure of 

event detection. The above formulation is summarized in 

Figure 1, where M and N are respectively the number of 

frame in the train and test intervals. 

Based on the value of S, we can conclude that 
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where )0(>µ is a predetermined threshold for the detection 

of events. 

But in practice, it is difficult to determine the train and 

test intervals to properly detect video events without any 

preconditions for every video sequences, so we should setup 

several intervals hierarchically in Figure 2. This 

hierarchical structure makes it possible to detect a variety of 

events from micro to macro level. Here, the score Sh of the 

h-th hierarchy is defined by  



 

 

,
)(

)(
ln∑

=










=

te

tr
h

t

tt

tr
h

te
h

h
p

p
S

x

x
 

where tr
ht )( tet< are the starting time points of the train 

interval, and )(xte
hp  and )(xtr

hp  are the probability density 

functions of the test and train time series features in the h-th 

hierarchy in Figure 2, respectively. Finally, we can obtain 

abnormal score S defined by 

( ) .max h
h

SS =  

The remaining question of this procedure is how to 

calculate the time series features )(tx  from video 

sequences and density ratios: 
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2.2. Cubic higher-order local auto-correlation 

Spatio-temporal features as exemplified like 

spatio-temporal interest points and spatio-temporal shapes 

have received great attentions and been successfully used 

for detection of events and actions. We adopt another 

spatio-temporal features, Cubic Higher order Local Auto 

Correlation (CHLAC) [10]. Both the CHLAC and its 

extension [25] have been successfully used in action 

recognition, and we consider the method [28] based on the 

CHLAC as one of the state-of-the-arts. This feature was 

chosen because of its three properties [10]: additivity, shift 

invariance, and robustness to noise. The CHLAC directly 

deals with three - dimensional data, suitable for motion 

image sequence.  

Let )(rf  be three-way data with ),,( zyx=r , the N-th 

order auto-correlation function is defined as  

∫ ++= rαrαrrααx dfff NNN )()()(),...,( 11 L  (1) 

where ),,1( Nii K=α are displacement vectors to obtain 

positions to correlate with )(rf . In Eq.(1), displacement 

vector iα  is limited to a local region 333 ×× around r  and 

the number of displacement vector N is set less than or equal 

to 2.  

The CHLAC feature, the value of ),...,( 1 NN ααx , 

remains the same if the patterns of ),,,( 1 Nααr K  are 

identical in the point configuration (i.e., shift invariance 

property). In the CHLAC features, such duplicate sets are 

eliminated, and example of mask patterns are shown in 

Figure 2 which indicate r  and iα . 

 By taking inter-frame difference and thresholding, we 

convert input image data into motion-image sequences 

composed of binary data, for which 251 mask patterns were 

used (i.e., CHLAC is the 251-dimensional vector). 

 

 
Figure 3: Example of a mask pattern [10].  (0) N=0; (1) N=1, 

a1=(-1,-1,-1)’. Overlapping mask patterns are eliminated if 

mutually shifted in three-way data. 

2.3. Direct density ratio estimation 

As described in section 2.1, we need to estimate the 

density ratio for the event detection problem. Here, we show 

how the density ratio could be directly estimated without 

going through density estimation based on Unconstrained 

Least-Squares Importance Fitting (uLSIF) [9]. 

2.3.1 Formulation of Density Ratio Estimation 

Suppose we are given a set of samples in the h-th hierarchy 
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where, hN  and hM  are the number of samples of the test 

and train intervals in the h-th hierarchy, respectively. 

 The goal of density ratio estimation is to estimate the 

density ratio function  
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from the samples te
hχ  and tr

hχ , where we assume 

0)( >x
tr
hp  for all x . 

2.3.2 Least-Squares Approach to Density Ratio 

Estimation 

Let us model the density ratio function )(xhw  by the 

following kernel model: 
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where 

)...,,(: 21
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hNαααα  

are parameters to be learned from data samples, •′  denotes 
the transpose of a matrix or a vector, 

)),()...,,(),,((:)( 21
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hNKKK xxxxxxxk  

are kernel basis functions. A popular choice of the kernel is 

the Gaussian function: 
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where 2σ  denotes the Gaussian variance. 

We determine the parameter α in the model )(ˆ xhw  so 

that the following squared-error 0J  is minimized: 
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where the last term is a constant and therefore can be safely 

ignored. Let us denote the first two terms by J : 
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where H is the hh NN × matrix defined by 

,)()()(: ∫ ′= xxxkxkH dp
tr
h  

and h is the hN - dimensional vector defined by 

∫= .)()(: xxxkh dp
te
h  

2.3.3 Empirical Approximation 

Since J  contains the expectation over unknown 

densities )(xte
hp  and )(xtr

hp , we approximate the 

expectations by empirical averages. Then we obtain  
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where Ĥ is the hh NN × matrix defined by 
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and ĥ is the hN -dimensional vector defined by 
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 By including a regularization term, the uLSIF 

optimization problem is formulated as follows. 
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where 2/αα′  is a regularizer and )0(≥λ  is the 

regularization parameter that controls the strength of 

regularization. By taking the derivative of the above 

objective function with respect to the parameter α and 

equating it to zero, we can analytically obtain the solution 

α̂ as 

,ˆ)ˆ(ˆ 1hIHα −+=
hNλ  

where 
hNI  is the hN -dimensional identity matrix. Finally, 

the density ratio estimator )(ˆ xhw is given by 
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Thus, the resulting score Sh in section 2.1 is given by  
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 Thanks to the analytic-form expression, uLSIF is 

computationally more efficient than alternative density ratio 

estimators which involve non-linear optimization. 

2.3.4 Model Selection by Cross-Validation 

The practical performance of uLSIF depends on the 

choice of the kernel function (e.g. the kernel width σ  in the 

case of Gaussian kernel Eq.(2)) and the regularization 

parameter λ . Model selection of uLSIF is possible based 

on cross-validation with respect to the error criterion J  

defined by Eq.(3) [24].  
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hl χ ), and its J -value for the hold-out samples te

hl χ  

and tr
hl χ  is computed as 

,)(ˆ
1

)(ˆ
2

1
:ˆ 2 ∑∑

∈∈

−=
te
hl

tetr
hl

tr

te
lte

hl

tr
ltr

hl

CV
hl wwJ

χχ χχ
xx

xx  

where χ  denotes the number of elements in the set χ . 

This procedure is repeated for l = 1,...,L, and the average of  
CV
hl Ĵ over all l is computed as  
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Finally, the model (the kernel width σ  and the 

regularization parameter λ  in the current setup) that 

minimizes CV
hl Ĵ  is chosen as the most suitable one. 



 

 

3. Experiments 

In this section, we show two experimental studies to 

evaluate the proposed method and compare the results with 

the reference method [10, 28] that also uses the CHLAC 

feature together with sub-space method for event (action) 

detection.  For training and testing, both experiments use 

video data with multiple persons in the scene which are 

significantly different and rather complex as compared with 

the KTH datasets. 

In the following, we compute a number of the CHLAC 

features in train and test intervals, Nh and Mh in the h-th 

hierarchy: (N0, M0) = (10, 10), (N1, M1) = (20, 20), (N2, M2) 

= (30, 30), (N3, M3) = (40, 40), (N4, M4) = (50, 50), 

respectively in Figure 4.  

Here, the hierarchical structure is determined 

heuristically by considering event category and time 

duration of that event. However, if we assume off-line 

processing, it is possible to search extensively hierarchical 

structure based on some coarse-to-fine strategy even if we 

have no information about event category and time duration 

of that event.  

Using the hierarchical structure in Figure 4, the 

processing time necessary for the sequence of data with 300 

frames, composed of 320 by 240[pixels] images, was about 

300[msec] on PC with Intel Core2 Duo 2.53GHz and 

2.0[GB] memory. Here, the processing time necessary for 

calculating CHLAC features in each frame can be almost 

ignored because of applying pipeline processing. 

3.1. Detection of abnormal actions in walking 

scene 

Typical examples of abnormal actions while walking are 

to crash with other persons and/or to tumble. As shown in 

Figure 5 and 6, here we have such scenes with multiple 

people walking in different directions. In this case, normal 

states are defined in the walking activities (Figure 5). 

Suppose we take sequences so that normal actions are 

included for the training datasets, { } h

j

M

j

tr

1=
x , and abnormal 

actions (Figure 6) in the test datasets, { } h

i

N

i

te

1=
x , both with  

time intervals, (Mh, Nh), as in Figure 4, then we find events 

as change of actions from normal state. 

In the first experiment, we show the performance of 

proposed method for distinguishing abnormal actions (i.e. 

one person tumbles while other persons keep walking) from 

normal actions (i.e., every person keeps walking) in our 

in-house video sequences. 

Figure 7    shows the time series data of anomaly (e.g., 

event likelihood) score S indicating a number of peaks with  
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Figure 4: Hierarchical structure of time-scales for training 

and testing sequences. 

 
Figure 5: The scene of walking (normal state). 

 
Figure 6: The scene for a person to tumble while other 

persons are walking. 

 

scattered flat regions.    From the 200-th frame to the 300-th 

frame in which the anomaly score S is relatively small 

corresponds to the walking scene (i.e. normal actions). On 

the other hand, from 300-th to 400-th frame, the anomaly 

score S is relatively high, corresponding to the tumbling 

scene (i.e., abnormal actions). 

In Figure 6, the frame marked yellow (frame #356) 

indicates the frame with locally peaked score S, while 

frames marked blue (from frame #336 to #351) and red 

(from #361 to #381) are the preceding and succeeding 

sequences, respectively. 

The result clearly shows that the proposed unsupervised 

method could detect the onset of abnormal actions and also 

distinguish normal from abnormal actions in this video 

scenario. For example, Figure 8 shows that abnormal 

actions (i.e., tumbling scene) were detected in the 5-th 

hierarchy, relatively long interval: (N5, M5) = (50, 50) 

which is appropriately interval of that event. 



 

 

 

 
Figure 7: The sequential data of anomaly score S. 

 
Figure 8: Enlargement of Figure 7; from the beginning to 

500-th frame. 

3.2. Detection of various actions in tennis match 

scenes 

In this section, we show results obtained from tennis 

match video for action detection. We can observe various 

events such as ball person running in the court, routine 

actions (e.g., bouncing the ball) before service, and several 

smashing shots by player, which can be seen in Figure 11 - 

Figure 13. The video sequences have a wide spectrum of 

motion frequencies. In this case, normal states are defined in 

the walking actions (Figure 9). 

Figure 14    shows sequential data of anomaly score S as 

applied to the tennis match scene. In Figure 15, from the 

beginning to 500-th frame, there are many peaks from the 

150-th to the 200-th frame with relatively long intervals   

video sequences of ball person’s running activities are given 

in Figure 10. Similarly, there is remarkable peak from the 

250-th frame to the 350-th frame with relatively short 

intervals, and sequences that duration of 20 frames indicates 

routine action of server in Figure 11.  

Figure 16 shows enlargement, from the 800-th frame to 

the 1300-th frame, with several peaks. Around the 900-th 

frame, for example, video sequences of 30 

preceding/succeeding frames centered on the local 

maximum frame are the scene of backhand stroke in Figure 

12. Similarly, around the 1000-th frame, (i.e., maximum 

interval is 20), are video sequences of 40 frames width 

around the peak frame corresponds to the scene of forehand 

stroke in Figure 13. 

These results indicate successful detection of events as 

well as their onset frame. Especially, these results clearly 

show that events involving small actions with short 

time-scale such as routine motions are detected as ripples  

 
Figure 9: The scene of walking (normal state). 

 
Figure 10: The scene of ball person’s running. 

 
Figure 11: The scene of routine motions before service. 

Frame # 332 corresponds to just the middle of the scene. 

 
Figure 12: The scene of backhand stroke. The frame # 902 

corresponds to the instance of smashing. 

 
Figure 13: The scene of forehand stroke. The frame # 981 

corresponds to the instance of smashing. 

 

with shortest time scale (e.g., N0 = M0 =10 in Figure 4), 

whereas, events involving long duration actions such as ball 

person's actions are detected using a longer time interval 

(e.g., N4=M4=50 in Figure 4), in the hierarchical structure of 

time-scales for training and testing sequences (Figure 4). 



 

 

3.3. Comparison with the reference method 

Figure 17 shows sequential data of score S as applied to 

the same video sequences (i.e., walking scene) used in 

Section 3.1. The upper and lower parts are results obtained 

using proposed and reference method [10, 28], respectively. 

Scores of the reference method is given by sub-space 

method which represents the distance with normal space. 

The result clearly indicates that both methods give almost 

the same frame number for local maximum which 

corresponds to the event of person’s tumbling.  

However, the essential difference is that the proposed 

method finds both the mid frame of the event (i.e. the 

instance of tumbling) and its duration. Moreover, the 

proposed method can detect abnormal actions based on 

unsupervised approach by using the brief video data (on the 

order from 10 frames to 50 frames) as shown in Figure 5 and 

Figure 6. On the contrary, the reference method needs to 

learn the category of ‘normal’ action using sequence video 

data of 1000 frames beforehand, which are quite larger as 

compared with the proposed algorithm. 

4. Summary and conclusions 

We formulated the problem of video event detection as 

hierarchical, direct estimation of probability density ratios 

over two time intervals (e.g., past and current). Within this 

framework, we proposed a novel non-parametric algorithm 

for video event (i.e. actions/activities different from normal 

states) detection without categorization. Since the ratio of 

two probability densities is directly estimated without going 

through density estimation, the proposed method avoids 

nonparametric density estimation in event detection, which 

is known to be a hard problem in practice. 

Based on the hierarchical framework with differing 

time-scales, we demonstrated detection of various video 

events with actions from micro level of small time-scale to 

macro level of larger time-scale. We experimentally showed 

the usefulness of the proposed method with two video 

sequences (i.e., walking scene and tennis match scene). First, 

we showed that the proposed unsupervised method could 

detect the onset of abnormal actions and also distinguish 

normal from abnormal actions in the two video scenarios. 

Second, we demonstrated that our method detects wide 

spectra of events as something significantly different from 

'normal' states and also identifies their time intervals (e.g., 

Nh and Mh in the hierarchy of Figure 4) which cannot be 

obtained in the reference method [10]. Moreover, the 

proposed algorithm require extremely small datasets (e.g., 

on the order of 10 to 50 frames) in the training phase, 

whereas it is, in general, necessary to prepare huge amount 

of video data for learning action category (e.g., normal 

states) in conventional methods  [1, 7, 10, 13, 15, 20]. For 

future work, we will extend the proposed framework to 

multi-category event detection with explicit categorization. 

 
Figure 14:  The sequential data of anomaly score S in the 

entire scene of tennis match. 

 

 
Figure 15: Enlargement of Figure 12; from the beginning to 

500-th frame. 

 

 
Figure 16: Enlargement of Figure 12; 800-1300-th frame. 

 

 
Figure 17: The sequential data of anomaly score S from the 

251-th to 500-th frame; proposed method (upper part) and 

existing method (lower part). 
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