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Abstract

Direct policy search is a promising reinforcement learning framework in particular
for controlling continuous, high-dimensional systems. Policy search often requires a
large number of samples for obtaining a stable policy update estimator. However,
this is prohibitive when the sampling cost is expensive. In this paper, we extend an
expectation-maximization based policy search method so that previously collected
samples can be efficiently reused. The usefulness of the proposed method, called
Reward-weighted Regression with sample Reuse (R3), is demonstrated through robot
learning experiments.
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1 Introduction

Policy search is an important tool for solving real-world Markov decision problems online.
However, many data samples are usually required for obtaining good control policies.
In practice, the cost of collecting rollout data is often prohibitively expensive and too
time-consuming for real-world problems where thousands of trials would require weeks or
months of experiments. For example, when a robot learns how to hit a ball in baseball
or tennis, robot engineers need to let the robot hit a ball hundreds of times for obtaining
reliable policy improvement; then this policy update steps need to be repeated many times
for finally obtaining a good policy. In this procedure, robot engineers need to spend long
time to “nurse” the vulnerable robot through frequent mechanical maintenance. As in
many other real-world reinforcement learning problems, it is therefore highly important
to reduce the number of training samples generated by the physical system and instead
re-use them efficiently in future updates.

A lot of efforts have been made to reuse previously collected samples, in particular in
the context of value function approximation. A basic technique for sample reuse is to use
importance sampling (Sutton & Barto, 1998) for which the bias is canceled out asymptot-
ically. However, a naive use of importance sampling significantly increases the variance
of estimators and, therefore, it becomes highly unstable. To mitigate this problem, the
per-decision importance-weighting technique has been introduced for variance reduction
(Precup et al., 2000). This technique efficiently makes use of a property of Markov decision
processes and eliminates irrelevant terms in the importance sampling identity. However,
the obtained estimator still tends to be unstable and, thus, the importance-sampling
paradigm has not been in active use in real-world reinforcement learning tasks yet.

For more significant variance reduction, adaptive importance sampling techniques have
been applied to reinforcement learning recently (Uchibe & Doya, 2004; Wawrzynski, 2009).
The idea of adaptive importance sampling is to trade the variance reduction with a slight
bias increase by introducing an ‘adaptation’ parameter. However, its performance heavily
depends on the choice of the adaptation parameter and the optimal parameter values
tend to change through the process of learning. Thus, manually selecting a fixed value
of the adaptation parameter is not favorable. In order to optimally select the adaptation
parameter, importance-weighted cross-validation (Sugiyama et al., 2007) was introduced
into value function approximation to tune the adaptive parameter so as to minimize the
estimated approximation error (Hachiya et al., 2009a).

Due to the above efforts, reinforcement learning methods based on value function
approximation can now successfully reuse previously collected samples in a stable manner.
However, it is not easy to deal with continuous actions in the value function based policy
iteration framework; the direct policy search approach is more suitable for learning control
policies with continuous actions, e.g., the policy gradient method (Williams, 1992; Sutton
et al., 2000), the natural policy gradient method (Kakade, 2002; Peters et al., 2005)
and policy search by expectation-maximization (Dayan & Hinton, 1997; Peters & Schaal,
2007). Reusing data samples is even more urgent in policy search approaches as small
policy updating steps can result into under-utilization of the data. While plain importance
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sampling techniques have also been employed in direct policy search, they were shown to
be unstable (Shelton, 2001; Peshkin & Shelton, 2002). For stabilization purposes, heuristic
techniques are often used in practice, e.g., samples with smaller importance weights are
not used for learning (Uchibe & Doya, 2004; Kober & Peters, 2008). However, to the best
of our knowledge, systematic treatment of instability issues in policy search with sample
reuse is still an open research topic.

The purpose of this paper is to propose a new framework for systematically addressing
the instability problems in direct policy search. In particular, we combine policy search
by expectation-maximization (Dayan & Hinton, 1997; Peters & Schaal, 2007) with co-
variate shift adaptation (Shimodaira, 2000; Sugiyama & Müller, 2005; Sugiyama et al.,
2007), which is a statistical learning paradigm under non-stationarity. Within this new
framework, we develop an efficient data-reuse algorithm for direct policy learning. The ef-
fectiveness of the proposed method, called Reward-weighted Regression with sample Reuse
(R3), is demonstrated by simulated robot-control experiments.

The rest of this paper is organized as follows. In Section 2, we formulate the pol-
icy search problem in reinforcement learning, and review the reward weighted regression
method and importance sampling techniques. In Section 3, we describe our proposed
method, R3, which allows us to efficiently reuse previously collected samples in the re-
ward weighted regression framework. Experimental results are reported in Section 4,
demonstrating the effectiveness of the R3 algorithm in robot control tasks such as one-
dimensional ball-balancing, robot-arm ball-balancing, and Acrobot swing-up. Finally, we
conclude in Section 5 by summarizing our contributions and describing future work.

2 Policy Search Framework

We consider the standard reinforcement learning framework in which an agent inter-
acts with the environment modeled as a Markov decision problem. In this section, we
review how the Markov decision problem is solved using policy search by expectation-
maximization (Dayan & Hinton, 1997); for Gaussian models, this results in the reward-
weighted regression (RWR) algorithm (Peters & Schaal, 2007).

2.1 Markov Decision Problem

Let us consider a Markov decision problem specified by (S,A, PT, PI, R, γ), where S is
a set of (continuous) states, A is a set of (continuous) actions, PT(s

′|s, a)(> 0) is the
transition probability-density from state s to next state s′ when action a is taken, PI(s)
(> 0) is the probability density of the initial state, R(s, a, s′) (≥ 0) is an immediate
reward for transition from s to s′ by taking action a, and γ (∈ (0, 1]) is the discount
factor for future rewards. Let π(a|s;θ) (> 0) be a stochastic policy with parameter θ,
which represents the conditional probability density of taking action a given state s.

Let us denote an episode of the agent’s experience by

d ≡ (s1, a1, s2, a2, . . . , sN , aN , sN+1),



Reward Weighted Regression with Sample Reuse 4

where s1 is an initial state selected following PI(s1), an is an action chosen in state sn
following π(an|sn;θ), sn+1 is a state visited after taking action an in state sn following
PT(sn+1|sn, an), and N is the number of steps in the episode. The probability density
P (d;θ) of an episode d occurring is given by

P (d;θ) ≡ PI(s1)
N∏

n=1

π(an|sn;θ)PT(sn+1|sn, an). (1)

Let R(d) be the return (i.e., the sum of discounted rewards) along episode d:

R(d) ≡
N∑

n=1

γn−1R(sn, an, sn+1).

The expected return is denoted by J(θ):

J(θ) ≡
∫
R(d)P (d;θ)dd.

Note that the expected return is regarded as a function of parameter θ since the proba-
bility density of episodes occurring depends on it.

The goal of reinforcement learning is to find the optimal policy θ∗ that maximizes the
expected return J(θ):

θ∗ ≡ argmax
θ

J(θ). (2)

2.2 Policy Search by Expectation-Maximization

Directly maximizing J(θ) is hard since J(θ) usually contains high non-linearity. The
basic idea of policy search by expectation-maximization (EM) is to iteratively update the
policy parameter θ by maximizing a lower bound of the expected return (Dempster et al.,
1977).

Let θL be the current policy parameter, where the subscript L indicates the iteration
number. By assuming that return R(d) is nonnegative, Jensen’s inequality (Bishop, 2006)
yields the following lower bound of the log-expected return (see Appendix A for details):

log J(θ) ≥
∫
R(d)P (d;θL)

J(θL)
log

P (d;θ)

P (d;θL)
dd+ log J(θL) ≡ log JL(θ).

In the EM approach, the parameter θ is iteratively updated by maximizing the lower
bound JL(θ):

θL+1 ≡ argmax
θ

JL(θ). (3)

Since log JL(θL) = log J(θL), the lower bound JL(θ) is tight (i.e., the lower bound touches
the target function) at θL. Thus monotone non-decrease of the expected return is guar-
anteed:

J(θL+1) ≥ J(θL).

This update is iterated until convergence (see Figure 1).
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Figure 1: Illustration of policy-parameter update in EM-based policy search. The policy
parameter θ is updated iteratively by maximizing lower bounds JL(θ). The lower bound
JL(θ) touches J(θ) at θL.
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Figure 2: Illustration of the Gaussian policy model. k⊤ϕ(s) is the mean and σ is the
standard deviation of the Gaussian function.

2.3 Reward-Weighted Regression

Let us employ the Gaussian policy model defined as

π(a|s;θ) = π(a|s;k, σ) ≡ 1

σ
√
2π

exp

(
−(a− k⊤ϕ(s))2

2σ2

)
, (4)

where ϕ(s) ≡ (ϕ1(s),ϕ2(s), . . . ,ϕB(s))
⊤ are fixed basis functions, B is the number of

basis functions, and θ = (k⊤, σ)⊤ (k ∈ RB and σ > 0) are policy parameters (see
Figure 2).

This model allows us to deal with one-dimensional action a and multi-dimensional
state vector s—multi-dimensional action vectors may be handled by concatenating one-
dimensional models. Note that the Gaussian policy model can be seen as a linear function
(with respect to the parameter k) contaminated by Gaussian noise ε with mean zero and
standard deviation σ:

a = k⊤ϕ(s) + ε.

The maximizer θL+1 = (k⊤
L+1, σL+1)

⊤ of the lower bound log JL(θ) can be analytically
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obtained (see Appendix B for details) as

kL+1=

(∫
R(d)P (d;θL)

1

N

N∑
n=1

ϕ(sn)ϕ(sn)
⊤dd

)−1

×

(∫
R(d)P (d;θL)

1

N

N∑
n=1

anϕ(sn)dd

)
,

σ2
L+1=

(∫
R(d)P (d;θL)dd

)−1
(∫
R(d)P (d;θL)

1

N

N∑
n=1

(an − kL+1
⊤ϕ(sn))

2dd

)
.

EM-based policy search for Gaussian models is called reward-weighted regression (Peters
& Schaal, 2007).

2.4 Learning from Episodic Data Samples

Suppose a dataset consisting of M episodes with N steps is available for each RWR
iteration, where episodic samples at the Lth iteration are generated as follows. Initially,
the agent starts from a randomly selected state s1 following the initial-state probability
density PI(s1) and chooses an action based on the policy π(an|sn;θL). Then the agent
makes a transition following PT(sn+1|sn, an) and receives a reward rn (= R(sn, an, sn+1)).
This transition is repeated N times for M episodes—hence, the training data DL gathered
at the Lth iteration is expressed asDL ≡ {dLm}Mm=1, where each episodic sample dLm consists
of a set of 4-tuple elements as

dLm ≡ {(sLm,n, a
L
m,n, r

L
m,n, s

L
m,n+1)}Nn=1.

Thus the RWR solution θL+1 ≡ (k⊤
L+1, σL+1)

⊤ can be approximated using the Lth training

data DL as θ̂L+1 ≡ (k̂⊤
L+1, σ̂L+1)

⊤, where

k̂L+1=

(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

ϕ(sLm,n)ϕ(s
L
m,n)

⊤
)−1

×

(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

aLm,nϕ(s
L
m,n)

)
,

σ̂2
L+1=

(
1

M

M∑
m=1

R(dLm)

)−1(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

(aLm,n − k̂⊤
L+1ϕ(s

L
m,n))

2

)
.

(5)

Since the expectation is simply replaced by the sample average, the above solution may
be consistent, i.e., as the number of episodes M goes to infinity, the solution converges to
the optimal value in probability. A pseudo code of RWR using episodic data samples is
summarized in Figure 3.
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Algorithm 2.1: RWR(l,M,N,ϕ, θ̂1, ϵ)

//l Number of iterations
//M Number of episodes collected at each iteration
//N Number of steps in each episode
//ϕ Basis functions, ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕB(s))

⊤

//θ̂1 Initial policy parameter, θ̂1 = (k̂⊤
1 , σ̂1)

⊤

//ϵ Stopping criterion

L← 0
repeat

L← L+ 1

// Collect data samples using current policy π

DL ← DataSampling(θ̂L,M,N)

// Update policy parameter θ̂L using episodic data DL

k̂L+1 ←

(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

ϕ(sLm,n)ϕ(s
L
m,n)

⊤
)−1

×

(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

aLm,nϕ(s
L
m,n)

)

σ̂2
L+1 ←

(
1

M

M∑
m=1

R(dLm)

)−1(
1

M

M∑
m=1

R(dLm)
1

N

N∑
n=1

(aLm,n − k̂⊤
L+1ϕ(s

L
m,n))

2

)
θ̂L+1 ← (k̂⊤

L+1, σ̂L+1)

until ∥θ̂L+1 − θ̂L∥ ≤ ϵ

return (θ̂L+1)

Figure 3: Pseudo code of reward-weighted regression using episodic data samples. By the
DataSampling function, data samples (M episodes and N steps) are collected following

current policy π(a|s; θ̂L).



Reward Weighted Regression with Sample Reuse 8

2.5 Importance Sampling

When the cost for gathering rollout samples is high, the number M of episodes should
be kept small. As a result, the next policy parameter θ̂L+1 suggested by RWR may not
be sufficiently accurate. In order to improve the estimation accuracy, we may reuse the
samples collected at the previous iterations {Dl}Ll=1.

If the policies remain unchanged by the RWR updates, just using Eq.(5) gives a

consistent estimator. This estimator is denoted by θ̂NIW
L+1 ≡ (k̂NIW

L+1
⊤, σ̂NIW

L+1 )
⊤, where

k̂NIW
L+1 =

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)
1

N

N∑
n=1

ϕ(slm,n)ϕ(s
l
m,n)

⊤

)−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)
1

N

N∑
n=1

alm,nϕ(s
l
m,n)

)
,

(σ̂NIW
L+1 )

2 =

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)

)−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)
1

N

N∑
n=1

(
alm,n − k̂NIW

L+1
⊤ϕ(slm,n)

)2)
.

(6)

The superscript ‘NIW’ stands for ‘No Importance Weight’. However, since policies are
updated in each RWR iteration, {Dl}Ll=1 generally follow different distributions induced
by different policies and, therefore, the naive use of Eq.(5) will result in an inconsistent
estimator.

Importance sampling (Bishop, 2006) can be used for coping with this problem. The
basic idea of importance sampling is to weight the samples drawn from a different distri-
bution to match the target distribution. More specifically, from i.i.d. (independent and
identically distributed) samples {dm}Mm=1 following P (d;θl), the expectation of a function
g(d) over another probability density function P (d;θL) can be estimated in a consistent
manner by the importance-weighted average:

1

M

M∑
m=1

g(dm)
P (dm;θL)

P (dm;θl)

M→∞−→ E
P (d;θl)

[
g(d)

P (d;θL)

P (d;θl)

]
=

∫
g(d)

P (d;θL)

P (d;θl)
P (d;θl)dd = E

P (d;θL)
[g(d)] .

The ratio of two densities P (d;θL)/P (d;θl) is called the importance weight for an episode
d.
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2.6 Episodic Importance Sampling in RWR

This importance sampling technique can be employed in RWR for obtaining a consistent
estimator θ̂EIW

L+1 ≡ (k̂EIW
L+1

⊤, σ̂EIW
L+1 )

⊤, where

k̂EIW
L+1 =

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)wL,l(d
l
m)

1

N

N∑
n=1

ϕ(slm,n)ϕ(s
l
m,n)

⊤
)−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)wL,l(d
l
m)

1

N

N∑
n=1

alm,nϕ(s
l
m,n)

)
,

(σ̂EIW
L+1 )

2 =

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)wL,l(d
l
m)

)−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

R(dlm)wL,l(d
l
m)

1

N

N∑
n=1

(
alm,n − k̂EIW

L+1
⊤ϕ(slm,n)

)2)
.

(7)

Here, wL,l(d) denotes the importance weight defined by

wL,l(d) ≡
P (d;θL)

P (d;θl)
.

The superscript ‘EIW’ stands for ‘Episodic Importance Weight’. According to
Eq.(1), the two probability densities P (d;θL) and P (d;θl) both contain PI(s1) and
{PT(sn+1|sn, an)}Nn=1, which are often unknown. However, since they cancel out in the
importance weight, we can compute the importance weight without the knowledge of
PI(s) and PT(s

′|s, a) as

wL,l(d) =

∏N
n=1 π(an|sn;θL)∏N
n=1 π(an|sn;θl)

.

Although the importance-weighted estimator θ̂EIW
L+1 is guaranteed to be consistent, it

tends to have a larger variance (Shimodaira, 2000; Sugiyama & Müller, 2005; Sugiyama
et al., 2007). Therefore, the importance-weighted estimator tends to be unstable when
the number of episodes M is rather small.

3 Adaptive Importance Sampling for Stable Policy

Search

In this section, we propose a new policy search method called Reward-weighted Regression
with sample Reuse (R3) for effective sample reuse.

3.1 Per-Decision Importance-Weight

In Precup et al. (2000), a more effective importance weighting technique called the per-
decision importance-weight (PIW) method was proposed. A crucial observation in PIW
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is that the reward at the nth step does not depend on future state-action transitions
after the nth step. Then an episodic importance weight can be decomposed into step-
wise importance weights. For instance, the expected return J(θL) can be expressed (see
Appendix C for details) as

J(θL) =

∫ ( N∑
n=1

γn−1rn

)
wL,l(d)P (d;θl)dd =

∫ ( N∑
n=1

γn−1rnw
n
L,l(d)

)
P (d;θl)dd,

where wn
L,l(d) is an n-step importance weight defined as

wn
L,l(d) =

∏n
n′=1 π(an′ |sn′ ;θL)∏n
n′=1 π(an′ |sn′ ;θl)

.

Here, we apply the PIW idea to episodic importance sampling in RWR and develop
a more stable algorithm. The policy update formula in the sample-reuse RWR contains
nested sums over N steps. For example, if R(d) is expanded in Eq.(7), we have

N∑
n=1

N∑
n′=1

γn−1rnϕ(sn′)ϕ(sn′).

The summand γn−1rnϕ(sn′)ϕ(sn′) does not depend on future state-action pairs after the
ñth step, where

ñ ≡ max(n, n′).

Thus, the episodic importance weight for γn−1rnϕ(sn′)ϕ(sn′) can be simplified to the
stepwise importance weights. Then Eq.(7) is simplified without loss of generality as

k̂PIW
L+1 =

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

( N∑
n=1

N∑
n′=1

γn−1rnϕ(s
l
m,n′)ϕ(slm,n′)

⊤
wñ

L,l(d
l
m)
))−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

( N∑
n=1

N∑
n′=1

γn−1rna
l
m,n′ϕ(slm,n′)wñ

L,l(d
l
m)
))

,

(σ̂PIW
L+1 )

2 =

(
1

L

L∑
l=1

1

M

M∑
m=1

( N∑
n=1

γn−1rnw
n
L,l(d

l
m)
))−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

( N∑
n=1

N∑
n′=1

γn−1rn

(
alm,n′ − k̂PIW

L+1
⊤ϕ(slm,n′)

)2
wñ

L,l(d
l
m)
))

.

(8)

This PIW estimator θ̂PIW
L+1 ≡ (k̂PIW

L+1
⊤, σ̂PIW

L+1 )
⊤ is consistent and potentially more stable

than the plain EIW estimator θ̂EIW
L+1 .
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3.2 Adaptive Importance Weight

To more actively control the stability of the PIW estimator, we propose to use adaptive
importance weighting—an importance weight wñ

L,l(d) is ‘flattened’ by flattening parameter

ν (∈ [0, 1]) as
(
wñ

L,l(d)
)ν
, i.e., the νth power of the importance weight. Then we have

θ̂AIW
L+1 ≡ (k̂AIW

L+1
⊤, σ̂AIW

L+1 )
⊤, where

k̂AIW
L+1 =

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

(
N∑

n=1

N∑
n′=1

γn−1rnϕ(s
l
m,n′)ϕ(slm,n′)

⊤ (
wñ

L,l(d
l
m)
)ν))−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

(
N∑

n=1

N∑
n′=1

γn−1rna
l
m,n′ϕ(slm,n′)

(
wñ

L,l(d
l
m)
)ν))

,

(σ̂AIW
L+1 )

2 =

(
1

L

L∑
l=1

1

M

M∑
m=1

(
N∑

n=1

γn−1rn
(
wn

L,l(d
l
m)
)ν))−1

×

(
1

L

L∑
l=1

1

M

M∑
m=1

1

N

(
N∑

n=1

N∑
n′=1

γn−1rn

(
alm,n′ − k̂AIW

L+1
⊤ϕ(slm,n′)

)2 (
wñ

L,l(d
l
m)
)ν))

.

(9)

‘AIW’ stands for ‘Adaptive Importance Weight’. When ν = 0, AIW is reduced to NIW.
Therefore, it is relatively stable, but is not consistent. On the other hand, when ν = 1,
AIW is reduced to PIW. Therefore, it is consistent, but is rather unstable. In practice,
an intermediate ν often produces a better estimator. Note that the value of the flattening
parameter can be different for each Dl. However, for simplicity, we employ a single
common value ν.

3.3 Automatic Selection of Flattening Parameter

The flattening parameter allows us to control the trade-off between consistency and sta-
bility. Here, we show how the value of the flattening parameter can be optimally chosen
using data samples.

The goal of policy search is to find the optimal policy that maximizes the expected
return J(θ). Therefore, the optimal flattening parameter value ν∗

L at the Lth iteration is
given by

ν∗
L ≡ argmax

ν
J(θ̂AIW

L+1 (ν)). (10)

Directly obtaining ν∗
L requires to compute the expected return J(θ̂AIW

L+1 (ν)) for each can-

didate of ν. To this end, we need to collect data samples following π(a|s; θ̂AIW
L+1 (ν)) for

each ν, which is prohibitively expensive. In order to reuse samples generated by previous
policies, we propose to use a variation of cross-validation based on importance-weighted
cross-validation (IWCV) (Sugiyama et al., 2007).

The basic idea of IWCV is to split the training dataset D1:L ≡ {Dl}Ll=1 into an ‘es-

timation part’ and a ‘validation part’. Then the policy parameter θ̂AIW
L+1 (ν) is learned

from the estimation part and its expected return J(θ̂AIW(ν)) is approximated using the
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importance-weighted loss for the validation part. As we pointed out in Section 2.6, im-
portance weighting tends to be unstable when the number M of episodes is small. So
we use per-decision importance weighting for cross-validation. Below, we explain in more
detail how we apply IWCV to the selection of the flattening parameter ν in the current
context.

Let us divide the training dataset D1:L = {Dl}Ll=1 into K disjoint subsets {D1:L
k }Kk=1

of the same size1, where each D1:L
k contains M/K episodic samples from every Dl. Let

θ̂AIW
L+1,k(ν) be the policy parameter learned from {D1:L

k′ }k′ ̸=k (i.e., without D1:L
k ) by AIW

estimation. We estimate the expected return of θ̂AIW
L+1,k(ν) using the PIW estimator from

D1:L
k as

Ĵk
IWCV(θ̂

AIW
L+1,k(ν)) ≡

1

η

∑
dl∈D1:L

k

N∑
n=1

γn−1rlnw
n
L,l(d

l), (11)

where η is a normalization constant. An ordinary choice of η would be η = LM/K, but
we use a ‘stable’ variant η ≡

∑
dl∈D1:L

k
wn

L,l(d
l) (Precup et al., 2000).

The above procedure is repeated for all k = 1, 2, . . . , K and the average score is
computed:

ĴIWCV(θ̂
AIW
L+1 (ν)) ≡

1

K

K∑
k=1

Ĵk
IWCV(θ̂

AIW
L+1,k(ν)).

This is the K-fold IWCV estimate of J(θ̂AIW
L+1 (ν)), which was shown to be almost unbiased

(Sugiyama et al., 2007).
We compute this K-fold IWCV score for each candidate value of the flattening pa-

rameter ν and choose the one that maximizes the IWCV score:

ν̂IWCV ≡ argmax
ν

ĴIWCV(θ̂
AIW
L+1 (ν)).

This IWCV scheme can also be used for choosing the basis functions ϕ(s) in the Gaussian
policy model (4).

Note that when the importance weights wñ
L,l are all one (i.e., no importance weighting),

the above IWCV procedure is reduced to the ordinary CV procedure. The use of IWCV is
essential here since the target policy π(a|s; θ̂AIW

L+1 (ν)) is usually different from the previous
policies used for collecting the data samples D1:L, so the expected return estimated using
ordinary CV, ĴCV(θ̂

AIW
L+1 (ν)), would be heavily biased.

3.4 Algorithm

So far, we introduced the AIW method to control the stability of policy-parameter update,
and IWCV to automatically choose the flattening parameter based on the estimated
expected return. Here we show how these two methods are combined and implemented in

1For simplicity, we assume that M is divisible by K, i.e., M/K is an integer. We use K = 5 in the
experiments.
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a single algorithm. We call the proposed method Reward weighted Regression with sample
Reuse (R3). Figure 4 depicts the pseudo code of R3.

In each iteration (L = 1, 2, . . .), episodic data samples DL are collected following
the current policy π(a|s;θAIW

L ), the flattening parameter is chosen so as to maximize

the expected return ĴIWCV(ν) estimated by IWCV using {Dl}Ll=1, and then the policy
parameter is updated by Eq.(9) using {Dl}Ll=1.

4 Experiments

In this section, we evaluate the performance of the proposed method through experiments.

4.1 Numerical Examples

First, we illustrate how the proposed method behaves on a one-dimensional ball-balancing
simulation illustrated in Figure 5.

The goal is to control the angle of the seesaw so that the ball is brought to the middle
of the seesaw. The action space A consists of the angle α (∈ (−π/4, π/4)) [rad] of the
seesaw, which is one-dimensional and continuous. The state space S is also continuous
and a state vector s = (x, ẋ)⊤ consists of the position x [m] of the ball on the seesaw (the
middle of the seesaw is the origin and the left/right side of the origin corresponds the
negative/positive direction), and the velocity ẋ [m/s] of the ball (moving to the left/right
corresponds to the negative/positive velocity).

The position x and velocity ẋ are modeled by the following equations:

xt+1 = xt + ẋt+1∆t,

ẋt+1 = ẋt +∆t

(
− f

m
ẋt − 9.8 sin(at)

)
,

where f = 0.01 is the friction coefficient, m = 3 [kg] is the mass of the ball, at [rad] is the
action chosen at time t, and ∆t = 0.05 [s] is the duration of a time step. We assume that
if an action at is chosen, the seesaw angle will be adjusted to the desired angle in a single
time-step (this simulation is for illustration purposes; more realistic experiments will be
shown in Section 4.2).

The reward function R(s, a, s′) is a bell-shaped function defined as

R(s, a, s′) = exp

(
−x′2 + 0.5ẋ′2 + 0.1a2

2

)
.

This reward function indicates that the agent will receive the maximum reward (i.e., one)
when the ball stops at the middle of the seesaw (s = 0 and a = 0). We use 10 Gaussian
kernels as basis functions ϕ(s) of the Gaussian policy model (4):

ϕb(s) = exp

(
−∥s− cb∥2

2σ2
basis

)
, (12)
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Algorithm 3.1: R3(K,M,N,ϕ, θ̂AIW
1 , ϵ)

//K Number of folds
//M Number of episodes collected at each iteration
//N Number of steps in each episode
//ϕ Basis functions, ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕB(s))

⊤

//θ̂AIW
1 Initial policy parameter, θ̂AIW

1 = (k̂AIW
1

⊤, σ̂AIW
1 )⊤

//ϵ Stopping criterion
L← 0
repeat

L← L+ 1
// Collect data samples (M episodes and N steps)

// using current policy π(a|s; θ̂AIW
L )

DL ← DataSampling(θ̂AIW
L ,M,N)

// Choose flattening parameter ν̂IWCV that maximizes ĴIWCV(ν)
for ν ← 0, 0.1, . . . , 1

for k ← 1, 2, . . . ,K
// Learn parameter θ̂AIW

L+1,k from K − 1 groups of data samples {D1:L
k′ }k′ ̸=k

θ̂AIW
L+1,k ← PolicyParameterUpdate({D1:L

k′ }k′ ̸=k, ν,ϕ)

// Estimate expected return from kth group of data samples {D1:L
k′ }k′=k

Ĵk
IWCV(θ̂

AIW
L+1,k(ν)) =

1
η

∑
dl∈D1:L

k

∑N
n=1 γ

n−1rlnw
n
L,l(d

l)

// Compute the mean of expected return

ĴIWCV(θ̂
AIW
L+1 (ν))←

1
K

∑K
k=1 Ĵ

k
IWCV(θ̂

AIW
L+1,k(ν))

ν̂IWCV ← argmax
ν

ĴIWCV(θ̂
AIW
L+1 (ν))

// Update policy parameter θ̂AIW
L by Eq.(9)

θ̂AIW
L+1 ← PolicyParameterUpdate({Dl}Ll=1, ν̂IWCV,ϕ)

until ∥θ̂L+1 − θ̂L∥ ≤ ϵ

return (θ̂L+1)

Figure 4: Pseudo code of the proposed R3 method (Reward-weighted Regression with
sample Reuse). By the DataSampling function, data samples (M episodes and N steps)

are collected following current policy π(a|s; θ̂AIW
L ). By the PolicyParameterUpdate

function, policy parameters are updated using datasets {Dl}Ll=1, flattening parameter
ν̂IWCV, and basis functions ϕ by Eq.(9).
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α

x&

x

Figure 5: Illustration of one-dimensional ball-balancing simulation. The goal is to control
the angle α of the seesaw so that the ball is moved to and kept at the middle of the
seesaw.

where cb is a randomly located kernel center and σbasis = 1 is the Gaussian width.
The initial policy-parameter θ̂AIW

1 is set randomly as k̂AIW
1 = (β1, β2, . . . , β10)

⊤ and
σ̂AIW
1 = 0.5, where β1, β2, . . . , β10 are independently drawn from the uniform distribution

on [−0.2, 0.2]. At every iteration, the agent collects samples DL following the current

policy π(a|s; θ̂AIW
L ), and then the policy parameter θ̂AIW

L is updated using all samples
{Dl}Ll=1. This is repeated for 50 iterations.

Our original motivation for introducing R3 was to reduce the number of samples for
saving the sampling cost. To investigate this, we set the number of episodes and the
number of steps to small values: M = 5 and N = 20. The discount factor is set to
γ = 0.99.

First, let us illustrate how the flattening parameter ν influences the policy-parameter
update. For this purpose, we compute the expected return for the estimated parameter
θ̂AIW
10 (ν) and θ̂AIW

40 (ν) at the 10th and 40th iterations from 50 test episodic data. Fig-

ure 6(a) depicts J(θ̂AIW
10 (ν)) and J(θ̂AIW

40 (ν)) averaged over 50 trials as a function of the
flattening parameter. The graph overall shows that as the iteration progresses from 10th
to 40th, the average expected returns become larger and neither NIW (ν = 0) nor PIW
(ν = 1) is the best—intermediate values of ν (say, 0.1 ≤ ν ≤ 0.2) perform better than
NIW and PIW on average. Thus, given that ν is chosen optimally, AIW can outperform
PIW and NIW. Note that, although the amount of performance improvement over PIW
and NIW gained by tuning the flattening parameter in AIW seems subtle in this one-
iteration simulation, accumulation of this small gain over iterations can cause significant
performance improvement as will be demonstrated below.

Next, we illustrate how IWCV behaves. Figure 6(b) depicts the expected re-

turns estimated by 5-fold IWCV at the 10th and 40th iterations, ĴIWCV(θ̂
AIW
10 (ν)) and

ĴIWCV(θ̂
AIW
40 (ν)), averaged over 50 trials. We can only access {Dl}10l=1 and {Dl}40l=1 in

IWCV, which are collected through iterations. Thus, the total number of episodes used
in IWCV is only 50 and 200 at the 10th and 40th iterations, respectively. The graph shows
that IWCV well captures the trends of the true expected return for both cases (L = 10
and 40). Note that the orders of magnitude of the values in Figure 6(a) and Figure 6(b)
are different due to the normalization constant η (see Eq. (11)) which is computed by the
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Figure 6: True expected return J(θ̂AIW
L+1 (ν)) and its 5-fold IWCV estimate ĴIWCV(θ̂

AIW
L+1 (ν))

averaged over 50 trials as a function of the flattening parameter ν in the one-dimensional
ball-balancing task. The error bars indicate 1/10 of standard deviation.

sum of importance weights. However, this does not cause a problem in model selection as
long as relative profiles of the curves are similar, which is achieved well in this experiment.

Finally, we illustrate how R3 performs. Figure 7 depicts the expected returns averaged
over 50 trials as a function of the number of iterations. The expected return at each trial
is computed from 50 test episodic data for this evaluation. We compare seven scenarios:
episodic REINFORCE (Williams, 1992; Peters & Schaal, 2006) with learning rate 0.1 or
0.3, ordinary RWR (no sample-reuse), sample-reuse RWR with fixed flattening parameter
values: ν = 0 (NIW), ν = 0.5, or ν = 1 (PIW), and R3 where ν ∈ {0, 0.1, 0.2, . . . , 1} is
adaptively chosen by 5-fold IWCV at each iteration. The graph shows that R3 outper-
forms REINFORCE, ordinary RWR, and all other sample-reuse RWR schemes with fixed
flattening parameter values.

The performance of REINFORCE depends on the learning rate; when the learning rate
is 0.005, policies are improved in a stable way. However, the speed of policy improvement
tends to be slow since the amount of policy update at each step is rather small. when the
learning rate is 0.1, policy improvement tends to be unstable since the number of data
samples collected at each iteration is too small (M = 5) to take a large policy-update
step in each iteration. Similarly, the policy update tends to be unstable for no-sample-
reuse RWR. Consequently, the performance of updated policies is saturated after the
22nd iteration. When ν is fixed to 0 (NIW) or 0.5 through sample-reuse RWR iterations,
the performance is improved in a stable manner without decay unlike ordinary RWR.
However, the speed of performance improvement tends to be slower than R3. When ν is
fixed to 1 (PIW), the performance is not much improved over iterations. This indicates
that the instability of the estimators severely degrades the performance. Furthermore,
increasing the total number of episodes as the iteration progresses does not contribute to
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Figure 7: The expected returns averaged over 50 trials as a function of iterations in the
one-dimensional ball-balancing task. We compare seven scenarios: episodic REINFORCE
with learning rate 0.005 or 0.1, ordinary RWR (no sample-reuse), sample-reuse RWR with
fixed flattening parameter values: ν = 0 (NIW), ν = 0.5, or ν = 1 (PIW), and R3 where
ν ∈ {0, 0.1, 0.2, . . . , 1} is adaptively chosen by 5-fold IWCV at each iteration. The symbol
‘◦’ indicates the fact that the method is the best or comparable to the best one in terms
of the expected return by the t-test at the significance level 5%, performed at every 10
iterations. The error bars indicate 1/10 of standard deviation.

the performance improvement since the number of episodic samples taken from the same
policy is still kept small (only M = 5). On the other hand, the proposed R3 method
achieves stable and fast policy improvement throughout iterations by adaptively turning
the flattening parameter using IWCV. As a result, the performance of R3 is significantly
better than the other methods (the symbol ‘◦’ indicates the fact that the corresponding
method is the best or comparable to the best one in terms of the mean performance by
the t-test at the significance level 5%).

Figure 8(a) and Figure 8(b) depict an example of the flattening parameter value used
in the R3 iterations and its corresponding expected return. The graphs show that the
value of the flattening parameter is rather large and changes strongly in earlier iterations.
On the other hand, once the expected return converges (at around the 25th iteration),
the flattening parameter value decreases to a lower value, 0.1, and tends to be stable.
This would be a natural outcome because after the policy converges, the amount of policy
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Figure 8: An example of the behavior of the flattening parameter values in R3 and its
corresponding expected return as a function of iterations in the one-dimensional ball-
balancing task.
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Figure 9: Averaged variance of the mean k̂⊤
Lϕ(s) of learned Gaussian policy over 50 trials

as a function of iterations—the variance computed at each state is averaged over the set
of states s = (x, ẋ)⊤ ∈ {−5,−4.5, . . . , 4.5, 5} × {−5,−4.5, . . . , 4.5, 5}.
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Figure 10: The expected returns at the 20th iteration averaged over 50 trials as a function
of the number of episodes in the one-dimensional ball-balancing task. We consider three
sample-reuse RWR for performance comparison: sample reuse RWR with fixed ν = 0, 1,
and R3 where ν is chosen by IWCV. The symbol ‘◦’ indicates the fact that the method
is the best or comparable to the best one in terms of the expected return by the t-test at
the significance level 5%. The error bars indicate 1/10 of standard deviation.

update usually becomes small. Then data samples collected after convergence have similar
distributions and, thus, can be used without importance weights.

Figure 9 depicts the variance of the mean k̂⊤
Lϕ(s) of the Gaussian policy model

over 50 trials as a function of iterations—the variance at each state s = (x, ẋ)⊤ ∈
{−5,−4.5, . . . , 4.5, 5}×{−5,−4.5, . . . , 4.5, 5} is computed and is averaged over all states.

The graph shows that the variance of learned policies by PIW increases significantly
in the beginning of the learning process (from the 4th to 9th iteration) compared to NIW
and R3—the variance of PIW is about 500000 and 2600 times larger than the variance
of NIW and R3 at the 20th iteration, respectively. This indicates that policy update by
PIW is unstable, i.e., policies are strongly changed due to the numerical instability of
importance weights. On the other hand, policy update by NIW is highly stable because
importance weights are not used. However, the direction of policy update may not be
appropriate due to the inconsistency of NIW policy update. Indeed, the performance
of policies learned by NIW is not largely improved over iterations (see Figure 7). The
variance of learned policies by R3 is in between the ones of PIW and NIW. This indicates
that the consistency of PIW is slightly compromised to obtain more stable policies by
adjusting flattening parameter in R3. As a result, the performance of resulting policies is
largely improved over iterations (see Figure 7).

Finally, we investigate how the number M of episodes affects the performance of
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sample-reuse RWR methods. Figure 10 depicts the expected return at the 20th iteration
as a function of the number M of episodes. The graph shows that the performance of PIW
(ν is fixed to 1) gradually improves as the number of episodes increases. This indicates
that the consistent property of the PIW estimator tends to take effect as the number of
episodes increases. However, a huge number of episodes would be necessary to make PIW
competitive to other methods. The performance of NIW (ν is fixed to 0) is saturated after
M reaches 10. This indicates that the inconsistent nature of NIW cannot be overcome
just by increasing the number M of episodes. On the other hand, our proposed method
R3 tends to perform better as the number M increases. We conjecture that the flattening
parameter ν selected by IWCV can be more stable and previously collected data can be
used more efficiently when the number M of episodes is large.

4.2 Robot-arm Ball-balancing Task

Next, we evaluate the performance of our proposed method R3 in more challenging prob-
lems, i.e., a ball-balancing task using a Barrett WAMTM robot arm and an Acrobot
swing-up task.

We employ the Simulation Laboratory (SL) simulator (Schaal, 2009) for the ball-
balancing experiment, which is known to be highly realistic. The 7-degree-of-freedom
Barrett WAMTM arm is mounted on the ceiling upside down and is equipped with a
circular tray (the radius is 0.24 [m]) at the end-effector (see Figure 11). The goal is to
control the joints of the robot so that the ball is brought to the middle of the tray, similarly
to the toy ball-balancing task in Section 4.1. However, unlike before, the angle of the tray
cannot be directly controlled; this is a typical restriction in the real joint-motion planning
based on the feedback from the environment (e.g., the state of the ball). Thus, achieving
the goal is much harder than the toy setup.

To simplify the problem, we control only two joints: the wrist angle αroll and the
elbow angle αpitch. All the remaining joints are fixed. Control of the wrist and elbow
angles would roughly correspond to changing the roll and pitch angles of the tray, but
not directly.

We design two separate control subsystems, each of which is in charge of roll- and
pitch-angle control. Each subsystem has its own policy parameter θ∗, state space S∗, and
action space A∗, where ‘*’ corresponds to ‘roll’ or ‘pitch’. The state space S∗ is continuous
and consists of (x∗, ẋ∗), where x∗ [m] is the position of the ball on the tray along each axis
and ẋ∗ [m/s] is the velocity of the ball. The action space A∗ is continuous and corresponds
to the target angle of the joint a∗ [rad]. The reward function is defined as

R∗(s∗, a∗, s
′
∗) = exp

(
−5(x′

∗)
2 + (ẋ′

∗)
2 + a2∗

2(0.24/2)2

)
,

where the number 0.24 in the denominator comes from the radius of the tray (i.e., 0.24
[m]).

Below, we explain how the control system is designed in more detail. As illustrated
in Figure 12, our control system has two feedback loops for trajectory planning using
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Figure 11: Realistic ball-balancing task using a Barrett WAMTM arm simulator. Two
joints of the robots are controlled so as to keep the ball in the middle of the tray.
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Figure 12: The block diagram of the Barrett WAMTM robot-arm control system for ball
balancing. The control system has two feedback loops, i.e., joint-trajectory planning by
R3 and trajectory tracking by a high-gain proportional-derivative (PD) controller.

an R3 controller and trajectory tracking using a high-gain proportional-derivative (PD)
controller (Siciliano & Khatib, 2008). The R3 controller outputs the target joint-angle
obtained by current policy π(a|s;θL) at every 0.2 [s]. 9 Gaussian kernels are used as basis
functions ϕ(s) (see Eq.(12)) with the kernel centers {cb}9b=1 located over the state-space
at

(x∗, ẋ∗) ∈ {(−0.2,−0.4), (−0.2, 0), (−0.1, 0.4),
(0,−0.4), (0, 0), (0, 0.4),
(0.1,−0.4), (0.2, 0), (0.2, 0.4)}.

The Gaussian width is set to σbasis = 0.1. Based on the discrete-time target angles
obtained by R3, the desired joint-trajectory in the continuous time domain is linearly
interpolated as

an,t,∗ = an,∗ + t ȧn,∗,

where t is the time from the last output an,∗ of R3 at the nth step. ȧn,∗ is the angular
velocity computed by

ȧn,∗ =
an,∗ − an−1,∗

0.2
,
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(b) Trajectory of angular velocity

Figure 13: An example of desired and actual trajectories of the wrist joint in the realistic
ball-balancing task. The target joint-angle is determined by a random policy at every
0.2 [s], and then a linearly-interpolated angle and constant velocity are tracked using the
proportional-derivative (PD) controller in the cycle of 0.002 [s].

where a0,∗ is the initial angle of a joint. The angular velocity is assumed to be constant
during the cycle of trajectory planning (i.e., 0.2 [s]).

On the other hand, the PD controller converts desired joint-trajectories to motor
torques as

τn,t = kp(an,t −αn,t)
⊤ + kd(ȧn − α̇n,t)

⊤,

where τ is the 2-dimensional vector consisting of the torque applied to the wrist and elbow
joints. a = (apitch, aroll)

⊤ and ȧ = (ȧpitch, ȧroll)
⊤ are the 2-dimensional vectors consisting

of the desired angles and velocities. α = (αpitch, αroll)
⊤ and α̇ = (α̇pitch, α̇roll)

⊤ are the
2-dimensional vectors consisting of the current joint-angle and velocities. kp and kd are
the 2-dimensional vectors consisting of the proportional and derivative gains, respectively.
Since the control cycle of the Barrett WAMTM arm is 0.002 [s], the PD controller is applied
100 times (i.e., t = 0.002, 0.004, . . . , 0.198, 0.2) in each R3 cycle.

Figure 13 depicts a desired trajectory of the wrist joint generated by a random policy
and an actual trajectory obtained using the high-gain PD controller described above. The
graph shows that the desired trajectory is followed by the robot reasonably well.

The policy parameter θL is learned through the R3 iterations. The initial policy
parameters θ1 = (k⊤

1 , σ1)
⊤ are set manually as

k∗ = (−0.5,−0.5, 0,−0.5, 0, 0, 0, 0, 0),

and σ∗ = 0.1 so that various pairs of state and action can be safely explored in the first
iteration. The initial position of the ball is randomly selected as x∗ ∈ [−0.05, 0.05] and
the angle of elbow αpitch is offset by π

2
. The dataset collected in each iteration consists of

10 episodes with 20 steps. The duration of an episode is 4 [s] and the sampling cycle by
R3 is 0.2 [s].
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Figure 14: The performance of learned policies when ν = 0 (NIW), ν = 1 (PIW), and
ν is chosen by IWCV (R3) in ball balancing using a simulated Barrett WAMTM arm
system. The performance is measured by the return averaged over 10 trials. The symbol
‘◦’ indicates the fact that the method is the best or comparable to the best one in terms of
the expected return by the t-test at the significance level 5%, performed at every iteration.
The error bars indicate 1/10 of standard deviation.

We consider three scenarios here: sample reuse with fixed ν = 0 (NIW), ν = 1 (PIW),
and the proposed R3 (ν is chosen by IWCV from {0, 0.25, 0.5, 0.75, 1} at every iteration).
The discount factor is set to γ = 0.99. Figure 14 depicts the averaged expected return
over 10 trials as a function of the number of RWR iterations. The expected return at each
trial is computed from 20 test episodic data for this evaluation. The graph shows that
R3 nicely improves the performance over iterations. On the other hand, the performance
using fixed ν = 0 is saturated after the 3rd iteration. The performance using fixed ν = 1
was improved much in the beginning but suddenly goes down at 5th iteration. This shows
that large change of policies would cause the severe instability of sample reuse with fixed
ν = 1.

Figure 15 depicts examples of trajectories of the wrist angle αroll, the elbow angle
αpitch, resulting ball movement x∗, and reward r∗, when following policies learned by NIW
(ν = 0) and R3 (ν is chosen by IWCV) at the 10th iteration. When following the policy
learned by NIW, the ball goes through the middle of the tray (xroll, xpitch) = (0, 0). On
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Table 1: Parameter setting of the Acrobot swing-up problem.

Parameters Values
Length of link 1 (l1) 0.3 [m]
Length of link 2 (l2) 0.6 [m]
Mass of link 1 (m1) 6.4 [kg]
Mass of link 2 (m2) 11.1 [kg]
Centroid of link 1 (c1) 0.15 [m]
Centroid of link 2 (c2) 0.3 [m]
Moment of inertia of link 1 (I1) 0.048
Moment of inertia of link 2 (I2) 0.33

the other hand, the policy learned by R3 successfully guides the ball to the middle of the
tray along the roll axis though the movement along the pitch axis is almost the same as
NIW.

4.3 Acrobot Swing-up Task

We next evaluate our proposed method on a highly nonlinear control problem of Acrobot
swing-up using a simulator based on open dynamics engine (Smith, 2005).

The Acrobot is a well-known under-actuated robotic system where among two joints
(shoulder and elbow), only the elbow joint can be controlled; the shoulder joint freely
rotates in response to external forces such as inertia force and gravity. The robot is set
upside down as illustrated in Figure 16(a). The goal is to control the elbow joint so that
the entire body is swung up to the top. This task is known to be very hard because the
non-actuated shoulder joint has to be controlled indirectly through the manipulation of
the elbow joint, and the system dynamics of each joint is highly nonlinear (Spong, 1995).
The detailed settings of the robot are described in Figure 16(b) and Table 1.

The state space S is continuous and consists of s = (α1, α2, α̇1, α̇2)
⊤, where α1 ∈

[−3/2π, 1/2π] [rad] and α2 ∈ [−4/5π, 4/5π] [rad] are the angles of the shoulder and elbow
joints, respectively, and α̇∗ [rad/s] is the angular velocity of each joint. The action space
A is continuous and corresponds to the target angle a [rad] of the elbow joint. The reward
function is defined as

R(s, a, s′) =
1

2
I1α̇

′
1
2 +m1gc1(1 + sinα′

1),

where this corresponds to the sum of kinetic and potential energies of the link 1 to evaluate
the policy to swing up the entire body.

Similarly to the ball-balancing task, we design the feedback control system consisting of
R3 and the PD controllers. The R3 controller outputs the target angle a of the elbow joint
by current policy π(a|s,θL) at every 0.2 [s]. 135 Gaussian kernels with width σbasis = 1
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(a) NIW (ν = 0)
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(b) R3 (ν is chosen by IWCV)

Figure 15: Typical examples of trajectories of the wrist angle αroll, the elbow angle αpitch,
resulting ball movement x∗, and reward r∗, when following policies learned by NIW (ν = 0)
and R3 (ν is chosen by IWCV) at the 10th RWR iteration in the realistic ball-balancing
task.
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(a) Simulator of Acrobot

Initial pose
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l1
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c1
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Joint 1
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Joint 2

(elbow)
τ

(b) Structure of Acrobot

Figure 16: Simulator used for the Acrobot control task based on open-dynamics engine.
The initial pose is set to the bottom equilibrium state. The goal of the task is to swing
the entire body up to the top equilibrium state by only controlling the elbow joint.

are used as basis functions with the kernel centers {cb}135b=1 located over the state space as

(α1, α2, α̇1, α̇2) ∈{−3/2π,−π,−π/2, 0, π/2} × {−π/2, 0, π/2}
× {−10, 0, 10} × {−10, 0, 10}.

Then, the PD controller converts the desired angle a to the torque τ applied to the elbow
joint at every 0.005 [s]; the gain parameters are set to kp = 100 and kd = 15, respectively.

The initial state of the robot is set at the bottom equilibrium pose as s =
(−π/2, 0, 0, 0). The initial policy parameter θ̂AIW

1 is set randomly as k̂AIW
1 =

(β1, β2, . . . , β135)
⊤ and σ̂AIW

1 = 1, where β1, β2, . . . , β135 are independently drawn from
the uniform distribution on [−0.5, 0.5]. The dataset collected in each iteration consists of
10 episodes with 30 steps; the duration of an episode is 6 [s] and the sampling cycle by
R3 is 0.2 [s].

We consider five scenarios here: sample reuse with fixed ν = 0 (NIW), ν = 1 (PIW),
the proposed R3 (ν is chosen by IWCV from {0, 0.25, 0.5, 0.75, 1} at every iteration), and
energy-based Σ2 (Spong, 1995) with high gain parameters (kp = 100 and kd = 15), and
with low gain parameters (kp = 50 and kd = 8) as baseline methods. The discount
factor is set to γ = 0.99. Figure 17 depicts the averaged expected return over 10 trials
as a function of the number of RWR iterations. The expected return at each trial is
computed from 20 test episodic data for this evaluation. The graph shows that R3 nicely
improves the performance over iterations. On the other hand, the speed of performance
improvement when ν is fixed to 0 tends to be slow. When ν is fixed to 1, the performance
is improved quickly in an initial stage, but its improvement is saturated after the 18th
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Figure 17: The performance of policies learned by RWR with ν = 0 (NIW), ν = 1 (PIW),
and ν chosen by IWCV (R3), and energy-based Σ2 with different gain parameters as
baseline methods in the Acrobot swing-up task. The performance is measured by the
return averaged over 10 trials. The symbol ‘◦’ indicates the fact that the method is
the best or comparable to the best one in terms of the expected return by the t-test at
the significance level 5%, performed at every iteration. The error bars indicate 1/10 of
standard deviation.

iteration due to the instability of policy update. The energy-based Σ2 methods work well
when gain parameters are adjusted well. However, good gain parameters depend on the
property of the robot in a highly complicated way.

Figure 18 depicts an example of motion learned by R3 (at the 20th iteration). The
images show that the arm is repeatedly swung to the top.

5 Conclusions

In real-world reinforcement learning problems, reducing the number of training samples is
highly important as the sampling costs are often much higher than the computational cost.
In this paper, we proposed a new framework of direct policy search for efficient sample
reuse. To overcome the instability problem caused by importance sampling, we proposed
to combine reward-weighted regression with adaptive importance sampling techniques.
The proposed method, called R3, was shown to work well in experiments.
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Figure 18: An example of Acrobot motion learned by R3.

The proposed idea of using importance sampling techniques in direct policy search
would be applicable to other policy search methods such as the policy gradient method
(Williams, 1992; Sutton et al., 2000), the natural policy gradient method (Kakade, 2002;
Peters et al., 2005), and policy search by dynamic programming (Bagnell et al., 2003).
Extension along this line would be investigated in the future work.

We proposed to use an adaptive importance weighting technique in which the impor-
tance weight is powered by a flattening parameter. However, our proposed data-reuse
framework is more general so that it can handle other types of stabilizing techniques. For
example, truncated importance weighting (TIW) is also a popular variant in which impor-
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tance weights larger than some threshold are rounded off to the threshold value (Uchibe
& Doya, 2004; Wawrzynski, 2009). To obtain a good performance in data-reuse with
TIW, the threshold parameter should be appropriately tuned. Our proposed framework
can automatically select the parameter value based on estimated performances. Thus
investigating the effect of the sample-reuse idea in other types of importance-weighting
techniques would be important future works.

For the selection of the flattening parameter, we proposed to use importance-weighted
cross validation (IWCV). However, as we pointed out in Section 2.6, the importance sam-
pling tends to be unstable when only a small number of data samples following the same
policy are available. Although we introduced an idea based on per-decision importance-
weight to stabilize the importance weight in the parameter selection (see Section 3.1),
IWCV still suffers from instability. Thus, developing a more stable model selection pro-
cedure is an essential research direction, e.g., by introducing an additional adaptive im-
portance weighting into the IWCV-based model selection framework (cf. Sugiyama et al.,
2004).

In the ball balancing experiment in Section 4.2, we concatenated two independent
Gaussian policy models (see Eq.(4)) to handle the two-dimensional action space. When
the synchronization of multiple actions is necessary to achieve the goal, one may employ
the multivariate Gaussian density as a policy model:

πd(a|s;K,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
− 1

2
(a−K⊤ϕ(s))⊤Σ−1(a−K⊤ϕ(s))

)
,

where d is the dimension of the action space, K is the B × d parameter matrix, and Σ
is the d × d covariance matrix. Similarly to the univariate Gaussian policy model, the
policy parameter θd

L+1 = (K⊤
L+1,ΣL+1)

⊤ may be updated analytically by maximizing the
lower bound log JL(θ

d). Thus, our proposed R3 framework would be naturally extended
for multivariate Gaussian policy models, which needs to be further investigated in the
future work.

In this paper, we focused on the case where rollout samples are collected following
the current policy. However, from the viewpoint of active learning (Sugiyama, 2006), the
best sampling policy would be different from the current policy. Following this idea, an
active learning method for better exploration has been developed in the framework of
least-squares policy iteration and shown to perform well (Akiyama et al., 2010). Thus,
developing active learning strategies in the framework of direct policy learning would also
be a promising future direction to be pursued.

We focused on the discrete-time formulation and linearly interpolated the learned
system for continuous-time robot control in Sections 4.2 and 4.3. Although this was shown
to perform reasonably well, it is an important challenge to extend the current formulation
so that continuous time systems can be directly handled. Further investigation along the
line of Doya (2000) would be promising.
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A Derivation of Lower-Bound of Expected Return

Let us consider the log of the normalized expected return J(θ)/J(θL):

log
J(θ)

J(θL)
= log

∫
R(d)P (d;θ)

J(θL)
dd

= log

∫
R(d)P (d;θL)

J(θL)

P (d;θ)

P (d;θL)
dd.

By assuming R(d) to be non-negative and regarding R(d)P (d;θL)/J(θL) as a probability
density function, Jensen’s inequality gives a lower-bound of the log normalized expected
return:

log
J(θ)

J(θL)
≥
∫
R(d)P (d;θL)

J(θL)
log

P (d;θ)

P (d;θL)
dd.

Then we obtain the lower bound of the log expected return as

log J(θ) ≥
∫
R(d)P (d;θL)

J(θL)
log

P (d;θ)

P (d;θL)
dd+ log J(θL) ≡ log JL(θ).

B Derivation of Maximizer of Lower-Bound

The maximizer θL+1 of the lower bound log JL(θ) satisfies the following equation:

∂

∂θ
log JL(θ)

∣∣∣∣∣
θ=θL+1

=

∫
R(d)P (d;θL)

J(θL)

∂

∂θ
logP (d;θ)

∣∣∣∣∣
θ=θL+1

dd

=

∫
R(d)P (d;θL)

J(θL)

N∑
n=1

∂

∂θ
log π(an|sn;θ)

∣∣∣∣∣
θ=θL+1

dd = 0,

where we used Eq.(1). A useful property of the Gaussian policy model is that the log-
derivative of the policy model with respect to the parameters can be analytically computed
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as

∂

∂k
log π(a|s;θ) = a− k⊤ϕ(s)

σ2
ϕ(s),

∂

∂σ
log π(a|s;θ) = (a− k⊤ϕ(s))2 − σ2

σ3
.

Then the maximizer θL+1 = (k⊤
L+1, σL+1)

⊤ can be analytically obtained as

kL+1=

(∫
R(d)P (d;θL)

1

N

N∑
n=1

ϕ(sn)ϕ(sn)
⊤dd

)−1

×

(∫
R(d)P (d;θL)

1

N

N∑
n=1

anϕ(sn)dd

)
,

σ2
L+1=

(∫
R(d)P (d;θL)dd

)−1
(∫
R(d)P (d;θL)

1

N

N∑
n=1

(an − kL+1
⊤ϕ(sn))

2dd

)
.

C Derivation of Per-Decision Importance Weights

The expected return J(θL) can be expressed with stepwise importance weights wn
L,l(d) as

follows:

J(θL) =

∫ ( N∑
n=1

γn−1rn

)
P (d;θL)dd

=

∫ ( N∑
n=1

γn−1rn

)
wL,l(d)P (d;θl)dd

=

∫
r1
P (d;θL)

P (d;θl)
P (d;θl)dd+

∫
γr2

P (d;θL)

P (d;θl)
P (d;θl)dd+ · · ·

=

∫∫∫
r1
P (s1, a1, s2;θL)

P (s1, a1, s2;θl)
P (s1, a1, s2;θl)ds1da1ds2

+

∫∫∫∫∫
γr2

P (s1, a1, s2, a2, s3;θL)

P (s1, a1, s2, a2, s3;θl)
P (s1, a1, s2, a2, s3;θl)ds1da1ds2da2ds3 + · · ·

=

∫∫∫
r1
π(a1|s1;θL)

π(a1|s1;θl)
P (s1, a1, s2;θl)ds1da1ds2

+

∫∫∫∫∫
γr2

π(a1|s1;θL)π(a2|s2;θL)

π(a1|s1;θl)π(a2|s2;θl)
P (s1, a1, s2, a2, s3;θl)ds1da1ds2da2ds3 + · · ·

=

∫ ( N∑
n=1

γn−1rnw
n
L,l(d)

)
P (d;θl)dd.


