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Abstract

The derivation of statistical properties for Partial Least Squares regression can be a
challenging task. The reason is that the construction of latent components from the
predictor variables also depends on the response variable. While this typically leads
to good performance and interpretable models in practice, it makes the statistical
analysis more involved. In this work, we study the intrinsic complexity of Partial
Least Squares Regression. Our contribution is an unbiased estimate of its Degrees
of Freedom. It is defined as the trace of the first derivative of the fitted values,
seen as a function of the response. We establish two equivalent representations
that rely on the close connection of Partial Least Squares to matrix decompositions
and Krylov subspace techniques. We show that the Degrees of Freedom depend
on the collinearity of the predictor variables: The lower the collinearity is, the
higher the Degrees of Freedom are. In particular, they are typically higher than the
naive approach that defines the Degrees of Freedom as the number of components.
Further, we illustrate how our Degrees of Freedom estimate can be used for the
comparison of different regression methods. In the experimental section, we show
that our Degrees of Freedom estimate in combination with information criteria is
useful for model selection.
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1 Introduction

Partial Least Squares regression (PLSR) (Wold, 1975) is a two-step regularized regression
technique. It iteratively constructs an orthogonal set of latent components from the
predictor variables which have maximal covariance with the response variable. This low-
dimensional representation of the data is then used to fit a linear regression model. PLSR
is extended to nonlinear regression problems via a transformation of the predictor variables
(Durand and Sabatier, 1997; Rosipal and Trejo, 2001).

For model selection in PLSR, the optimal number of components has to be determined.
While cross-validation is the standard approach, an alternative is the use of information
criteria, which use the complexity of the fitted model. In regression, the complexity
of a fitting method is defined in terms of its Degrees of Freedom. Apart from their
usefulness for model selection, Degrees of Freedom also quantify the intrinsic complexity
of a regression method (see e.g. Van der Voet (1999) for an overview). In contrast to other
standard regression techniques as Principal Components Regression or Ridge Regression
(where the Degrees of Freedom equal the trace of the hat-matrix), the derivation of the
Degrees of Freedom for PLSR is not straightforward. This is due to the fact that PLSR is
not linear in the sense that the fitted response does not depend linearly on the response.
As the set of latent components is constructed in a supervised fashion, the projection of
the response variable onto these components is a highly nonlinear function of the response.
Therefore, it has been argued (e.g Martens and Naes (1989); Frank and Friedman (1993))
that the Degrees of Freedom of PLSR exceed the number of components.

We provide an unbiased estimate of the generalized Degrees of Freedom of PLSR. It
is defined as the trace of the Jacobian matrix of the fitted values, seen as a function of
the response. We illustrate on benchmark data that the complexity of PLSR depends on
the collinearity of the predictor variables: The higher the collinearity is, the lower the
complexity is. Under additional assumptions on the collinearity structure of the data, we
provide bounds for the Degrees of Freedom if one component is used.

We present two different implementations. (i) The first one is derived via an iterative
computation of the first derivative of the PLSR fit. To do so, we use the equivalence of
Partial Least Squares Regression to the Lanczos decomposition of the matrix of predictor
variables. This implementation has the advantage that it also provides an asymptotic
distribution of the PLSR regression coefficients, which can be used for the construction
of confidence intervals (Denham, 1997; Phatak et al., 2002). (ii) The second implemen-
tation computes the Degrees of Freedom directly, i.e. it avoids the computation of the
derivative itself. This leads to a more favorable runtime. For the derivation, we use the
close connection of PLS regression to Krylov subspace techniques. Both algorithms are
implemented in the R package ‘plsdof’ (Krämer and Braun, 2009).

We investigate the performance of the Degrees of Freedom of PLSR with respect to
model selection of the number of PLSR components. We compare the test errors based on
10-fold cross-validation and based on the Bayesian Information Criterion (BIC) (Schwarz,
1978) in a simulation study. For the latter information criterion, we use our Degrees of
Freedom estimate and the naive approach that defines the Degrees of Freedom of PLSR
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via the number of components. Our experiments show that the model selected based on
our Degrees of Freedom estimate is typically less complex than the model selected by the
naive approach. This can lead to a higher test error for the naive approach. In terms of
prediction accuracy, our Degrees of Freedom approach is on a par with the gold-standard
of cross-validation, providing further evidence that our estimates captures the true model
complexity correctly.

2 Methodological Background

We consider a multivariate regression problem

R ∋ Yi = f(xi) + εi , εi ∼ N
(
0, σ2

)
, (1)

and the task is to estimate the unknown function f : Rp → R from a finite set of n
examples (x1, y1), . . . , (xn, yn) ∈ Rp × R, where yi is drawn from (1). We assume that
the error variables εi are independent. Let us denote by x and s(x) the mean and the
standard deviation of the predictor examples xi and by y the mean of the response samples
yi. The n × p data matrix X is the matrix whose rows are the centered and scaled (to
unit variance) xi, and the vector y ∈ Rn consists of the centered response yi. While in
the course of this paper, we assume that the regression function f is linear,

f(x) = β(0) + β⊤x , β(0) ∈ R,β ∈ Rp , (2)

the definitions given in Subsection 2.1 do not require f to be a linear function. Finally,
we define

S =
1

n− 1
X⊤X ∈ Rp×p and s =

1

n− 1
X⊤y ∈ Rp. (3)

2.1 Degrees of Freedom and Model Selection

Regularized regression methods typically yield a set of estimates f̂λ of the true regression
function f , and the parameter λ determines the amount of regularization. In Partial Least
Squares Regression, the parameter λ corresponds to the number of latent components.

The task is to determine the optimal parameter value λ. Information criteria are
based on the rationale that the true error of f̂λ can be estimated in terms of its training
error and its complexity. In regression problems, the complexity is defined via Degrees
of Freedom. These are defined for the class of methods that are linear in the sense that
the fitted values are a linear function of y, i.e. ŷλ = Hλy with Hλ ∈ Rp×p a matrix that
does not depend on y. Popular examples are Ridge Regression and Principal Components
Regression. The matrix Hλ is called the hat-matrix. In the linear case, the Degrees of
Freedom are defined as the trace of the hat-matrix,

DoF(λ) = trace (Hλ) . (4)
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As we point out below, PLS regression is not a linear method, and the above definition
cannot be applied. In order to extend the notion of Degrees of Freedom to PLSR, we
employ the generalized definition proposed by Efron (2004).

Definition 1. Let f̂λ be an estimate of the true regression function f , parameterized by
λ. We define the vector of fitted values as ŷλ = (f̂λ(x1, ), . . . , f̂λ(xn))

⊤. The Degrees of
Freedom are

DoF (λ) = E
[
trace

(
∂ŷλ

∂y

)]
.

Here, the input X is assumed to be fixed and the expectation E is taken with respect to
y1, . . . , yn.

The Degrees of Freedom measure the sensitivity of the fitted values, seen as a function
of y. Note that for the special case of linear methods, this definition coincides with (4).

Popular examples of information criteria include the Akaike information criterion
(Akaike, 1973), the generalized minimum description length (Hansen and Yu, 2001) and
the Bayesian information criterion (BIC) (Schwarz, 1978)

bic (λ) = ∥ŷλ − y∥2 + log(n)σ2 DoF(λ) .

For information criteria, we need an estimate of the noise level σ defined in (1). For
linear methods ŷλ = Hλy, this is accomplished as follows. The residual is of the form
y− ŷλ = (In −Hλ)y. The bias-variance decomposition of the mean squared error yields

E
[
∥y − ŷλ∥2

]
= ∥E[y − ŷλ]∥2 + trace

(
(In −Hλ)(In −H⊤

λ )
)
σ2 .

By dropping the unknown bias term ∥E[y − ŷλ]∥2, we yield an estimate of σ via

σ̂2
∗ =

∥y − ŷλ∥2

trace
(
(In −Hλ)(In −H⊤

λ )
) . (5)

If Hλ is a projection operator (which is e.g. true for Principal Components Regression),
the expression is simplified to

σ̂2 =
∥y − ŷλ∥2

n−DoF(λ)
. (6)

We note that the latter estimate is most commonly used, even if the above assumption is
not fulfilled.

2.2 Partial Least Squares Regression

PLSR constructs m latent components T = (t1, . . . , tm) ∈ Rn×m from the predictor
variables X such that the components ti are mutually orthogonal and that they have
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maximum covariance to the response y. In the NIPALS algorithm (Wold, 1975), the first
component t1 = Xw1 maximizes the squared covariance to the response y,

w1 = argmax
w

∥cov(Xw,y)∥2

w⊤w
= argmax

w

w⊤X⊤yy⊤Xw

w⊤w
∝X⊤y . (7)

Subsequent components t2, t3, . . . are chosen such that they maximize the squared covari-
ance to y and that all components are mutually orthogonal. Orthogonality is enforced by
deflating the original variables X ,

Xi = X − Pt1,...,ti−1
X . (8)

Here, Pt1,...,ti−1
denotes the orthogonal projection onto the space spanned by t1, . . . , ti−1.

We then replace X by Xi in (7). While the matrix T = (t1, . . . , tm) is orthogonal by
construction, it can be shown that the matrix W = (w1, . . . ,wm) ∈ Rd×m is orthogonal
as well (e.g. Hoskuldsson (1988)). The m latent components T are used as regressors in
a least squares fit in place of X, leading to fitted values

ŷm = y1n + T
(
T⊤T

)−1
T⊤y = y1n + PTy . (9)

We emphasize again that PLSR is not a linear estimator as defined in Section 2.1. The
projection matrix PT depends on the response as well, as the latent components T are
defined in terms of both X and y.

To determine the estimated regression coefficients and intercept in (2), we define

L = T⊤XW ∈ Rm×m , (10)

and obtain β̂m = DWL−1T⊤y for the regression coefficients (Manne, 1987; Hoskuldsson,

1988) and β̂
(0)
m = y−x⊤β̂m for the intercept. Here, D is the diagonal p×p scaling matrix

with entries dii = 1/s(x)i.

3 Unbiased Estimation of the Degrees of Freedom

The latent components T of PLSR depend on the response y. Therefore, the relationship
between y and the fitted PLSR values ŷm is nonlinear, and the compact formula (4)
for the Degrees of Freedom cannot be applied. However, we can use the more general
Definition 1 to obtain an unbiased plug-in estimate.

Proposition 2. An unbiased estimate of the Degrees of Freedom of PLSR with m latent
components T = (t1, . . . , tm) is given by

D̂oF(m) = 1 + trace

(
∂PTy

∂y

)
. (11)

The constant term 1 corresponds to the estimation of the intercept β(0), which con-
sumes one Degree of Freedom. For the derivation, we need to compute the trace of the
derivative in (11) explicitly. We propose two equivalent algorithms in Subsections 3.3 and
3.4.
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Table 1: Properties of the three benchmark data sets. A detailed description of the data
can be found in the appendix.

data set variables examples mean absolute correlation
kin (fh) 32 8192 low (0.009)
ozone 12 203 medium (0.260)
cookie 700 70 high (0.867)
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Figure 1: Estimated Degrees of Freedom (stars) for the three benchmark data sets. The
solid line displays the naive estimate DoF(m) = m + 1. If the assumption of theorem 3
is fulfilled, we also display the lower bound on the Degrees of Freedom for 1 component
(dashed horizontal line).

3.1 Illustration and a Lower Bound

Before delving deeper into the details of the implementation, we illustrate the properties
of the Degrees of Freedom on benchmark data. An overview of the data sets is given in
Table 1 (see the appendix for more details). We choose the three particular data sets
as they differ with respect to the collinearity structure of the predictor variables. As an
indicator for the degree of collinearity, we compute the mean of the absolute empirical
correlation coefficients defined by s = (2/(p2 − p))

∑p
i<j |sij| . Here sij is the (i, j)-entry

of the empirical correlation matrix S of X. The values of s are displayed in the fourth
column of Table 1.

In Figure 1, we plot the Degrees of Freedom for the three data sets as a function of
the number of components. (For the large data set kin (fh), we use a subsample of size
300.) In addition, we display the naive estimate DoF(m) = m + 1. In the examples,
our Degrees of Freedom estimate always exceeds the naive approach. This supports the
conjecture that DoF(m) ≥ m + 1, which is voiced e.g. in Martens and Naes (1989) and
Frank and Friedman (1993).

Furthermore, Figure 1 shows that the correlation structure of the predictor variables
determines the shape of the DoF-curve. In our examples, the complexity is higher for data
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with low correlation. We underpin this observation with a lower bound on the Degrees of
Freedom of PLSR with m = 1 component.

Theorem 3. If the largest eigenvalue λmax of the empirical correlation matrix S defined
in (3) fulfills

λmax ≤
1

2
trace(S) , (12)

then

D̂oF(m = 1) ≥ 1 +
trace(S)

λmax

. (13)

Condition (12) controls the amount of collinearity of X. If the collinearity is low, the
decay of the eigenvalues of S is slow (and condition (12) is fulfilled). The lower bound
(13) is higher for data with low collinearity. In Figure 1, we add the lower bound for the
data sets kin (fh) and ozone, which fulfill condition (12).

Proof. We express the PLS fit for one component in terms of S and s defined in (3).
Recall that the first latent component is defined as t1 = Xs, which implies

ŷ1 = y +
s⊤s

s⊤Ss
Xs .

After computing the derivative of this term with respect to y and computing its trace,
we obtain

D̂oF(m = 1) = 3 +
s⊤s

s⊤Ss

[
trace(S)− 2

(
s⊤S2s

)
s⊤Ss

]
.

Now, by definition of maximal eigenvalues, s⊤S2s/s⊤Ss ≤ λmax and s⊤s/s⊤Ss ≥
1/λmax . It follows that

trace(S)− 2

(
s⊤S2s

)
s⊤Ss

≥ trace(S)− 2λmax .

Condition (12) ensures that the right-hand side of this inequality is non-negative, hence,

D̂oF(m = 1) ≥ 3 +
s⊤s

s⊤Ss
[trace(S)− 2λmax]

≥ 3 +
1

λmax

[trace(S)− 2λmax] = 1 +
trace(S)

λmax

.
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Figure 2: Comparison of PLS, PCR and Ridge Regression. Left: mean squared error of
prediction for the three regression methods. Center: Number of cross-validation optimal
number of components for PLS and PCR. Right: Cross-validation optimal Degrees of
Freedom for the three regression methods.

3.2 Comparison of Regression Methods

While the regularization parameters λ1 and λ2 for two competing regression methods
cannot be compared directly, their corresponding Degrees of Freedom values DoF(λ1)
and DoF(λ2) are on the same scale. Hence, Degrees of Freedom allow us to compare the
model complexity across different regularized regression approaches.

To illustrate this point, we compare the model complexity of PLSR, Principal Com-
ponents Regression (PCR), and Ridge Regression on the ozone data set. Recall that for
PCR, the Degrees of Freedom are the number of principal components plus one, and for
Ridge Regression,

DoF(λ)ridge = 1 + trace
(
X
(
X⊤X + λIp

)−1
X⊤

)
.

We split the data set into 50 training examples and 153 test examples. On the training
data, we compute the optimal model parameter for the respective methods with 10-fold
cross-validation. We assess the predictive performance by computing the mean squared
error of prediction on the test set. This procedure is repeated 50 times.

Let us start with the observation that the predictive performance of the three methods
is similar on this data set (left plot in Figure 2). This is in accordance with previous
observations that the methods often perform similarly (see e.g. Frank and Friedman
(1993)). Next, we compare the model complexity of PLSR and PCR in terms of the
cross-validation-optimal number of components. This is displayed in the center plot of
Figure 2. On average, PLSR selects fewer components than PCR. However, in terms of
Degrees of Freedom, PLSR selects more complex models than PCR (right plot in Figure
2).

Further, it is known (De Jong, 1993) that for a fixed number of components, PLSR
obtains a lower approximation error ∥ŷols − ŷm∥2/n than PCR. Here, ŷols are the fitted
values obtained by ordinary least squares. This implies that for a fixed number of com-
ponents, the training error ∥y − ŷm∥2/n of PLSR is lower than the one of PCR. This is
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Figure 3: Training error of PLSR and PCR. Left: Training error as a function of the
number of components. Right: Training error as a function of the Degrees of Freedom.

illustrated in the left plot of Figure 3. Here, we plot the mean training error for PLSR
and PCR over all 50 runs of the experiments as a function of the number of components.

The lower approximation error is sometimes used as an argument in favor of PLSR,
as it often leads to the selection of fewer components compared to PCR (as illustrated
in Figure 2). While this can be advantageous in problems where the latent components
are used for model interpretation (e.g. for the visualization of the data in terms of a
2-D or 3-D plot), we stress again that the number of components do not capture the
intrinsic model complexity, and that models with the same Degrees of Freedom should
be compared instead. In the right plot of Figure 3, we therefore plot the mean training
error of PLSR and PCR as functions of the corresponding Degrees of Freedom. The plot
shows that the difference of the approximation error is marginal in terms of Degrees of
Freedom. Furthermore, the plot illustrates that PLSR concentrates a lot of components
on regions with low training error and high complexity: All PLS models (with m ≥ 1)
consume at least 4 Degrees of Freedom, and for m ≥ 3, the Degrees of Freedom already
exceed 10. Compared to PCR, this might be disadvantageous in situations where the true
underlying model has a low complexity, as PLSR models do not explore the full range of
Degrees of Freedom.

To summarize, the direct comparison of model parameters for different regression
methods is in general not possible, because they are either on a different scale (e.g. for
PLSR and Ridge Regression) or they are just seemingly on the same scale (e.g. for PLSR
and PCR) and a direct comparison would lead to misleading results. Degrees of Freedom
offer a valuable solution to this problem.
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3.3 First Derivative of the Lanczos Decomposition

We now present the first implementation of the Degrees of Freedom estimate. We extend
the approaches that are proposed in Denham (1997) and Serneels et al. (2004). There,
the iterative formulation of the NIPALS algorithm is used to construct the derivative of
β̂m. Instead, our algorithm is based on the matrix decomposition defined by (10). Note
that the matrix L is upper bidiagonal, i.e. lij = 0 for i > j or i < j − 1. The relationship
(10) defines a Lanczos decomposition (Lanczos, 1950) of X, i.e. a decomposition into
orthonormal matrices T and W and an upper bidiagonal matrix L. For fixed y and
m, the decomposition is unique. The Lanczos decomposition can be interpreted as the
analogue to the singular value decomposition that is defined by Principal Components
Analysis. For more details on the equivalence of PLSR and Lanczos decompositions, we
refer the readers to Eldén (2004).

We propose an implementation of PLSR that iteratively constructs the derivative of
the projection operator PT based on the Lanczos decomposition. This has the advantage
that we also obtain the derivative of the regression coefficients β̂m, which can then be
used to construct approximative confidence intervals (Denham, 1997; Phatak et al., 2002).

We proceed in three steps. First, we derive a fast recursive PLSR algorithm based on
the Lanczos decomposition. This algorithm avoids the explicit deflation of X as in (8),
and only depends on projections onto one-dimensional subspaces. Second, we determine
the first derivative of one-dimensional projection operators (Krämer and Braun, 2007),
which are

∂ (v/∥v∥S)
∂y

:=
∂
(
v/
√
v⊤Sv

)
∂y

=
1

∥v∥S

(
In −

vv⊤S

v⊤v

)
∂v

∂y
,

and

∂
(
vv⊤z

)
∂y

=
(
vz⊤ + v⊤zIn

) ∂v
∂y

+ vv⊤ ∂z

∂y
.

Finally, we differentiate the recursive formulas of the Lanczos representation. Algorithm
1 displays the result. Its derivation can be found in the appendix.

As we compute the derivative of the regression coefficients as well, we can estimate
the covariance of the PLSR coefficients by using a first order Taylor approximation β̂m ≈(
∂β̂m/∂y

)
y, which leads to

ĉov
(
β̂m

)
= σ̂2∂β̂m

∂y

(
∂β̂m

∂y

)⊤

.

Furthermore, we can use the first order Taylor expansion to construct an approximate
hat-matrix for PLSR via

Hm, approx =
∂ŷm

∂y
. (14)

This matrix can be plugged into formula (5) for the estimation of the noise level.
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Algorithm 1 Derivative of the regression coefficients and Degrees of Freedom

1: Input: centered and scaled data X, y, number m of components
2: n = number or examples
3: S =

(
X⊤X

)
/(n− 1), s =

(
X⊤y

)
/(n− 1)

4: Initialization: β̂0 = 0p,
(
∂β̂0/∂y

)
= 0p×n

5: for i = 1, . . . ,m do
6: wi = s− Sβ̂i−1

7: (∂wi/∂y) = X⊤/(n− 1)− S
(
∂β̂i−1/∂y

)
8: vi = wi −

∑i−1
j=1 vjv

⊤
j Swi

9: (∂vi/∂y) = (∂wi/∂y)−
∑i−1

j=1

(
∂vjv

⊤
j Swi/∂y

)
10: vi =

√
n− 1vi/∥vi∥S

11: (∂vi/∂y) =
√
n− 1∂ (vi/∥vi∥S) /∂y

12: β̂i = β̂i−1 + viv
⊤
i s

13: ∂β̂i/∂y = ∂β̂i−1/∂y +
(
∂viv

⊤
i s/∂y

)
14: end for
15: DoF(m) = 1 + trace

(
X∂β̂m/∂y

)
.

3.4 Trace of the Krylov Representation

The computation of the derivative of ŷm in Subsection 3.3 involves repeated matrix-
matrix-multiplications. For high-dimensional data, this can become very time-consuming.
As we do not need the derivative itself for the Degrees of Freedom but only its trace, we
reduce the computational load by cleverly rearranging the computation of the derivative.

To this end, we use a closed form expression of the fitted values ŷm that is based
on Krylov subspaces. We use the fact (Hoskuldsson, 1988) that span {t1, . . . , tm} =
span {Ky, . . . ,Kmy} =: Km, with K = XX⊤ the n × n kernel matrix. The space on
the right-hand side is called the Krylov subspace defined by K and Ky. We use the
explicit representation ŷm = y + PKm to compute its derivative. In Phatak et al. (2002),

a corresponding formula for β̂m is used to determine its approximate distribution. We
extend this result to the derivative of the fitted values. Additionally, after computing
the derivative, we apply the basis transformation B = (⟨ti,Kjy⟩) ∈ Rm×m to improve
numerical stability. This yields the following result.

Proposition 4. Set

c = B−1T⊤y ∈ Rm and V = (v1, . . . ,vm) = T
(
B−1

)⊤ ∈ Rn×m .

We have

∂ŷm

∂y
=

1

n
In +

m∑
j=1

cj
(
In − TT⊤)Kj +

m∑
j=1

vj (y − ŷm)
⊤ Kj + TT⊤ .
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In contrast to the Lanczos representation (Subsection 3.3), the representation in
Proposition 4 is more convenient for the computation of the Degrees of Freedom, as
its trace can be computed directly.

Proposition 5. The unbiased estimate for the Degrees of Freedom of PLSR with m
components equals

D̂oF(m) = 1 +
m∑
j=1

cj trace
(
Kj
)
−

m∑
j,l=1

t⊤l K
jtl + (y − ŷm)

⊤
m∑
j=1

Kjvj +m.

Hence, for the computation of the Degrees of Freedom of PLSR, we need a single fit
of the PLSR algorithm that returns the matrix T of latent components. One can either
use the original formulation of the NIPALS algorithm (Subsection 2.2) or the Lanczos
decomposition (Algorithm 1) without the computation of the derivative.

4 Experiments

In this section, we evaluate the performance of the Degrees of Freedom estimate with
respect to model selection for PLSR. We investigate the performance both with respect
to prediction accuracy and model complexity (Subsection 4.1), and with respect to the
estimation of the noise level σ of the regression model (Subsection 4.2). Further, in Sub-
section 4.3, we discuss numerical issues and the computational efficiency of our proposed
algorithms.

In our experiments, we consider the Bayesian Information Criterion. We conducted
experiments with the Akaike Information Criterion and the generalized Minimum Descrip-
tion Length as well, but we found that our main observations on the difference between
our Degrees of Freedom estimate and the naive approach DoF(m) = m+1 do not depend
on the particular criterion. Hence, for the sake of clarity, we only report the results for
the Bayesian Information Criterion.

We would like to stress that the primary goal of this section is not to advertise BIC
in combination with our Degrees of Freedom estimate as a novel model selection criterion
that is universally preferable to existing methods. Instead, we want to provide further
empirical evidence that our estimate captures the intrinsic model complexity of PLSR
reliably.

We use the ozone data set as a starting point for our simulation study. As a prepro-
cessing step, we scale all variables of the data set to lie in the interval [-1,+1]. The true
regression function f in equation (1) is of the form

f(x) =
d∑

j=1

βjϕj(x) with fixed basis functions ϕj(x) = exp
(
−∥x− cj∥2

)
.

The coefficients of the center points cj ∈ Rp are chosen uniformly from [−1,+1]. The
regression coefficients βj are chosen randomly from a uniform distribution over [1, 3]. We
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stress that the center points and hence the basis functions are fixed a-priori. This is
to ensure that we are still in a parametric regression scenario, for which the Bayesian
Information Criterion is suited. In the simulation study, we vary the number d of basis
functions from 10 to 210 in steps of 40. We choose the variance σ2 of the noise variable
such that the signal-to-noise-ratio equals 9. After the transformation of the initial data
matrix X via the basis functions (ϕ1, . . . , ϕd), we obtain a d-dimensional data set, and
are in the setting of a linear regression model.

We split the data into 50 training and 153 test points. The small training sample size
allows us to consider high-dimensional settings, and the large test sample size ensures a
reliable estimation of the test error. On the training data, we apply four different model
selection criteria.

(a) CV: 10-fold cross-validation.

(b) LANCZOS: Bayesian Information Criterion with the Degrees of Freedom com-
puted from the Lanczos decomposition (Algorithm 1). For the estimation of the
noise level, we use equation (5) with the approximate hat-matrix defined in (14).

(c) KRYLOV: Bayesian Information Criterion with the Degrees of Freedom computed
from the Krylov representation (Proposition 5). For the estimation of the noise
level, we use equation (6).

(d) NAIVE: Bayesian Information Criterion with the naive Degrees of Freedom
DoF(m) = m+ 1. For the estimation of the noise level, we use equation (6).

Note that LANCZOS and KRYLOV use the same Degrees of Freedom estimate, and
only differ in the estimation of the noise level σ . As the computation of the Degrees of
Freedom depends on two different implementations, their runtime differs. Further, for all
four methods, we set the range of the number of components from 0 to 30.

For each of the four criteria, we measure the performance on the hold-out set of size
153 by computing the normalized mean squared error: We divide the mean squared test
error by the mean squared test error of the trivial model, i.e. the constant model equal
to the mean of the training data. This normalization facilitates the comparison between
different values of d. The procedure is repeated 50 times.

4.1 Prediction Accuracy and Model Complexity

We display the median and the boxplots of normalized test errors in Figure 4. On average,
our Degrees of Freedom estimate in combination with BIC shows a comparable prediction
accuracy to cross-validation (right plot of Figure 4). The two different approaches for the
computation of the Degrees of Freedom (KRYLOV and LANCZOS), which only differ in
the estimation of σ, do not show any clear difference over the different simulation settings.
Note however that LANCZOS is in general computationally more expensive. We refer
the readers to Subsection 4.3 for more details on computation time.
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For the higher-dimensional scenarios (d ≥ 90) in our simulation study, the naive
approach leads to considerably worse results than the three other methods (left plot
in Figure 4). Figure 5 illustrates that the naive approach tends to underestimate the
true underlying complexity of the model. Compared to cross-validation and our DoF
estimate, it selects more components and Degrees of Freedom respectively. A closer look
at the simulation reveals that the selection of more components does not automatically
lead to a higher test error. More precisely, for d = 50 dimensions, the naive approach
selects considerably more components compared to the three other methods, yet the
prediction accuracy is on the same level. In contrast, for higher number of dimensions, the
increased model complexity also affects the prediction accuracy. A possible explanation
for this phenomenon is the following. For many moderate sized data sets, the test error
first decreases sharply with the number of components, and then reaches a flat plateau
for higher number of components. In this case, a more complex model can lead to a
comparable prediction accuracy even with higher number of components. To underpin
this point, we plot a scaled test error for d = 50 and d = 210 as a function of the number
of components (see Figure 6). Here, we scale the test error such that its minimal value
for a fixed d is equal to 1. For d = 50, the relative decrease in prediction accuracy is
only moderate if we choose too many components, and the test error curve is flat. In
contrast, for d = 210, the relative increase of the test error is steep, and a selection of
more components than the test-error optimal ones can lead to poor results.

4.2 Estimation of the Noise Level σ

We now investigate the quality of the three different PLS based estimates for the noise
level σ that are obtained by KRYLOV, LANCZOS and NAIVE.

Figure 8 displays normalized estimates σ̂ obtained on the 50 training samples: We
divide each estimate by the true noise level σ that is determined by the signal-to-noise
ratio (which is set to 9). The dashed horizontal line indicates the theoretical optimum
of 1. We observe that KRYLOV and LANCZOS slightly overestimate the noise level,
which would in turn lead to slightly too conservative confidence intervals when used in
inference problems. In contrast, the naive approach underestimates σ, and due to the
complex models that it selects for higher dimensions (see Subsection 4.1), the quality of
the estimate deteriorates.

4.3 Numerical Stability and Runtime

As explained in Subsection 3.3, the sparse structure of the matrix L defined in (10)
allows us to derive a fast iterative algorithm for PLSR and its derivative (Algorithm 1).
In practice, we observe that the sparsity leads to numerical problems: After a certain
number of components, the latent components ti are not mutually orthogonal anymore.
This typically affects the computation of the Degrees of Freedom as well and leads to
implausible results (e.g. negative Degrees of Freedom). In Krämer and Braun (2007), the
sparse structure of L is used and an additional stopping criterion is imposed to ensure
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Figure 4: Simulation results. Left: Median of the normalized test error for the four
different model selection criteria. Right: Boxplot of the normalized test error for all
methods except for the naive approach.
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Figure 6: Illustration: Scaled mean test error as a function of the number of components.
For each value of d (dimensionality), the test error is scaled such that its minimum value
is 1.
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Figure 8: Simulation results. Normalized estimated noise levels σ̂/σ. The dashed hori-
zontal line indicates the theoretical optimum.

that the latent components are orthogonal. However, this algorithm can stop very early.
Therefore, we use equation (16) in the appendix that requires little additional computation
time but ensures stability.

In some of the data, we observe that for a rather large number of components, both
implementations for the Degrees of Freedom return negative Degrees of Freedom. This
indicates a numerical problem. Therefore, in our experiments, we set the maximum
number of components to m∗ if we observe negative Degrees of Freedom for m∗ + 1
components.

Finally, in Figure 7, we compare the runtime of the four different methods in our
simulation study. While the absolute values are low, the four criteria show clear differ-
ences. The Lanczos decomposition is by far the slowest approach, as it first computes
the derivative of the PLSR fit before computing the Degrees of Freedom. With respect
to runtime, the algorithm based on the Krylov representation is therefore preferable, if
the explicit derivative is not needed. It is also faster than 10-fold cross-validation. The
naive approach is always the fastest method, as it only requires a single run of the PLSR
algorithm and no additional computation of the Degrees of Freedom.

5 Discussion and Conclusion

Our findings show that typically, the Degrees of Freedom are higher for data sets with
predictor variables that have low correlation and that each PLSR component consumes
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more than one Degree of Freedom. This confirms the longstanding conjecture that
DoF(m) ≥ m + 1. This result may not come as a big surprise: For a fixed number
of components, PLSR is less biased than Principal Components Regression (De Jong,
1993). This decrease in bias is balanced by an increased complexity in terms of Degrees
of Freedom.

On average, the Degrees of Freedom of PLSR in combination with information cri-
teria yield a similar prediction accuracy when compared to cross-validation. The naive
approach that defines the Degrees of Freedom as the number of components plus one
selects more complex models, which can in turn lead to worse prediction accuracy. This
also effects the estimation of the noise level σ of the regression model. While our approach
slightly overestimates σ, the naive approach yields estimates that are considerably biased
downwards. From the computational point of view, the implementation based on the
Krylov representation is preferable to the Lanczos-based algorithm, and – depending on
the number k of splits – is faster than k-fold cross-validation.

In this paper, we applied the Degrees of Freedom estimate to the selection of the
optimal number of PLSR components. It is possible to extend our framework to penalized
PLSR (Goutis and Fearn, 1996; Reiss and Ogden, 2007; Krämer et al., 2008), where an
additional smoothing parameter has to be selected. The derivation of the Degrees of
Freedom can be adapted accordingly.

The two implementations for the Degrees of Freedom capitalize on the close connection
between PLSR and methods from numerical linear algebra, namely the Lanczos decom-
positions and Krylov subspace approximations. Apart from the computational advances
that are pointed out in this paper, this connection is very fruitful to analyze statistical
properties of PLSR in a concise way. Recent results on the correspondence of penal-
ized PLSR to preconditioning (Krämer et al., 2008) and on the prediction consistency of
PLSR (Blanchard and Krämer, 2010a,b) underpin the potential of this connection. We
strongly believe that the interplay between numerical linear algebra and PLSR will further
stimulate the field of statistics.
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A Derivation of Algorithm 1

The weight vector wi can be rewritten as wi = X⊤ (y − ŷi−1) ∝ s − Sβ̂i−1 . We define
the “pseudo”-weight vector vi via ti = Xiwi =: Xvi . Using the fact that the matrix
L = T⊤XW defined in (10) is upper-triangular, we yield

vi = wi − vi−1v
⊤
i−1Swi (15)

−
i−2∑
j=1

vjv
⊤
j Swi . (16)

Note that L is in fact also upper-diagonal, hence the term in second line is 0. However,
to ensure numerical stability, we include the term in our computation. The normalization
of ti to unit length corresponds to

vi ←
√
n− 1

∥vi∥S
vi =

√
n− 1√
v⊤
i Svi

vi .

It follows that β̂i = β̂i−1 + viv
⊤
i s .

B Description of the Data Sets

kin (fh) Simulation of the forward dynamics of an eight link all-revolute robot arm.
The 32 predictor variables correspond to positions of joints and to twist angles, length
and offset distance for links. The task is to predict the distance of the end-effector from
a target. The problem is fairly linear (f) and contains a high amount of noise (h). The
data is available at the delve-repository http://www.cs.toronto.edu/∼delve/.

ozone Los Angeles ozone pollution data 1976. The 12 predictor variables contain the
date of the measurement and information on wind speed, humidity, temperature etc. The
task is to predict the daily maximum one-hour-average ozone reading. The original data
contains missing values. From the 366 examples, we use the 203 examples with no missing
values. The data is provided by the R-package ‘mlbench’ (Leisch and Dimitriadou, 2010).

cookie Quantitative NIR spectroscopy for dough piece. A Near Infrared reflectance
spectrum is available for each dough piece. The spectral data consist of 700 points mea-
sured from 1100 to 2498 nanometers (nm) in steps of 2 nm. The task is to predict the
percentage of fat. The data is first analyzed by Osborne et al. (1984) and Brown et al.
(2001). The data set provided by the R-package ‘ppls’ (Krämer and Boulesteix, 2009)
also contains the percentage of sucrose, dry flour, and water.


