
MULTI-PARAMETRIC SOLUTION-PATH ALGORITHM FOR INSTANCE-WEIGHTED
SUPPORT VECTOR MACHINES

Masayuki Karasuyama1, Naoyuki Harada2, Masashi Sugiyama1 and Ichiro Takeuchi2

1Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan
2Department of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan

ABSTRACT

An instance-weighted variant of the support vector machine
(SVM) has attracted considerable attention recently since they are
useful in various machine learning tasks such as non-stationary
data analysis, heteroscedastic data modeling, transfer learning,
learning to rank, and transduction. An important challenge in
these scenarios is to overcome the computational bottleneck—
instance weights often change dynamically or adaptively, and thus
the weighted SVM solutions must be repeatedly computed. In this
paper, we develop an algorithm that can efficiently and exactly up-
date the weighted SVM solutions for arbitrary change of instance
weights. Technically, this contribution can be regarded as an ex-
tension of the conventional solution-path algorithm for a single
regularization parameter to multiple instance-weight parameters.
However, this extension gives rise to a significant problem that
breakpoints (at which the solution path turns) have to be identi-
fied in high-dimensional space. To facilitate this, we introduce a
parametric representation of instance weights which allows us to
find the breakpoints in high-dimensional space easily. Despite its
simplicity, our parametrization covers various important machine
learning tasks and it widens the applicability of the solution-path
algorithm. Through extensive experiments on various practical ap-
plications, we demonstrate the usefulness of the proposed algo-
rithm.

1. INTRODUCTION

The most fundamental principle of machine learning would be the
empirical risk minimization, i.e., the sum of empirical losses over
training instances is minimized:

min
∑
i

Li,

where Li denotes the empirical loss for the ith training instance.
This empirical risk minimization approach was proved to produce
consistent estimators [1]. On the other hand, one may also con-
sider an instance-weighted variant of empirical risk minimization:

min
∑
i

CiLi,

where Ci denotes the weight for the ith training instance. This
weighted variant plays an important role in various machine learn-
ing tasks such as

• Non-stationary data analysis
• Heteroscedastic data modeling

• Covariate shift adaptation, transfer learning, and multi-task
learning

• Learning to rank and ordinal regression
• Transduction and semi-supervised learning

A common challenge in the research of instance-weighted
learning has been to overcome the computational issue. In many
of these tasks, instance weights often change dynamically or adap-
tively, and thus the instance-weighted solutions must be repeat-
edly computed. For example, in non-stationary data analysis,
when training instances are provided in a sequential manner under
changing environment, smaller weights are often assigned to older
instances for imposing some ‘forgetting’ effect. In such a situa-
tion, every time when a new instance is observed, all the instance
weights must be updated in such a way that newer instances have
larger weights and older instances have smaller weights. Model
selection in instance-weighted learning also poses a considerable
computational burden. In many of the above scenarios, we only
have qualitative knowledge about instance weights. For example,
in the aforementioned ranking problem, we only know that higher-
ranked items should have larger weights than lower-ranked items,
but it is often difficult to know how large or small these weights
should be. The problem of selecting the optimal weighting patterns
is an instance of model selection, and many instance-weighted so-
lutions with various weighting patterns must be computed in the
model selection phase. The goal of this paper is to alleviate the
computational bottleneck of instance-weighted learning.

In this paper, we focus on the support vector machine (SVM)
[1], which is a popular classification algorithm minimizing a regu-
larized empirical risk:

minR+ C
∑
i

Li,

where R is a regularization term and C ≥ 0 controls the trade-off
between the regularization effect and the empirical risk minimiza-
tion. We consider an instance-weighted variant of SVM, which we
refer to as the weighted SVM (WSVM) (e.g., [2]):

minR+
∑
i

CiLi.

For ordinary SVM, the solution path algorithm was proposed
[3], which allows efficient computation of SVM solutions for allC
by utilizing the piecewise-linear structure of the solutions w.r.t. C.
This technique is known as parametric programming in the opti-
mization community [4], and has been applied to various machine
learning tasks recently [5, 6, 7]; the incremental-decremental SVM
algorithm, which efficiently follows the piecewise-linear solution
path when some training instances are added or removed from the

training set, is also based on the same parametric programming
technique [8, 9].

The solution path algorithms described above have been de-
veloped for problems with a single hyper-parameter. Recently, at-
tention has been paid to studying solution-path tracking in two-
dimensional hyper-parameter space. For example, [10] developed
a path-following algorithm for regularization parameter C and an
insensitive zone thickness ε in support vector regression. [11]
studied a path-following algorithm for regularization parameter
λ and quantile parameter τ in kernel quantile regression [12].
However, these works are highly specialized to specific problem
structure of bivariate path-following, and it is not straightforward
to extend them to more than two hyper-parameters. Thus, the
existing approaches may not be applicable to path-following of
WSVM, which contains n-dimensional instance-weight parame-
ters c = [C1, . . . , Cn]

⊤, where n is the number of training in-
stances.

In order to go beyond the limitation of the existing approaches,
we derive a general solution path algorithm for efficiently com-
puting the solution path of multiple instance-weight parameters
c in WSVM. This extension involves a significant problem that
breakpoints (at which the solution path turns) have to be identi-
fied in high-dimensional space. To facilitate this, we introduce a
parametric representation of instance weights which allows us to
find the breakpoints in high-dimensional space easily. Using this
parametrization, we can construct an algorithm similarly to one-
dimensional regularization path algorithms. Despite its simplicity
and usefulness, it has not been exploited so far in machine learn-
ing literature. We will illustrate that our approach covers various
important machine learning problems and greatly widens the ap-
plicability of the path-following approach. We also provide a ge-
ometric interpretation of weight space using a notion of critical
region from the studies of multi-parametric programming [13]. A
critical region is a polyhedron in which the current affine solu-
tion remains to be optimal (see Figure 1). This enables us to find
breakpoints at intersections of the solution path and the boundaries
of polyhedrons.

This paper is organized as follows. Section 2 reviews the def-
inition of WSVM and its optimality conditions. Then we derive
a path-following algorithm for WSVM in Section 3. Section 4
is devoted to experimentally illustrating advantages of our algo-
rithm on a toy problem, on-line time-series analysis and covariate
shift adaptation. Extensions to regression, ranking, and transduc-
tion scenarios are discussed in Section 4.3. Finally, we conclude
in Section 5. Although we only discuss classification problems in
this paper, a similar algorithm can also be derived for regression
problems (see a longer version of this paper on arXiv [14]).

2. PROBLEM FORMULATION

In this section, we review the definition of the weighted support
vector machine (WSVM) and its optimality conditions. For the
moment, we focus on binary classification scenarios. Later in we
extend our discussion to regression in Section 4.3, and more gen-
eral scenarios including ranking in a separate technical report [14].

2.1. WSVM

Let us consider a binary classification problem. Denote n training
instances as {(xi, yi)}ni=1, where xi ∈ X ⊆ Rp is an input and
yi ∈ {−1,+1} is an output label.

SVM [1] is a learning algorithm of a linear decision boundary
f(x) = w⊤Φ(x) + b in a feature space F , where Φ : X → F
is a map from the input space X to the feature space F , w ∈ F
is a coefficient vector, b ∈ R is a bias term, and ⊤ denotes the
transpose. The parameters w and b are learned as

min
w,b

1

2
∥w∥22 + C

n∑
i=1

[1− yif(xi)]+, (1)

where 1
2
∥w∥22 is the regularization term, ∥·∥ denotes the Euclidean

norm, C is the trade-off parameter, and [z]+ = max{0, z}. [1 −
yif(xi)]+ is the so-called hinge-loss for the ith training instance.

WSVM is an extension of the ordinary SVM so that each train-
ing instance possesses its own weight [2]:

min
w,b

1

2
∥w∥22 +

n∑
i=1

Ci[1− yif(xi)]+, (2)

where Ci is the weight for the ith training instance. WSVM in-
cludes the ordinary SVM as a special case when Ci = C for
i = 1, . . . , n.

The goal of this paper is to derive an algorithm that can ef-
ficiently compute the sequence of WSVM solutions for arbitrary
weighting patterns of c = [C1, . . . , Cn]

⊤.

2.2. Optimization in WSVM

Here we review basic optimization issues of WSVM which are
used in the following section. The dual formulation of the problem
(2) is given as follows:

max
{αi}ni=1

−1

2

n∑
i,j=1

αiαjQij +
n∑

i=1

αi s.t.

{ ∑n
i=1 yiαi = 0,

0 ≤ αi ≤ Ci,

where Qij = yiyjK(xi,xj), and K(xi,xj) = Φ(xi)
TΦ(xj)

is a reproducing kernel. The discriminant function f :
X → R is represented in the following form: f(x) =∑n

i=1 αiyiK(x,xi) + b.
The optimality conditions of the dual problem, called the

Karush-Kuhn-Tucker (KKT) conditions, are summarized as fol-
lows:

yif(xi) ≥ 1, if αi = 0, (3a)
yif(xi) = 1, if 0 < αi < Ci, (3b)
yif(xi) ≤ 1, if αi = Ci, (3c)
n∑

i=1

yiαi = 0. (3d)

We define the following three index sets for later use:

O = {i | αi = 0}, (4a)
M = {i | 0 < αi < Ci}, (4b)
I = {i | αi = Ci}, (4c)

where O, M, and I stand for ‘Outside the margin’ (yif(xi) ≥
1), ‘on the Margin’ (yif(xi) = 1), and ‘Inside the margin’
(yif(xi) ≤ 1), respectively.

In what follows, the subscript by an index set such as vI for
a vector v ∈ Rn indicates a sub-vector of v whose elements are
indexed by I. For example, for v = (a, b, c)⊤ and I = {1, 3},

vI = (a, c)⊤. Similarly, the subscript by two index sets such
as MM,O for a matrix M ∈ Rn×n denotes a sub-matrix whose
rows and columns are indexed by M and O, respectively. The
principal sub-matrix such as MM,M is abbreviated as MM.

3. SOLUTION-PATH ALGORITHM FOR WSVM

The path-following algorithm for the ordinary SVM [3] computes
the entire solution path for the single regularization parameter C.
In this section, we develop a path-following algorithm for the vec-
tor of weights c = [C1, . . . , Cn]

⊤. Our proposed algorithm keeps
track of the optimal αi and b when the weight vector c is changed.

3.1. Analytic Expression of WSVM Solutions

Let α = [αi, . . . , αn]
⊤, y = [yi, . . . , yn]

⊤, and Q ∈ Rn×n be
a matrix whose (i, j) element is Qij . Then, using the index sets
(4b) and (4c), we can expand one of the KKT conditions, (3b), as

QMαM +QM,IcI + yMb = 1, (5)

where 1 denotes the vector with all ones. Similarly, another KKT
condition (3d) is expressed as

y⊤
MαM + y⊤

I cI = 0. (6)

Let us define a matrix:

M =

[
0 y⊤

M
yM QM

]
.

Arranging (5) and (6), we obtain the the following system of
|M| + 1 linear equations, where |M| denotes the number of ele-
ments in the set M:[

b
αM

]
= −M−1

[
y⊤
I

QM,I

]
cI +M−1

[
0
1

]
, (7)

where we implicitly assumed that M is invertible1. Since b and
αM are affine w.r.t. cI , we can calculate the change of b and αM
by (7) as long as the weight vector c is changed continuously. By
the definition of I and O, the remaining parameters αI and αO
are merely given by

αI = cI and αO = 0. (8)

A change of the index sets M, O, and I is called an event.
As long as no event occurs, the WSVM solutions for all c can be
computed by (7)–(8) since all the KKT conditions (3a)–(3d) are
still satisfied. However, when an event occurs, we need to check
the violation of the KKT conditions. Below, we address the issue
of event detection when c is changed.

3.2. Event Detection

Suppose we want to change the weight vector from c(old) to c(new)

(see Figure 1). This can be achieved by moving the weight vector
c(old) toward the direction of c(new) − c(old).

1The invertibility of the matrix M is assured if and only if the subma-
trix QM is positive definite in the subspace {z ∈ R|M| | y⊤

Mz = 0}.
We assume this technical condition here. A notable exceptional case is that
M is empty— we discuss how to cope with this case in detail in [14].

c
(old)

c
(new)

C1

C2

∆θd

∆θmaxd

c(θ)

Fig. 1. The schematic illustration of path-following in the space
of c ∈ R2, where the WSVM solution is updated from c(old) to
c(new). Suppose we are currently at c(θ). The vector d repre-
sents the update direction c(new) − c(old), and the polygonal re-
gion enclosed by dashed lines indicates the current critical region.
Although c(θ) + ∆θmaxd seems to directly lead the solution to
c(new), the maximum possible update from c(θ) is ∆θd; other-
wise the KKT conditions are violated. To go beyond the border of
the critical region, we need to update the index sets M, I, and O
to fulfill the KKT conditions.

Let us write the line segment between c(old) and c(new) in the
following parametric form

c(θ) = c(old) + θ
(
c(new) − c(old)

)
, θ ∈ [0, 1],

where θ is a parameter. This parametrization allows us to derive a
path-following algorithm between arbitrary c(old) and c(new) by
considering the change of the solutions when θ is moved from
0 to 1. This parametrization may also be interpreted as one-
dimensional parametric programming with respect to the scalar
θ, and our construction of the algorithm follows a similar line
to one-dimensional regularization path algorithms. However, an
important difference from one-dimensional regularization path al-
gorithms is that the weight vector in high dimensional space is
moved in our algorithm. We will later illustrate that the above
parametrization covers various important machine learning prob-
lems and greatly widens the applicability of the path-following ap-
proach.

Suppose we are currently at c(θ) on the path, and the current

solution is (b,α). Let ∆c = ∆θ
(
c(new) − c(old)

)
where the

operator ∆ represents the amount of change of each variable from
the current value and ∆θ ≥ 0. If ∆θ is increased from 0, we may
encounter a point at which some of the KKT conditions (3a)–(3c)
do not hold. This can be checked by investigating the following
conditions.

yif(xi) + yi∆f(xi) ≥ 1, i ∈ O,
αi +∆αi > 0, i ∈ M,

αi +∆αi − (Ci +∆Ci,) < 0, i ∈ M,
yif(xi) + yi∆f(xi) ≤ 1, i ∈ I.

(9)

The set of inequalities (9) defines a convex polyhedron, called
a critical region in the multi-parametric programming literature
[13]. The event points lie on the border of critical regions, as illus-
trated in Figure 1.

We detect an event point by checking the conditions (9) along
the solution path as follows. Using (7), we can express the changes
of b and αM as [

∆b
∆αM

]
= ∆θϕ, (10)

where ϕ = −M−1[yI QI,M]⊤ (c
(new)
I − c

(old)
I). Furthermore,

yi∆f(xi) is expressed as

yi∆f(xi) = ∆θψi, (11)

where ψi = [yi Qi,M] ϕ + Qi,I(c
(new)
I − c

(old)
I). Let us de-

note the elements of the index set M as M = {m1, . . . ,m|M|}.
Substituting (10) and (11) into the inequalities (9), we can obtain
the maximum step-length with no event occurrence. Based on the
largest possible ∆θ, we can compute α and b along the solution
path by (10).

At the border of the critical region, we need to update the in-
dex sets M, O, and I. For example, if αi (i ∈ M) reaches 0,
we need to move the element i from M to O. Then the above
path-following procedure is carried out again for the next critical
region specified by the updated index sets M, O, and I, and this
procedure is repeated until c reaches c(new).

3.3. Computational Complexity

The computational complexity at each iteration of our path-
following algorithm is the same as that for the ordinary SVM (i.e.,
the single-C formulation) [3]. Thus, our algorithm inherits a su-
perior computational property of the original path-following algo-
rithm.

The update of the linear system (10) from the previous one
at each event point can be carried out efficiently with O(|M|2)
computational cost based on the Cholesky decomposition rank-
one update [15] or the block-matrix inversion formula. Thus, the
computational cost required for identifying the next event point is
O(n|M|).

It is difficult to state the number of iterations needed for com-
plete path-following because the number of events depends on the
sensitivity of the model and the data set. Several empirical results
suggested that the number of events linearly increases w.r.t. the
data set size [3, 10]; our experimental analysis given in Section 4
also showed the same tendency. This implies that path-following
is computationally highly efficient—indeed, in Section 4, we will
experimentally demonstrate that the proposed path-following al-
gorithm is faster than an alternative approach in one or two orders
of magnitude.

4. EXPERIMENTS

In this section, we illustrate the empirical performance of the pro-
posed WSVM path-following algorithm in three real-world ap-
plications. We compared the computational cost of the proposed
path-following algorithm with the sequential minimal optimization
(SMO) algorithm [16] when the instance weights of WSVM are
changed in various ways. In particular, we investigated the CPU
time of updating solutions from some c(old) to c(new).

In the path-following algorithm, we assume that the optimal
parameter α as well as the Cholesky factor L of QM for c(old) has
already been obtained. In SMO, we used the old optimal α as the
initial starting point (i.e., the ‘hot’ start) after making them feasible
using the alpha-seeding strategy [17]. We set the tolerance param-
eter in the termination criterion of SMO to 10−3. Our implemen-
tation of SMO algorithm is based on LIBSVM [18]. To circumvent
possible numerical instability, we added small positive constant
10−6 to the diagonals of the matrix Q. In all the experiments, we
used the Gaussian kernel K(x,x′) = exp

(
−γ∥x− x′∥2/p

)
,

where γ is a hyper-parameter and p is the dimensionality of x.

i

Ci

1 n· · ·
i

Ci

1 n· · · n + 1

Fig. 2. A schematic illustration of the change of weights in time-
series learning. The left plot shows the fact that larger weights
are assigned to more recent instances. The right plot describes
a situation where we receive a new instance (i = n + 1). In this
situation, the oldest instance (i = 1) is deleted by setting its weight
to zero, the weight of the new instance is set to be the largest, and
the weights of the rest of the instances are decreased accordingly.

1 10 100 1000 10000
10

0

10
1

10
2

C
0

C
P

U
 t

im
e

 (
s
e

c
)

SMO
Path

Fig. 3. CPU time comparison for online time-series learning using
NASDAQ composite index.

4.1. On-line Time-series Learning

In online time-series learning, larger (resp. smaller) weights should
be assigned to newer (resp. older) instances. For example, in [19],
the following weight function is used: Ci = C0

2

1+exp(a−2a× i
n
)
,

where C0 and a are hyper-parameters and the instances are as-
sumed to be sorted along the time axis (the most recent instance
is i = n). In online learning, we need to update parameters when
new observations arrive, and all the weights must be updated ac-
cordingly (see Figure 2).

We investigated the computational cost of updating parame-
ters when several new observations arrive. The experimental data
are obtained from the NASDAQ composite index between January
2, 2001 and December 31, 2009. As [19], we transformed the
original closing prices using the Relative Difference in Percentage
(RDP) of the price and the exponential moving average (EMA).
Our task is to predict whether the future average closing price in-
creases or decreases from the current price (see [14] for details).

We have an initial set of training instances with size n = 2515.
The inputs were normalized in [0, 1]p, where p is the dimension-
ality of the input x. We used the Gaussian kernel with γ = 1, and
the weight parameter a in Ci was set to 3. We first trained WSVM
using the initial set of instances. Then we added 5 instances to
the previously trained WSVM and removed the oldest 5 instances
by decreasing their weights to 0. This does not change the size of
the training data set, but the entire weights need to be updated as
illustrated in Figure 2. We iterated this process 5 times and com-
pared the total computational costs of the path-following algorithm
and SMO algorithm. For fair comparison, we cleared the cache of
kernel values at each update before running the algorithms.

Figure 3 shows the average CPU time over 10 runs for C0 ∈
{1, 10, 102, 103, 104}, showing that the path-following algorithm
is much faster than SMO algorithm especially for large C0.

4.2. Model Selection in Covariate Shift Adaptation

Covariate shift is a situation in supervised learning where the input
distributions change between the training and test phases but the
conditional distribution of outputs given inputs remains unchanged
[20]. Under covariate shift, standard SVMs are biased, and the
bias caused by covariate shift can be asymptotically canceled by
weighting the loss function according to the importance (i.e., the
ratio of training and test input densities).

Here, we apply importance-weighted SVMs to brain-
computer interfaces (BCIs) [21]. A BCI is a system which allows
for a direct communication from man to machine via brain signals.
Strong non-stationarity effects have been often observed in brain
signals between training and test sessions, which could be mod-
eled as covariate shift [22]. We used the BCI datasets provided
by the Berlin BCI group [23], containing 24 binary classification
tasks. The input features are 4-dimensional preprocessed elec-
troencephalogram (EEG) signals, and the output labels correspond
to the ‘left’ and ‘right’ commands. The size of training datasets is
around 500 to 1000, and the size of test datasets is around 200 to
300.

Although the importance-weighted SVM tends to have lower
bias, it in turns has larger estimation variance than the ordinary
SVM [20]. Thus, in practice, it is desirable to slightly ‘flatten’ the
instance weights so that the trade-off between bias and variance is
optimally controlled. Here, we changed the instance weights from
the uniform values to the importance values using the proposed
path-following algorithm, i.e., the instance weights were changed
from C

(old)
i = C0 to C(new)

i = C0
ptest(xi)
ptrain(xi)

, i = 1, . . . , n. The

importance values
ptest(xi)

ptrain(xi)
were estimated by the method pro-

posed in [7], which directly estimates the density ratio without go-
ing through density estimation of ptest(x) and ptrain(x).

For comparison, we ran SMO algorithm at (i) each breakpoint
of the solution path, and (ii) 100 weight vectors taken uniformly
in [C

(old)
i , C

(new)
i]. We used the Gaussian kernel and the inputs

were normalized in [0, 1]p, where p is the dimensionality of x.
Figure 4 shows the average CPU time and its standard devi-

ation. We examined several settings of hyper-parameters γ = 1
and C0 ∈ {1, 10, 102, . . . , 104}. The horizontal axis of each plot
represents C0. The graphs show that our path-following algorithm
is faster than SMO algorithm in all cases. While SMO algorithm
tended to take longer time for large C0, the CPU time of the path-
following algorithm did not increase with respect to C0.

An important advantage of the path algorithm is that the path
of the validation error can also be traced as well. In the case of 0-1
loss, since it changes discretely when the sign of f(x) changes,
the validation error is a piecewise-constant function of θ (see Fig-
ure 5). Monitoring piecewise linear change of f(x), we can ex-
actly detect the changes of the validation error during the path fol-
lowing and it is thus possible to find the exact minimizer of vali-
dation error with respect to θ ∈ [0, 1].

4.3. Heteroscedastic Regression

So far, we focused on classification scenarios. Here we apply the
proposed path-following algorithm to an instance-weighted variant

of the support vector regression (WSVR) (see [14] for its deriva-
tion).

As an application of WSVR, we consider a heteroscedas-
tic regression problem, where the variance of output noise de-
pends on input points. In heteroscedastic data modeling, larger
(resp. smaller) weights are usually assigned to instances with
smaller (resp. larger) variances. Since the point-wise variances
are often unknown in practice, they should also be estimated from
data. A standard approach is to alternately estimate the weight vec-
tor c based on the current WSVR solution and update the WSVR
solutions based on the new weight vector c [24].

We set the weights as Ci = C0
σ̂

|ei|
where ei = yi − f̂(xi)

is the residual of the instance (xi, yi) from the current fit f̂(xi),
and σ̂ is an estimate of the common standard deviation of the noise
computed as σ̂ =

√
1
n

∑n
i=1 e

2
i . We employed the following pro-

cedure for the heteroscedastic data modeling:

Step1: Training WSVR with uniform weights (i.e., Ci = C0, i =
1, . . . , n.).

Step2: Update weights by Ci = C0
σ̂

|ei|
and update the so-

lution of WSVR accordingly. Repeat this step until
1
n

∑n
i=1 |(e

(old)
i − ei)/e

(old)
i | ≤ 10−3 holds, where e(old)

is the previous training error.

We investigated the computational cost of Step2. We applied
the above procedure to the Boston housing data set [25]. The sam-
ple size is 506 and the number of features is p = 13. The inputs
were normalized in [−1, 1]p. We randomly sampled n = 404
instances from the original data set, and the experiments were re-
peated 10 times. We used the Gaussian kernel with γ = 1. The
insensitive zone thickness in WSVR was fixed to ε = 0.05.

Figure 6 shows the CPU time comparison for C0 ∈
{1, 10, . . . , 104}, where Step2 is iterated about 20 ∼ 50 times.
The graph shows that our path-following approach is faster than
SMO algorithm especially for large C0.

5. CONCLUSION

In this paper, we developed an efficient algorithm for updating so-
lutions of instance-weighted SVMs. Our algorithm was built upon
multi-parametric programming techniques, which—to the best of
our knowledge—have never been studied in machine learning lit-
erature. We experimentally demonstrated the computational ad-
vantage of the proposed algorithm on a wide range of practical
applications including on-line time-series analysis, covariate shift
adaptation, and heteroscedastic data modeling.

6. REFERENCES

[1] V. N. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, Berlin, Germany, 1995.

[2] Y. Lin, Y. Lee, and G. Wahba, “Support vector machines for
classification in nonstandard situations,” Machine Learning,
vol. 46, no. 1/3, pp. 191–202, 2002.

[3] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire
regularization path for the support vector machine,” Journal
of Machine Learning Research, vol. 5, pp. 1391–1415, 2004.

[4] M. J. Best, “An algorithm for the solution of the parametric
quadratic programming problem,” Tech. Rep. 82-24, Faculty
of Mathematics, University of Waterloo, 1982.

1 10 100 1000 10000
10

−2

10
−1

10
0

10
1

10
2

C
0

C
P

U
 t

im
e

 (
s
e

c
)

SMO (at each breakpoint)
SMO (100 runs)
Path

Fig. 4. CPU time comparison for co-
variate shift adaptation using BCI data.

0 0.2 0.4 0.6 0.8 1
0.09

0.1

0.11

0.12

θ

V
a

li
d

a
ti
o

n
 e

rr
o

r

Fig. 5. An example of the validation error path for the
BCI data (C = 10, γ = 1). The numbers of train-
ing and validation instances are 727 and 273, respec-
tively. The minimum validation error is achieved at
θ ≃ [0.866, 0.885].

1 10 100 1000 10000
10

−2

10
−1

10
0

10
1

10
2

10
3

C
0

C
P

U
 t

im
e

 (
s
e

c
)

SMO
Path

Fig. 6. CPU time comparison for
heteroscedastic modeling using Boston
housing data.

[5] F. R. Bach, D. Heckerman, and E. Horvitz, “Considering
cost asymmetry in learning classifiers,” Journal of Machine
Learning Research, vol. 7, pp. 1713–1741, 2006.

[6] S. Rosset and J. Zhu, “Piecewise linear regularized solution
paths,” Annals of Statistics, vol. 35, pp. 1012–1030, 2007.

[7] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares
approach to direct importance estimation,” Journal of Ma-
chine Learning Research, vol. 10, pp. 1391–1445, Jul. 2009.

[8] G. Cauwenberghs and T. Poggio, “Incremental and decre-
mental support vector machine learning,” in Advances in
Neural Information Processing Systems 13, Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, Eds., Cambridge,
Massachussetts, 2001, vol. 13, pp. 409–415, The MIT Press.

[9] M. Karasuyama and I. Takeuchi, “Multiple incremental
decremental learning of support vector machines,” in Ad-
vances in Neural Information Processing Systems 22, Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Cu-
lotta, Eds., 2009, pp. 907–915.

[10] G. Wang, D.-Y. Yeung, and F. H. Lochovsky, “A new solution
path algorithm in support vector regression,” IEEE Transac-
tions on Neural Networks, vol. 19, no. 10, pp. 1753–1767,
2008.

[11] S. Rosset, “Bi-level path following for cross validated so-
lution of kernel quantile regression,” Journal of Machine
Learning Research, vol. 10, pp. 2473–2505, 2009.

[12] I. Takeuchi, Q. V Le, T. D Sears, and A. J Smola, “Nonpara-
metric quantile estimation,” Journal of Machine Learning
Research, vol. 7, pp. 1231–1264, 2006.

[13] E. N. Pistikopoulos, M. C. Georgiadis, and V. Dua, Pro-
cess Systems Engineering: Volume 1: Multi-Parametric Pro-
gramming, WILEY-VCH, 2007.

[14] M. Karasuyama, N. Harada, M. Sugiyama, and I. Takeuchi,
“Multi-parametric solution-path algorithm for instance-
weighted support vector machines,” CoRR, arXiv:1009.4791
[cs.LG], 2010.

[15] G. H. Golub and C. F. V. Loan, Matrix computations, Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[16] J. C. Platt, “Fast training of support vector machines us-
ing sequential minimal optimization,” in Advances in Kernel
Methods — Support Vector Learning, B. Schölkopf, C. J. C.
Burges, and A. J. Smola, Eds., Cambridge, MA, 1999, pp.
185–208, MIT Press.

[17] D. DeCoste and K. Wagstaff, “Alpha seeding for support
vector machines,” in Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining, 2000, pp.
345–359.

[18] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for sup-
port vector machines,” 2001, Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm.

[19] L. J. Cao and F. E. H. Tay, “Support vector machine with
adaptive parameters in financial time series forecasting,”
IEEE Transactions on Neural Networks, vol. 14, no. 6, pp.
1506–1518, 2003.

[20] H. Shimodaira, “Improving predictive inference under co-
variate shift by weighting the log-likelihood function,” Jour-
nal of Statistical Planning and Inference, vol. 90, no. 2, pp.
227–244, 2000.

[21] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. McFarland,
and K.-R. Müller, Eds., Toward Brain Computer Interfacing,
MIT Press, Cambridge, MA, USA, 2007.

[22] M. Sugiyama, M. Krauledat, and K.-R. Müller, “Covari-
ate shift adaptation by importance weighted cross valida-
tion,” Journal of Machine Learning Research, vol. 8, pp.
985–1005, May 2007.

[23] W. Burde and B. Blankertz, “Is the locus of control of re-
inforcement a predictor of brain-computer interface perfor-
mance?,” in Proceedings of the 3rd International Brain-
Computer Interface Workshop and Training Course 2006,
Graz, Austria, 2006, Verlag der Technischen Universität.

[24] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, “Most
likely heteroscedastic Gaussian process regression,” in Pro-
ceedings of the 24th Annual International Conference on
Machine Learning (ICML 2007), Z. Ghahramani, Ed. 2007,
pp. 393–400, Omnipress.

[25] A. Asuncion and D. J. Newman, “UCI machine learning
repository,” http://www.ics.uci.edu/˜mlearn/
MLRepository.html, 2007.

