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Abstract

The least-squares probabilistic classifier (LSPC) is a computationally-efficient al-
ternative to kernel logistic regression. However, to assure its learned probabilities
to be non-negative, LSPC involves a post-processing step of rounding up negative
parameters to zero, which can unexpectedly influence classification performance.
In order to mitigate this problem, we propose a simple alternative scheme that di-
rectly rounds up the classifier’s negative outputs, not negative parameters. Through
extensive experiments including real-world image classification and audio tagging
tasks, we demonstrate that the proposed modification significantly improves classi-
fication accuracy, while the computational advantage of the original LSPC remains
unchanged.
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1 Introduction

The least-squares probabilistic classifier (LSPC) [1] is an efficient non-linear probabilistic
classification method that learns class-posterior probabilities. In LSPC, a linear combi-
nation of kernels centered at training points is employed as a model of class-posterior
probabilities. Then the LSPC model is trained so that the squared difference to the
true class-posterior probability is minimized. An advantage of this linear least-squares
formulation is that the global optimal solution can be obtained analytically (cf. kernel
logistic regression [2, 3], which can be used for similar purposes, but requires iterative
optimization such as Newton’s method). However, since LSPC involves a post-processing
step of rounding up negative model parameters to zero for assuring the non-negativity of
probability estimates, learned class-posterior probabilities can change unexpectedly.

In order to mitigate this problem, we propose a simple alternative scheme that di-
rectly rounds up the classifier’s negative outputs, as opposed to its negative parame-
ters. While the original parameter-rounding scheme influences learned class-posterior
probabilities globally through the change of parameters for basis functions, the proposed
output-rounding scheme confines the influence to only those points where probabilities
are negative (see Figure 1, which will be explained in detail later). This localization effect
is expected to prevent the degradation of classification performance. Through extensive
experiments on real-world image classification and automatic audio tagging tasks, we
demonstrate that the proposed modification to LSPC significantly contributes to improv-
ing classification accuracy, while maintaining the computational advantage of the original
LSPC algorithm.

2 Least-Squares Approach to Probabilistic Classifi-

cation

In this section, we review the least-squares probabilistic classifier 1 (LSPC) [1].

2.1 Problem Formulation

Suppose we are given n paired samples of input x ∈ X ⊂ Rd and its label y ∈ {1, . . . , c}
(c denotes the number of classes):

{(xi, yi)}ni=1,

1More precisely, the LSPC method we are reviewing here was referred to as ‘LSPC(full)’ in the original
LSPC paper [1], where ‘full’ means that all kernels are used for learning (cf. Eq.(2)). On the other hand,
a computationally more efficient variant of LSPC where irrelevant kernels are removed was also proposed
in the original paper. However, since the range of application of this model simplification idea is limited
to localized kernels such as Gaussian kernels, we decided to adopt the more general ‘LSPC(full)’ method
in this paper. We note that the results we present in this paper can also be applied to the simplified
LSPC method.
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which are independently drawn from a joint probability distribution with density
p(x, y). Our goal is to estimate the class-posterior probability p(y|x) from the sam-
ples {(xi, yi)}ni=1. The class-posterior probability allows us to classify a test sample x to
the class ŷ with confidence p(ŷ|x):

ŷ := argmax
y

p(y|x).

Let us denote the marginal density of x by p(x). Then the class-posterior probability can
be expressed as

p(y|x) = p(x, y)

p(x)
, (1)

where we assume p(x) > 0 for all x ∈ X . This density-ratio expression is utilized in the
derivation of LSPC.

2.2 Least-Squares Probabilistic Classifier

Let us model the class-posterior probability p(y|x) for class y by the following linear
model:

n∑
l=1

αy,lϕl(x) = α⊤
y ϕ(x),

where ⊤ denotes the transpose of a matrix or a vector and αy = (αy,1, . . . , αy,n)
⊤ are

parameters to be learned from training samples. The basis function is written as

ϕ(x) = (k(x,x1), . . . , k(x,xn))
⊤, (2)

where

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
is the Gaussian kernel with width σ.

Then, an empirical and regularized solution of LSPC is given as

α̃y := argmin
αy

[
1

2
α⊤

y Ĥαy − ĥ⊤
y αy + λα⊤

y αy

]
, (3)

where λα⊤
y αy for λ > 0 is a regularizer, and

Ĥ :=
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
⊤, ĥy :=

1

n

∑
i:yi=y

ϕ(xi).

Since Eq.(3) is an unconstrained quadratic minimization problem, the global optimal
solution α̃y can be obtained as

α̃y = (Ĥ + λIn)
−1ĥy,
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(a) p(y = 1|x) as a function of x.
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(b) α̃1 as a function of sample index l.

Figure 1: (a): True class-posterior probability, and class-posterior probabilities estimated
by LSPC-new (negative outputs are rounded up to zero), LSPC (negative parameters are
rounded up to zero), and LSPC’ (negative parameters are used as they are). (b): The
parameter values of α̃1, where the training samples were sorted as x1 ≤ x2 ≤ · · · ≤ x500.

where In denotes the n-dimensional identity matrix.
By definition, the class-posterior probability should be non-negative. However, α̃y

obtained above can take negative values. In order to assure the learned probabilities to
be non-negative, the negative elements in α̃y are rounded up to zero as follows:

α̂y := max(0n, α̃y),

where 0n denotes the n-dimensional vector with all zeros, and the ‘max’ operation for
vectors is applied in an element-wise manner.

Finally, given a test input point, an estimator of the class-posterior probability is
obtained via normalization as

p̂(y|x) =
α̂⊤

y ϕ(x)∑c
y′=1 α̂

⊤
y′ϕ(x)

. (4)

3 Improving Accuracy of LSPC

In the original LSPC paper, it was claimed that the learned parameters α̃y are usually
non-negative when the basis functions and the regularization parameter value are chosen
appropriately, e.g., by cross-validation. In this section, we point out that the above claim
is not always true through a numerical example, and illustrate that rounding up negative
parameters can actually have strong influence on the learned class-posterior probabilities.
Then we describe a simple alternative scheme for assuring the learned probabilities to be
non-negative, and illustrate its usefulness.
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3.1 Influence of Rounding-Up Negative Parameters

First, we illustrate how the class-posterior probabilities are learned by LSPC, and inves-
tigate the influence of rounding-up negative model parameters.

Let us consider a one-dimensional binary classification problem (i.e., d = 1 and c =
2). We independently draw samples in each class from the following class-conditional
densities:

p(x|y = 1) = N (x; 0, 1) ,

p(x|y = 2) =
1

2
N (x;−2, 1) +

1

2
N (x; 2, 1) ,

where N(x;µ, τ 2) denotes the Gaussian density with mean µ and variance τ 2. We used
250 training samples per class (500 samples in total), and 250 test samples per class (500
samples in total). The kernel width σ and regularization parameter λ in LSPC were
chosen based on 2-fold cross-validation.

Let p̃(y|x) be an estimator of the class-posterior probability for α̃y (i.e,. without the
rounding-up operation), which we refer to as LSPC’:

p̃(y|x) =
α̃⊤

y ϕ(x)∑c
y′=1 α̃

⊤
y′ϕ(x)

. (5)

Note that the output of LSPC’ is not necessarily a probability since it can be negative
or larger than one. Figure 1(a) shows the true class-posterior probability and the class-
posterior probabilities estimated by LSPC (4) and LSPC’ (5). The graph shows that,
without the rounding-up operation, the class-posterior probability estimates take negative
values around x ∈ (−5,−3) and x ∈ (3, 5) in Figure 1(a). On the other hand, the LSPC
solution always takes non-negative values thanks to the rounding-up operation. However,
the LSPC estimate of the class-posterior probability are significantly different from the
true class-posterior probability.

In order to investigate the effect of rounding-up negative parameters to zero in more
detail, we plotted the values of α̃1 in Figure 1(b), where the training samples were sorted
as x1 ≤ x2 ≤ · · · ≤ x500. The graph shows that many parameters actually took negative
values, even though the estimate of class-posterior probabilities take negative values only
locally. This shows that, rounding-up negative parameters to zero can actually have a
strong influence on the learned class-posterior probability even when negative values are
taken only locally.

3.2 Rounding-Up Negative Outputs

In order to overcome the above drawback, we propose to locally modify the solution as
follows:

p(y|x = x̃) =

{
1
Z
max(0, α̃⊤

y ϕ(x̃)) if Z > 0,
1
c

otherwise,
(6)



Improving the Accuracy of Least-Squares Probabilistic Classifiers 6

where Z =
∑c

y′=1max(0, α̃⊤
y′ϕ(x̃)). Below, we refer to this method as ‘LSPC-new’.

Figure 1(a) also includes the class-posterior probabilities estimated by LSPC-new.
As shown in the graph, the class-posterior probability estimated by LSPC-new and the
true-class posterior probability have almost the same profile. On the other hand, the
class-posterior probability obtained by the original LSPC has been strongly influenced by
rounding-up negative parameters to zero.

4 Experiments

In this section, we compare the performance of LSPC-new, LSPC, and kernel logistic
regression (KLR) on a real-world image classification task using the PASCAL Visual
Object Classes (VOC) 2010 dataset [4] and a real-world automatic audio-tagging task
using te data collected by the Freesound project [5]. All tuning parameters (i.e., the kernel
width σ and regularization parameter λ) were chosen based on 2-fold cross-validation.
We used the MATLAB R⃝ implementation of KLR included in the ‘minFunc’ package [6].
Comparison is carried out in terms of classification performance and CPU computation
time required for training each classifier after the Gaussian width and the regularization
parameter are chosen by cross-validation.

4.1 PASCAL VOC 2010 Datasets

The VOC 2010 dataset consists of 20 binary classification tasks of identifying the existence
of a person, aeroplane, etc. in each image. The total number of images in the dataset is
11319, and we used 1000 randomly chosen images for training and the rest for testing.

We first extracted visual features from each image with the Speed Up Robust Fea-
tures (SURF) algorithm [7]. We then ran the k-means clustering algorithm [8] in the
SURF space and obtained 500 cluster centers as visual words. Then, we computed a
500-dimensional bag-of-feature vector by counting the number of visual words in each
image.

When evaluating the image classification performance, it is important to take into
account both the false positive rate and true positive rate. Here we adopted the area
under the ROC curve (AUC) as our error metric [9]. We randomly sampled the training
and test data 50 times, and computed the means and standard deviations of the AUC.

Table 1 shows the mean AUC values (with standard deviations in brackets) over 50
trials. The best method in terms of the mean AUC and comparable methods according
to the t-test at the significance level 5% are specified by bold face. The results showed
that LSPC-new outperforms LSPC for all tasks and is slightly more accurate than KLR
with much less computational cost.

4.2 Freesound Datasets

The Freesound dataset [5] consists of various audio files annotated with word tags such
as ‘people’, ‘noisy’, and ‘restaurant’. Note that such tags are not exclusive, meaning that
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Table 1: Mean AUC values (with standard deviations in brackets) over 50 trials for the
PASCAL VOC dataset. The best method in terms of the mean AUC and comparable
methods according to the t-test at the significance level 5% are specified by bold face.

Datasets LSPC-new LSPC KLR

Aeroplane 82.6 (1.0) 78.8 (1.3) 83.0 (1.3)
Bicycle 77.7 (1.7) 60.0(12.4) 76.6 (3.4)
Bird 68.7 (2.0) 49.1 (5.7) 70.8 (2.2)
Boat 74.4 (2.0) 62.1 (4.1) 72.8 (2.6)
Bottle 65.4 (1.8) 63.0 (2.0) 62.1 (4.3)
Bus 85.4 (1.4) 80.3 (2.6) 85.6 (1.4)
Car 73.0 (0.8) 69.0 (2.6) 72.1 (1.2)
Cat 73.6 (1.4) 68.6 (5.0) 74.1 (1.7)
Chair 71.0 (1.0) 64.8 (2.0) 70.5 (1.0)
Cow 71.7 (3.2) 53.5 (9.0) 69.3 (3.6)
Diningtable 75.0 (1.6) 69.1 (2.4) 71.4 (2.7)
Dog 69.6 (1.0) 58.6 (6.0) 69.4 (1.8)
Horse 64.4 (2.5) 54.6 (4.4) 61.2 (3.2)
Motorbike 77.0 (1.7) 73.2 (2.5) 75.9 (3.3)
Person 67.6 (0.9) 65.9 (1.2) 67.0 (0.8)
Pottedplant 66.2 (2.6) 58.0 (4.6) 61.9 (3.2)
Sheep 77.8 (1.6) 57.6(12.9) 74.0 (3.8)
Sofa 67.4 (2.7) 66.1 (1.7) 65.4 (4.6)
Train 79.2 (1.3) 67.0 (7.7) 78.4 (3.0)
Tvmonitor 76.7 (2.2) 70.1 (2.4) 76.6 (2.3)

Average 73.2 — 64.5 — 71.9 —

Train time [sec] 0.7 — 0.7 — 24.6 —

each audio file can have multiple tags.
We extracted audio files from among all files in the dataset containing any of the 50

most used tags and between 3-60 seconds in length. We then used 180 randomly selected
uncompressed audio files with a sampling rate greater than 44.1kHz as our training set,
and 1500 randomly selected audio files which were stored in a compressed format for
testing. We used the hidden Markov kernel [10], instead of the simple Gaussian kernel
due to the sequential nature of audio files. We repeat the audio-tagging experiment 50
times, by changing the random seed.

We computed the AUC value over all 1500 test samples for each tag, and this was
averaged over all 50 trials and all 50 tags. Table 2 summarizes the performance of LSPC-
new, LSPC, and KLR. The results show that LSPC-new is more accurate than LSPC
with comparable computation time, and LSPC-new provides comparable classification
performance to KLR with significantly less computation time.
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Table 2: Mean AUC values (with standard deviations in brackets) over all audio files for
the Freesound dataset.

LSPC-new LSPC KLR

AUC 70.1 (9.6) 64.4 (9.5) 66.7 (10.3)

Train time [sec] 0.005 0.005 0.612

5 Conclusions

Least-squares probabilistic classifier (LSPC) has been demonstrated to be a
computationally-efficient alternative to kernel logistic regression (KLR). However, since
LSPC involves a post-processing step of rounding-up negative parameters to zero, its per-
formance can be degraded if many parameters take negative values. In this paper, we
proposed not to round-up negative parameters, but to directly round-up negative out-
puts of LSPC. This localizes the influence of the rounding-up operation on the learned
class-posterior probabilities. Through extensive experiments including real-world image
classification and audio tagging tasks, we showed that the proposed modification sig-
nificantly improves classification accuracy, while the computational advantage of LSPC
remains unchanged.
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