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Abstract

Recently, statistical dependence measures such as mutual information and kernel-
ized covariance have been successfully applied to clustering, called dependence-
maximization clustering. In this paper, we propose a novel dependence-
maximization clustering method based on an estimator of a squared-loss variant of
mutual information called least-squares mutual information. A notable advantage
of the proposed method over existing ones is that hyperparameters such as kernel
parameters and regularization parameters can be objectively optimized based on
cross-validation. Thus, subjective manual-tuning of hyperparameters is not nec-
essary in the proposed method, which is a highly useful property in unsupervised
clustering scenarios. Through experiments, we illustrate the usefulness of the pro-
posed approach.
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1 Introduction

Given a set of observations, the goal of clustering is to separate them into disjoint clusters
so that observations in the same cluster are qualitatively similar to each other. K-means
[22] is a classic clustering algorithm which minimizes the within-cluster distortion in a
greedy manner. Although k-means is still a popular clustering method, it has a critical
limitation that cluster boundaries are linear.
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Figure 1: Schematic illustration of dependence-maximization clustering.

To overcome this limitation, various non-linear clustering algorithms have been de-
veloped. Spectral clustering [25, 23] first applies a spectral embedding method to data
samples and then performs k-means in the embedding space. Kernel k-means [11] first
transforms data samples by a kernel function and then performs k-means in the kernel-
induced feature space. Note that spectral clustering was shown to be equivalent to a
weighted variant of kernel k-means with some specific kernel [6]. Discriminative cluster-
ing trains a discriminative classifier such as the support vector machine in an unsupervised
manner [28, 2, 12]. Dependence-maximization clustering determines cluster assignments
so that their statistical dependence on input data is maximized [26, 8]. Figure 1 shows
a schematic illustration of dependence-maximization clustering. Existing methods use
mutual information [8] and kernelized covariance [26] as dependence measures.

In this paper, we propose a novel dependence-maximization clustering algorithm. Our
method uses an estimator of a squared-loss variant of mutual information called least-
squares mutual information (LSMI) [27] as a dependency measure. A notable advantage
of the proposed method is that tuning parameters can be objectively optimized based
on cross-validation. Thus, subjective manual-tuning of hyperparameters is not necessary
in the proposed method, which is a highly useful property in unsupervised clustering
scenarios. Through experiments, we illustrate the usefulness of the proposed approach.

The rest of this paper is structured as follows. In Section 2, we describe the pro-
posed algorithm. In Section 3, we discuss the relation between the proposed and existing
dependence-maximization clustering algorithms. In Section 4, experimental performance
of the proposed and existing methods is compared. Finally, in Section 5, this paper is
concluded.
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2 Dependence-Maximization Clustering

In this section, we formulate the problem of dependence-maximization clustering and
describe our proposed approach.

2.1 Problem Formulation

Given n i.i.d. observations x1, . . . , xn, the goal of clustering is to assign a cluster label
yi ∈ {1, . . . , c} to each xi, where c denotes the number of clusters. In this paper,
we focus on the dependence-maximization framework of clustering, i.e., the ideal cluster
assignments y∗1, . . . , y

∗
n are defined as the ones that have the maximum dependency to the

observations x1, . . . , xn.
As a dependency measure, we use a squared-loss mutual information (SMI) defined

and expressed by

SMI :=
1

2

∫ c∑
y=1

(
p(x, y)

p(x)p(y)
− 1

)2

p(x)p(y)dx (1)

=
1

2

∫ c∑
y=1

p(x, y)
p(x, y)

p(x)p(y)
dx− 1

2
, (2)

where p(x, y), p(x), and p(y) denote the joint and marginal densities/probabilities of x and
y. SMI is non-negative and takes zero if and only if x and y are statistically independent.

Note that SMI is the Pearson divergence [24] from p(x, y) to p(x)p(y), while the
ordinary mutual information [4], defined by

MI :=

∫ c∑
y=1

p(x, y) log
p(x, y)

p(x)p(y)
dx, (3)

is the Kullback-Leibler divergence [20] from p(x, y) to p(x)p(y). The Pearson divergence
and the Kullback-Leibler divergence both belong to the class of Ali-Silvey-Csiszár diver-
gences (also known as f-divergences, see [1, 5]), which share similar properties.

Since p(x, y), p(x), and p(y) included in SMI are unknown, we cannot directly compute
SMI. Our basic idea is to approximate SMI from the paired samples (x1, y1), . . . , (xn, yn),
where y1, . . . , yn are hypothetical cluster assignments for the observations x1, . . . , xn. Then
the maximizers of the SMI approximator with respect to y1, . . . , yn are obtained as clus-
tering results.

2.2 SMI Approximation by LSMI

The SMI approximator we use in this paper is called least-squares mutual information
(LSMI) [27], which was shown to possess the optimal non-parametric convergence rate.
Here we briefly review LSMI.
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The key idea of LSMI is to learn the following density-ratio function,

r(x, y) :=
p(x, y)

p(x)p(y)
, (4)

without going through density/probability estimation of p(x, y), p(x), and p(y). More
specifically, we approximate the above density-ratio function by

n∑
i=1

θiK(x, xi)L(y, yi), (5)

where K(x, x′) is a kernel function for x and L(y, y′) is a kernel function for y. The
parameters θ1, . . . , θn are learned so that the following squared error is minimized:

1

2

∫ c∑
y=1

(
n∑

i=1

θiK(x, xi)L(y, yi)− r(x, y)

)2

p(x)p(y)dx. (6)

An empirical approximation of Eq.(6) is given as

1

2n2

n∑
i,j,k,l=1

θkθlK(xi, xk)K(xi, xℓ)L(yj, yk)L(yj, yℓ) (7)

− 1

n

n∑
i,j=1

θjK(xi, xj)L(yi, yj) + Const. (8)

=
1

2
θ⊤Ĥθ − θ⊤ĥ+ Const., (9)

where ⊤ denotes the transpose, and Ĥ is the n × n matrix and ĥ is the n-dimensional
vector defined as

Ĥℓ,ℓ′ :=
1

n2

n∑
i,j=1

K(xi, xℓ)K(xi, xℓ′)L(yj, yℓ)L(yj, yℓ′), (10)

ĥℓ :=
1

n

n∑
i=1

K(xi, xℓ)L(yi, yℓ). (11)

Further adding a regularization term, we arrive at the following optimization problem:

min
θ

1

2
θ⊤Ĥθ − θ⊤ĥ+ λθ⊤θ, (12)

where λ (≥ 0) is the regularization parameter. The solution θ̂ can be computed analyti-
cally as

θ̂ = (Ĥ + λI)−1ĥ, (13)
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where I denotes the identity matrix. Then a density-ratio estimator is obtained as

r̂(x, y) =
n∑

i=1

θ̂iK(x, xi)L(y, yi). (14)

Finally, an SMI estimator called LSMI is given as

LSMI :=
1

2n

n∑
i,j=1

θ̂iK(xi, xj)L(yi, yj)−
1

2
. (15)

In experiments, we use the delta kernel as L(y, y′), i.e.,

L(y, y′) =

{
1 (y = y′),

0 (y ̸= y′).
(16)

Then, the matrix Ĥ becomes block-diagonal, given that the observations x1, . . . , xn are
sorted according to the cluster assignments. Thus, the matrix inversion in Eq.(13) can be
computed efficiently.

A MATLAB implementation of LSMI is available from ‘http://sugiyama-www.cs.
titech.ac.jp/~sugi/software/LSMI/index.html’.

2.3 Hyperparameter Choice by CV

The accuracy of the above least-squares density-ratio estimator depends on the choice of
the hyperparameters such as the regularization parameter λ and some parameters included
in the kernel functions K(x, x′) and L(y, y′). They can be systematically optimized based
on cross-validation (CV) as follows [27].

The samples Z = {(x1, y1), . . . , (xn, yn)} are divided into M disjoint subsets
Z1, . . . ,ZM of approximately the same size. Then a density-ratio estimator r̂m(x, y) is
obtained using Z\Zm (i.e., all samples without Zm), and its out-of-sample error for the
hold-out samples Zm is computed as

1

2|Zm|2
∑

x,y∈Zm

r̂m(x, y)
2 − 1

|Zm|
∑

(x,y)∈Zm

r̂m(x, y). (17)

This procedure is repeated for m = 1, . . . ,M , and the average of the above hold-out error
over all m is computed. Finally, the hyperparameters that minimize the average hold-out
error are chosen.

2.4 Proposed Algorithm: LSMI Clustering

We determine the cluster assignments y1, . . . , yn so that the above LSMI is maximized.
This is carried out in a greedy manner as follows.
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1. Initialize y1, . . . , yn for x1, . . . , xn.

2. For i = 1, . . . , n, update yi so that LSMI is maximized.

3. Repeat 2 until y1, . . . , yn do not change.

We call the above clustering algorithm LSMI clustering (LSMIC).

3 Related Work

In this section, we discuss the relation between the proposed and existing dependence-
maximization clustering algorithms.

3.1 CLUHSIC

The Hilbert-Schmidt independence criterion (HSIC) [13] is a kernel-based dependence
measure. Based on HSIC, a dependence-maximization clustering method called clustering
with HSIC (CLUHSIC) was proposed [26].

CLUHSIC tries to determine cluster assignments y1, . . . , yn in a greedy manner so that
HSIC is maximized1:

HSIC =
n∑

i,j=1

K̄(xi, xj)L(yi, yj), (18)

where K̄(x, x′) is a centered kernel.
If we ignore irrelevant constants in LSMI, it is expressed as

n∑
i,j=1

θ̂iK(xi, xj)L(yi, yj). (19)

This shows that HSIC and LSMI are quite similar to each other. Their differences in
appearance are

• The kernel K(x, x′) is not centered in LSMI.

• The summation of kernels is weighted according to θ̂1, . . . , θ̂n in LSMI.

However, a more essential difference lies in hyperparameter choice. LSMI is equipped
with CV. Therefore, all the tuning parameters can be objectively optimized. On the
other hand, there is no systematic model selection procedure for HSIC. Using the Gaussian
kernel with width set to the input dimensionality or the median distance between samples
is a standard heuristic in practice [13, 26]. As we will experimentally show in Section 4,
this heuristic works reasonably well. However, this heuristic is not applicable to other

1http://www.cs.cmu.edu/~lesong/code/cluhsic.zip
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kernels such as string kernels, tree kernels, and graph kernels [21, 7, 15, 18, 16, 10, 9].
Thus, when structured data are clustered, kernel parameters need to be tuned manually,
which is highly subjective in unsupervised clustering scenarios. See Section 4 for more
details.

3.2 NIC

Another dependence-maximization clustering method called nonparametric information
clustering (NIC) adopts mutual information as a dependency measure [8].

NIC is based on the k-nearest neighbor entropy estimator [19]. The performance of
the original k-nearest neighbor entropy estimator depends on the choice of the number
of nearest neighbors, k. On the other hand, NIC avoids this problem by introducing a
heuristic of taking an average over all possible k. The resulting objective function is given
by

c∑
y=1

1

ny − 1

∑
i ̸=j:yi=yj=y

log(∥xi − xj∥+ ε), (20)

where ny denotes the number of samples in cluster y, and ε (> 0) is a smoothing parameter.
This objective function is minimized with respect to cluster assignments y1, . . . , yn using
a greedy algorithm.

Although the fact that the tuning parameter k is averaged out is practically convenient,
this heuristic is not well justified. Moreover, the choice of the smoothing parameter
ε is arbitrary. In the program code2 provided by one of the authors, ε = 1/n was
recommended. However, there seems no justification for this choice.

Let δ(y, y′) be the Dirac delta, i.e,

δ(y, y′) =

{
1 (y = y′),

0 (y ̸= y′).
(21)

Then the above NIC criterion can be expressed as∑
i ̸=j

1

nyi − 1
log(∥xi − xj∥+ ε)δ(yi, yj). (22)

Thus, if we relate 1
nyi−1

to θ̂i, log(∥xi − xj∥ + ε) to K(xi, xj), and δ(yi, yj) to L(yi, yj),

the appearance of the NIC criterion is rather similar to LSMI. However, there are critical
differences between LSMI and NIC. The most critical one is that there is no systematic
method to choose the hyperparameter ε in the NIC criterion, while LSMI is equipped
with CV. Another difference is that any kernels can be used as K(x, x′) and L(y, y′) in
LSMI, while they are restricted to specific ones in the NIC criterion.

2http://www.levfaivishevsky.webs.com/NIC.rar
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By using

∥xi − xj∥ =
√

∥xi∥2 + ∥xj∥2 − 2x⊤
i xj, (23)

the kernel trick can be employed. Thus, in principle, NIC is applicable to structured
data. However, this uses kernels on ‘kernel’ log(∥xi − xj∥+ ε), and its validity is unclear.
Furthermore, lack of hyperparameter selection methods is again a critical limitation when
structured data are clustered. See Section 4 for more details.

4 Experiments

In this section, we experimentally compare the clustering performance of LSMIC with
that of CLUHSIC and NIC.

First, we employ some of the UCI benchmark datasets3. These are classification
datasets with vectorial features. The specification of the datasets is described in the
left column of Table 1. The Gaussian kernel is used for LSMIC, where the kernel width
is chosen by CV. We also use the Gaussian kernel for CLUHSIC, but it requires the user
to specify the kernel width manually. There seem two popular heuristics for the ker-
nel width choice—using the feature dimensionality [26] or the median distance between
samples [13] as the Gaussian width. Here we test both heuristics, which are indicated by
‘CLUHSIC(dim)’ and ‘CLUHSIC(med)’, respectively. The smoothing parameter ε in NIC
is fixed to 1/n, following the suggestion by the authors. Each method is executed 9 times,
and the best result in terms of each objective value is chosen. Before feeding the data into
each algorithm, we normalize the data so that element-wise variance is one. For NIC, we
further whiten the data, as suggested in [8]. The experimental results are summarized in
Table 1, showing that all the methods work comparably well for these simple tasks.

Next, we consider clustering tasks for structured data. We use the Brown corpus
dataset4, which is a carefully compiled selection of current American English. It consists
of a million words sampled from 15 genres such as news and religion, and is accompanied
with part-of-speech tags which represent relationship with adjacent and related words in
a phrase, sentence, or paragraph. We convert the Brown corpus data to dependence tree
representation by the MaltParser 5.

As kernel functions, we use a version of the labeled ordered tree kernel [15] between two
dependence trees, which counts the number of sub-trees common to both trees. The sim-
ilarity between nodes is computed as the inner product of vectors (p(z1|w), . . . , p(z20|w)),
where {p(zi|w)}20i=1 are the probabilities of topic zi under word w calculated by probabilis-

3The UCI benchmark datasets are available from http://www.ics.uci.edu/~mlearn/

MLRepository.html.
4The Brown corpus dataset can be downloaded using the Natural Language Toolkit (http://www.

nltk.org/), which contains open source Python modules, linguistic data, and documentation for research
and development in natural language processing and text analysis.

5The MaltParser is available from http://maltparser.org/.
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tic latent semantic indexing [14]6. The inner product has a high value if the words share
a similar topic. We then normalize this similarity value and the kernel value [17].

The labeled ordered tree kernel contains a tuning parameter, the decay factor κ
(0 < κ ≤ 1) which controls the weights for large sub-trees [3]. We choose κ from
{0.1, 0.4, 0.7} by CV for LSMIC. On the other hand, there is no systematic way to choose
κ for CLUHSIC and NIC, so we test all three cases. We perform clustering between
the topic ‘Adventure’ and one of the other topics: ‘Belles letteres’, ‘Editional’, ‘Fiction’,
‘Government’, ‘Hobbies’, ‘Humor’, and ‘Learned’. The results are described in Table 2,
showing that LSMIC overall compares favorably with CLUHSIC and NIC.

5 Conclusion

In this paper, we proposed a novel dependence-maximization clustering method. Our
method used least-squares mutual information, an optimal non-parametric estimator of
a squared-loss variant of mutual information, as a dependency measure. A notable ad-
vantage of LSMI is that hyperparameters such as kernel parameters and regularization
parameters can be objectively optimized based on cross-validation. Thanks to this, sub-
jective manual-tuning of hyperparameters is not necessary in the proposed method. In
practice, this is a highly useful property in unsupervised clustering scenarios. Through
experiments, we illustrated the usefulness of the proposed approach.

Similarly to other clustering approaches, initialization of cluster assignments is a key
issue in the proposed LSMI clustering algorithm. This needs to be addressed in the future
work.
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