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Abstract

Accurately evaluating statistical independence among random variables is a key
element of Independent Component Analysis (ICA). In this paper, we employ a
squared-loss variant of mutual information as an independence measure and give its
estimation method. Our basic idea is to estimate the ratio of probability densities
directly without going through density estimation, by which a hard task of density
estimation can be avoided. In this density ratio approach, a natural cross-validation
procedure is available for hyper-parameter selection. Thus, all tuning parameters
such as the kernel width or the regularization parameter can be objectively opti-
mized. This is an advantage over recently developed kernel-based independence
measures and is a highly useful property in unsupervised learning problems such
as ICA. Based on this novel independence measure, we develop an ICA algorithm
named Least-squares Independent Component Analysis (LICA).

1 Introduction

The purpose of Independent Component Analysis (ICA) (Hyvärinen et al., 2001) is to
obtain a transformation matrix that separates mixed signals into statistically-independent
source signals. A direct approach to ICA is to find a transformation matrix such that
independence among separated signals is maximized under some independence measure
such as mutual information (MI).

∗A MATLAB R⃝ implementation of the proposed algorithm, LICA, is available from
‘http://www.simplex.t.u-tokyo.ac.jp/~s-taiji/software/LICA/index.html’.
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Various approaches to evaluating the independence among random variables from
samples have been explored so far. A naive approach is to estimate probability densities
based on parametric or non-parametric density estimation methods. However, finding
an appropriate parametric model is not easy without strong prior knowledge and non-
parametric estimation is not accurate in high-dimensional problems. Thus this naive
approach is not reliable in practice. Another approach is to approximate the negentropy
(or negative entropy) based on the Gram-Charlier expansion (Cardoso & Souloumiac,
1993; Comon, 1994; Amari et al., 1996) or the Edgeworth expansion (Hulle, 2008). An
advantage of this negentropy-based approach is that a hard task of density estimation is
not directly involved. However, these expansion techniques are based on the assumption
that the target density is close to normal and violation of this assumption can cause large
approximation error.

The above approaches are based on the probability densities of signals. Another
line of research that does not explicitly involve probability densities employs non-linear
correlation—signals are statistically independent if and only if all non-linear correlations
among the signals vanish. Following this line, computationally efficient algorithms have
been developed based on a contrast function (Jutten & Herault, 1991; Hyvärinen, 1999),
which is an approximation of negentropy or mutual information. However, these methods
require to pre-specify non-linearities in the contrast function, and thus could be inaccurate
if the predetermined non-linearities do not match the target distribution. To cope with
this problem, the kernel trick has been applied in ICA, which allows one to evaluate
all non-linear correlations in a computationally efficient manner (Bach & Jordan, 2002).
However, its practical performance depends on the choice of kernels (more specifically, the
Gaussian kernel width) and there seems no theoretically justified method to determine the
kernel width (see also Fukumizu et al., 2009). This is a critical problem in unsupervised
learning problems such as ICA.

In this paper, we develop a new ICA algorithm that resolves the problems mentioned
above. We adopt a squared-loss variant of MI (which we call squared-loss MI ; SMI) as an
independence measure and approximate it by estimating the ratio of probability densities
contained in SMI directly without going through density estimation. This approach—
which follows the line of Sugiyama et al. (2008), Kanamori et al. (2009), and Nguyen
et al. (2010)—allows us to avoid a hard task of density estimation. Another practical
advantage of this density-ratio approach is that a natural cross-validation (CV) procedure
is available for hyper-parameter selection. Thus all tuning parameters such as the kernel
width or the regularization parameter can be objectively and systematically optimized
through CV.

From an algorithmic point of view, our density-ratio approach analytically provides a
non-parametric estimator of SMI; furthermore its derivative can also be computed ana-
lytically and these properties are utilized in deriving a new ICA algorithm. The proposed
method is named Least-squares Independent Component Analysis (LICA).

Characteristics of existing and proposed ICA methods are summarized in Table 1,
highlighting the advantage of the proposed LICA approach.

The structure of this paper is as follows. In Section 2, we formulate our estimator of
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Table 1: Summary of existing and proposed ICA methods.

Hyper-parameter selection Distribution

Fast ICA (FICA)
(Hyvärinen, 1999)

Not Necessary Not Free

Natural-gradient ICA (NICA)
(Amari et al., 1996)

Not Necessary Not Free

Kernel ICA (KICA)
(Bach & Jordan, 2002)

Not Available Free

Edgeworth-expansion ICA (EICA)
(Hulle, 2008)

Not Necessary Nearly normal

Least-squares ICA (LICA)
(proposed)

Available Free

SMI. In Section 3, we derive the LICA algorithm based on the SMI estimator. Section 4 is
devoted to numerical experiments where we show that our method properly estimate the
true demixing matrix using toy datasets, and compare the performances of the proposed
and existing methods on artificial and real datasets.

2 SMI Estimation for ICA

In this section, we formulate the ICA problem and introduce our independence measure,
SMI. Then we give an estimation method of SMI and derive an ICA algorithm.

2.1 Problem Formulation

Suppose there is a d-dimensional random signal

x = (x(1), . . . , x(d))⊤

drawn from a distribution with density p(x), where {x(m)}dm=1 are statistically indepen-
dent of each other, and ⊤ denotes the transpose of a matrix or a vector. Thus, p(x) can
be factorized as

p(x) =
d∏

m=1

pm(x
(m)).

We cannot directly observe the source signal x, but only a linearly mixed signal y:

y = (y(1), . . . , y(d))⊤ := Ax,

where A is a d× d invertible matrix called the mixing matrix. The goal of ICA is, given
samples of the mixed signals {yi}ni=1, to obtain a demixing matrix W that recovers the
original source signal x. We denote the demixed signal by z:

z = Wy.
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The ideal solution is W = A−1, but we can only recover the source signals up to permuta-
tion and scaling of components of x due to non-identifiability of the ICA setup (Hyvärinen
et al., 2001).

A direct approach to ICA is to determine W so that components of z are as indepen-
dent as possible. Here, we adopt SMI as the independence measure:

Is(Z
(1), . . . , Z(d)) :=

1

2

∫ (
q(z)

r(z)
− 1

)2

r(z)dz, (1)

where q(z) denotes the joint density of z and r(z) denotes the product of marginal
densities {qm(z(m))}dm=1:

r(z) =
d∏

m=1

qm(z
(m)).

Note that SMI is the Pearson divergence (Pearson, 1900; Paninsky, 2003; Liese & Vajda,
2006; Cichocki et al., 2009) between q(z) and r(z), while ordinary MI is the Kullback-
Leibler divergence (Kullback & Leibler, 1951). Since Is is non-negative and it vanishes if
and only if q(z) = r(z), the degree of independence among {z(m)}dm=1 may be measured
by SMI. Note that Eq.(1) corresponds to the f -divergence (Ali & Silvey, 1966; Csiszár,
1967) between q(x) and r(z) with the squared-loss, while ordinary MI corresponds to the
f -divergence with the log-loss. Thus SMI could be regarded as a natural generalization
of ordinary MI.

Based on the independence detection property of SMI, we try to find the demixing
matrix W that minimizes SMI. Let us denote the demixed samples by

{zi | zi = (z
(1)
i , . . . , z

(d)
i )⊤ := Wyi}ni=1.

Our key constraint when estimating SMI is that we want to avoid density estimation since
it is a hard task (Vapnik, 1998). Below, we show how this could be accomplished.

2.2 SMI Approximation via Density Ratio Estimation

We approximate SMI via density ratio estimation. Let us denote the ratio of the densities
q(z) and r(z) by

g∗(z) :=
q(z)

r(z)
. (2)

Then SMI can be written as

Is(Z
(1), . . . , Z(d)) =

1

2

∫
(g∗(z)− 1)2 r(z)dz

=
1

2

∫ (
g∗(z)2r(z)− 2g∗(z)r(z) + r(z)

)
dz

=
1

2

∫
(g∗(z)q(z)− 2q(z) + r(z)) dz

=
1

2

∫
g∗(z)q(z)dz − 1

2
. (3)
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Therefore, SMI can be approximated through the estimation of
∫
g∗(z)q(z)dz, the ex-

pectation of g∗(z) over q(z). This can be achieved by taking the sample average of an
estimator of the density ratio g∗(z), say ĝ(z):

Îs =
1

2n

n∑
i=1

ĝ(zi)−
1

2
. (4)

We take the least-squares approach to estimating the density ratio g∗(z):

inf
g

[
1

2

∫ (
g(z)− g∗(z)

)2
r(z)dz

]
= inf

g

[∫ (1
2
g(z)2r(z)− g(z)q(z)

)
dz

]
+ constant,

where infg is taken over all measurable functions. Obviously the optimal solution is the
density ratio g∗. Thus computing Is is now reduced to solving the following optimization
problem:

inf
g

[∫ (1
2
g(z)2r(z)− g(z)q(z)

)
dz

]
. (5)

However, directly solving the problem (5) is not possible due to the following two
reasons. The first reason is that finding the minimizer over all measurable functions is
not tractable in practice since the search space is too vast. To overcome this problem, we
restrict the search space to some linear subspace G:

G = {α⊤φ(z) | α = (α1, . . . , αb)
⊤ ∈ Rb}, (6)

where α is a parameter to be learned from samples, and φ(z) is a basis function vector
such that

φ(z) = (φ1(z), . . . , φb(z))
⊤ ≥ 0b for all z.

0b denotes the b-dimensional vector with all zeros. Note that φ(z) could be dependent
on the samples {zi}ni=1, i.e., kernel models are also allowed. We explain how the basis
functions φ(z) are chosen in Section 2.3.

The second reason why directly solving the problem (5) is not possible is that the
expectations over the true probability densities q(z) and r(z) cannot be computed since
q(z) and r(z) are unknown. To cope with this problem, we approximate the expectations
by their empirical averages—then the optimization problem is reduced to

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+ λα⊤Rα

]
, (7)

where we included λα⊤Rα (λ > 0) for avoiding overfitting. λ is called the regularization
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parameter, and R is some positive definite matrix. Ĥ and ĥ are defined as

Ĥ :=
1

nd

n∑
i1,...,id=1

φ(z
(1)
i1
, . . . , z

(d)
id

)φ(z
(1)
i1
, . . . , z

(d)
id

)⊤, (8)

ĥ :=
1

n

n∑
i=1

φ(z
(1)
i , . . . , z

(d)
i ). (9)

Differentiating the objective function in Eq.(7) with respect to α and equating it to zero,
we can obtain an analytic-form solution as

α̂ = (Ĥ + λR)−1ĥ.

Thus, the solution can be computed very efficiently just by solving a system of linear
equations.

Once the density ratio (2) has been estimated, SMI can be approximated by plugging
the estimated density ratio ĝ(z) = α̂⊤φ(z) in Eq.(4):

Îs =
1

2
α̂⊤ĥ− 1

2
. (10)

Note that we may obtain various expressions of SMI using the following identities:∫
g∗(z)2r(z)dz =

∫
g∗(z)q(z)dz,∫

g∗(z)r(z)dz =

∫
q(z)dz = 1.

Ordinary MI based on the Kullback-Leibler divergence can also be estimated similarly
using the density ratio (Suzuki et al., 2008). However, the use of SMI is more advantageous
due to the analytic-form solution, as described in Section 3.

2.3 Design of Basis Functions and Hyper-parameter Selection

As basis functions, we propose to use a Gaussian kernel:

φℓ(z) = exp

(
−∥z − vℓ∥2

2σ2

)
=

d∏
m=1

exp

(
−(z(m) − v

(m)
ℓ )2

2σ2

)
, (11)

where
{vℓ | vℓ = (v

(1)
ℓ , . . . , v

(d)
ℓ )⊤}bℓ=1

are Gaussian centers randomly chosen from {zi}ni=1—more precisely, we set vℓ = zc(ℓ),
where {c(ℓ)}bℓ=1 are randomly chosen from {1, . . . , n} without replacement. An advantage
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of the Gaussian kernel lies in the factorizability in Eq.(11), contributing to reducing the

computational cost of the matrix Ĥ significantly:

Ĥℓ,ℓ′ =
1

nd

d∏
m=1

[
n∑

i=1

exp

(
−(z

(m)
i − v

(m)
ℓ )2 + (z

(m)
i − v

(m)
ℓ′ )2

2σ2

)]
.

We use the RKHS (Reproducing Kernel Hilbert Space) norm of α⊤φ(z) induced by the
Gaussian kernel as the regularization term α⊤Rα, which is a popular choice in the kernel
method community (Schölkopf & Smola, 2002):

Rℓ,ℓ′ = exp

(
−∥vℓ − vℓ′∥2

2σ2

)
. (12)

In the experiments, we fix the number of basis functions to

b = min(300, n),

and choose the Gaussian width σ and the regularization parameter λ by CV with grid
search as follows. First, the samples {zi}ni=1 are divided into K disjoint subsets {Zk}Kk=1

of (approximately) the same size (we use K = 5 in the experiments). Then an estimator
α̂Z\Zk

is obtained using Z\Zk (i.e., Z without Zk) and the approximation error for the
hold-out samples Zk is computed:

J
(K-CV)
Zk

=
1

2
α̂⊤

Z\Zk
ĤZk

α̂Z\Zk
− ĥ

⊤
Zk
α̂Z\Zk

,

where the matrix ĤZk
and the vector ĥZk

are defined in the same way as Ĥ and ĥ, but
computed only using Zk. This procedure is repeated for k = 1, . . . , K and its average
J (K-CV) is computed:

J (K-CV) =
1

K

K∑
k=1

J
(K-CV)
Zk

.

For parameter selection, we compute J (K-CV) for all hyper-parameter candidates (the
Gaussian width σ and the regularization parameter λ in the current setting) and choose
the parameter that minimizes J (K-CV). We can show that J (K-CV) is an almost unbiased
estimator of the objective function in Eq.(5), where the ‘almost’-ness comes from the fact
that the number of samples is reduced in the CV procedure due to data splitting (Geisser,
1975; Kohave, 1995).

3 The LICA Algorithms

In this section, we show how the above SMI estimation idea could be employed in the
context of ICA. Here, we derive two algorithms, which we call Least-squares Independent
Component Analysis (LICA), for obtaining a minimizer of Îs with respect to the demixing
matrix W—one is based on a plain gradient method (which we refer to as PG-LICA) and
the other is based on a natural gradient method for whitened samples (which we refer to
as NG-LICA). A MATLAB R⃝ implementation of LICA is available from
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http://www.simplex.t.u-tokyo.ac.jp/~s-taiji/software/LICA/index.html

3.1 Plain Gradient Algorithm: PG-LICA

Based on the plain gradient technique, an update rule of W is given by

W ←−W − ε
∂Îs
∂W

, (13)

where ε (> 0) is the step size. As shown in Appendix, the gradient is given by

∂Îs
∂Wℓ,ℓ′

=
∂ĥ

⊤

∂Wℓ,ℓ′
α̂− 1

2
α̂⊤

(
∂Ĥ

∂Wℓ,ℓ′
+ λ

∂R

∂Wℓ,ℓ′

)
α̂, (14)

where, for uℓ = yc(ℓ) and yi = (y
(1)
i , . . . , y

(d)
i )⊤,

∂ĥℓ

∂Wk,k′
=

1

nσ2

n∑
i=1

(z
(k)
i − v

(k)
ℓ )(u

(k′)
ℓ − y

(k′)
i ) exp

(
−∥zi − vk∥2

2σ2

)
, (15)

∂Ĥℓ,ℓ′

∂Wk,k′
=

1

nd−1

∏
m̸=k

[
n∑

i=1

exp

(
−(z

(m)
i − v

(m)
ℓ )2 + (z

(m)
i − v

(m)
ℓ′ )2

2σ2

)]

×

[
1

nσ2

n∑
i=1

(
(z

(k)
i − v

(k)
ℓ )(u

(k′)
ℓ − y

(k′)
i ) + (z

(k)
i − v

(k)
ℓ′ )(u

(k′)
ℓ′ − y

(k′)
i )

)
× exp

(
−(z

(k)
i − v

(k)
ℓ )2 + (z

(k)
i − v

(k)
ℓ′ )2

2σ2

)]
. (16)

For the regularization matrix R defined by Eq.(12), the partial derivative is given by

∂Rℓ,ℓ′

∂Wk,k′
=

1

σ2
(v

(k)
ℓ − v

(k)
ℓ′ )(u

(k′)
ℓ′ − u

(k′)
ℓ ) exp

(
−∥vℓ − vℓ′∥2

2σ2

)
.

In ICA, scaling of components of z can be arbitrary. This implies that the above
gradient updating rule can lead to a solution with poor scaling, which is not preferable
from a numerical point of view. To avoid possible numerical instability, we normalize W
at each gradient iteration as

Wk,k′ ←−
Wk,k′√∑d
m=1W

2
k,m

. (17)

In practice, we may iteratively perform line search along the gradient and optimize
the Gaussian width σ and the regularization parameter λ by CV. A pseudo code of the
PG-LICA algorithm is summarized in Figure 1.
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1. Initialize demixing matrix W and normalize it by Eq.(17).

2. Optimize Gaussian width σ and regularization parameter λ by CV.

3. Compute gradient ∂Îs
∂W

by Eq.(14).

4. Choose step-size ε such that Îs (see Eq.(10)) is minimized (line-search).

5. Update W by Eq.(13).

6. Normalize W by Eq.(17).

7. Repeat 2.–6. until W converges.

Figure 1: The LICA algorithm with plain gradient descent (PG-LICA).

3.2 Natural Gradient Algorithm for Whitened Data: NG-LICA

The second algorithm is based on a natural gradient technique (Amari, 1998).
Suppose the data samples are whitened, i.e., samples {yi}ni=1 are transformed as

yi ←− Ĉ
− 1

2yi, (18)

where Ĉ is the sample covariance matrix:

Ĉ :=
1

n

n∑
i=1

(
yi −

1

n

n∑
j=1

yj

)(
yi −

1

n

n∑
j=1

yj

)⊤

.

Then it can be shown that a demixing matrix which eliminates the second order correlation
is an orthogonal matrix (Hyvärinen et al., 2001). Thus, for whitened data, the search space
of W can be restricted to the orthogonal group O(d) without loss of generality.

The tangent space of O(d) at W is equal to the space of all matrices U such that
W⊤U is skew symmetric, i.e., UW⊤ = −WU⊤. The steepest direction on this tangent
space, which is called the natural gradient, is given as follows (Amari, 1998):

∇Îs(W ) :=
1

2

(
∂Îs
∂W

−W
∂Îs
∂W

⊤

W

)
, (19)

where the canonical metric ⟨G1,G2⟩ = 1
2
tr(G⊤

1 G2) is adopted in the tangent space. Then
the geodesic from W in the direction of the natural gradient over O(d) can be expressed
by

W exp
(
tW⊤∇Îs(W )

)
,

where t ∈ R and ‘exp’ denotes the matrix exponential, i.e., for a square matrix D,

exp(D) =
∞∑
k=0

1

k!
Dk.
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1. Whiten the data samples by Eq.(18).

2. Initialize demixing matrix W and normalize it by Eq.(17).

3. Optimize Gaussian width σ and regularization parameter λ by CV.

4. Compute the natural gradient ∇Îs by Eq.(19).

5. Choose step-size t such that Îs (see Eq.(10)) is minimized over the set (20).

6. Update W by Eq.(21).

7. Repeat 3.–6. until W converges.

Figure 2: The LICA algorithm with natural gradient descent (NG-LICA).

Thus when we perform line search along the geodesic in the natural gradient direction,
the minimizer may be searched from the set{

W exp
(
−tW⊤∇Îs(W )

) ∣∣∣ t ≥ 0
}
, (20)

i.e., t is chosen such that Îs (see Eq.(10)) is minimized and W is updated as

W ←−W exp
(
−tW⊤∇Îs(W )

)
. (21)

Geometry and optimization algorithms on more general structure, the Stiefel manifold, is
discussed in more detail in Nishimori and Akaho (2005).

A pseudo code of the NG-LICA algorithm is summarized in Figure 2.

3.3 Remarks

The proposed LICA algorithms can be regarded as an application of the general uncon-
strained least-squares density-ratio estimator proposed by Kanamori et al. (2009) to SMI
in the context of ICA.

The optimization problem (5) can also be obtained following the line of Nguyen et al.
(2010), which addresses a divergence estimation problem utilizing the Legendre-Fenchel
duality. SMI defined by Eq.(1) can be expressed as

Is(Z
(1), . . . , Z(d)) =

∫
1

2

(
q(z)

r(z)

)2

r(z)dz − 1

2
. (22)

If the Legendre-Fenchel duality of the convex function 1
2
x2,

1

2
x2 = sup

y

(
yx− 1

2
y2
)
,
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is applied to 1
2

(
q(z)
r(z)

)2
in Eq.(22) in a pointwise manner, we have

Is(Z
(1), . . . , Z(d)) = sup

g

[∫ (q(z)
r(z)

g(z)− 1

2
g(z)2

)
r(z)dz − 1

2

]
= − inf

g

[∫ (1
2
g(z)2q(z)− g(z)r(z)

)
dz

]
− 1

2
,

where supg and infg are taken over all measurable functions.
SMI is closely related to the kernel independence measures developed recently (Gretton

et al., 2005a; Gretton et al., 2005b; Fukumizu et al., 2008). In particular, it has been
shown that the NOrmalized Cross-Covariance Operator (NOCCO) proposed in Fukumizu
et al. (2008) is also an estimator of SMI for d = 2. However, there is no reasonable hyper-
parameter selection method for this and all other kernel-based independence measures
(see also Bach & Jordan, 2002 and Fukumizu et al., 2009). This is a crucial limitation in
unsupervised learning scenarios such as ICA. On the other hand, cross-validation can be
applied to our method for hyper-parameter selection, as shown in Section 2.3.

4 Experiments

In this section, we investigate the experimental performance of the proposed method.

4.1 Illustrative Examples

First, we illustrate how the proposed method behaves using the following three 2-
dimensional datasets:

(a) Sub·Sub-Gaussians: p(x) = U(x(1);−0.5, 0.5)U(x(2);−0.5, 0.5),

(b) Super·Super-Gaussians: p(x) = L(x(1); 0, 1)L(x(2); 0, 1),

(c) Sub·Super-Gaussians: p(x) = U(x(1);−0.5, 0.5)L(x(2); 0, 1),

where U(x; a, b) (a, b ∈ R, a < b) denotes the uniform density on [a, b] and L(x;µ, v)
(µ ∈ R, v > 0) denotes the Laplace density with mean µ and variance v. Let the number
of samples be n = 300 and we observe mixed samples {yi}ni=1 through the following mixing
matrix:

A =

(
cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
=

1√
2

(
1 1
−1 1

)
.

The observed samples are plotted in Figure 3. We employed the NG-LICA algorithm
described in Figure 2. Hyper-parameters σ and λ in LICA were chosen by 5-fold CV
from the 10 values in [0.1, 1] at regular intervals and the 10 values in [0.001, 1] at regular
intervals in log scale, respectively. The regularization term was set to the squared RKHS
norm induced by the Gaussian kernel, i.e., we employed R defined by Eq.(12).
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Figure 3: Observed samples (asterisks), true independent directions (dotted lines) and
estimated independent directions (solid lines).
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Figure 4: The value of Îs over iterations.
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Figure 5: The elements of the demixing matrix W over iterations. Solid lines correspond
to W1,1, W1,2, W2,1, and W2,2, respectively. The dotted lines denote the true values.
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The true independent directions as well as the estimated independent directions are
plotted in Figure 3. Figure 4 depicts the value of the estimated SMI (10) over iterations
and Figure 5 depicts the elements of the demixing matrix W over iterations. The results
show that estimated SMI decreases rapidly and good solutions are obtained for all the
datasets. The reason why the estimated SMI in Figure 4 does not decrease monotonically
is that during the natural gradient optimization procedure, the hyper-parameters (λ and
σ) are adjusted by CV (see Figure 2), which possibly causes an increase in the objective
values.

4.2 Performance Comparison

Here we compare our method with some existing methods (KICA, FICA, JADE (Cardoso
& Souloumiac, 1993)) on artificial and real datasets. We used the datasets (a), (b), and
(c) in Section 4.1, the ‘demosig’ dataset available in the FastICA package1 for MATLAB R⃝,
and ‘10halo’, ‘Sergio7’, ‘Speech4’, and ‘c5signals’ datasets available in the ICALAB sig-
nal processing benchmark datasets2 (Cichocki & Amari, 2003). The datasets (a), (b),
(c), ‘demosig’, Sergio7’, and ‘c5signals’ are artificial datasets. The datasets ‘10halo’ and
‘Speech4’ are real datasets. We employed the Amari index (Amari et al., 1996) as the
performance measure (smaller is better):

Amari index :=
1

2d(d− 1)

d∑
m,m′=1

(
|om,m′ |

maxm′′ |om,m′′ |
+

|om,m′ |
maxm′′ |om′′,m′|

)
− 1

d− 1
,

where om,m′ := [ŴA]m,m′ for an estimated demixing matrix Ŵ . We used the publicly
available MATLAB R⃝ codes for KICA3, FICA1 and JADE4, where default parameter set-
tings were used. Hyper-parameters σ and λ in LICA were chosen by 5-fold CV from the
10 values in [0.1, 1] at regular intervals and the 10 values in [0.001, 1] at regular intervals
in log scale, respectively. R was set as Eq.(12).

We randomly generated the mixing matrix A and source signals for artificial datasets,

and computed the Amari index between the true A and Ŵ
−1

for Ŵ estimated by each
method. As training samples, we used the first n samples for Sergio7 and c5signals, and
the n samples between the 1001th and (1000+n)-th interval for 10halo and Speech4, where
we tested n = 200 and 500.

The performance of each method is summarized in Table 2, which depicts the mean
and standard deviation of the Amari index over 50 trials. NG-LICA overall shows good
performance. KICA tends to work reasonably well for datasets (a), (b), (c) and ‘demosig’,
but it performs poorly for the ICALAB datasets; this seems to be caused by an inappro-
priate choice of the Gaussian kernel width and local optima. On the other hand, FICA
and JADE tend to work reasonably well for the ICALAB datasets, but performs poorly

1http://www.cis.hut.fi/projects/ica/fastica
2http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/benchmarks/
3http://www.di.ens.fr/˜fbach/kernel-ica/index.htm
4http://perso.telecom-paristech.fr/ cardoso/guidesepsou.html
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Table 2: Mean and standard deviation of the Amari index (smaller is better) for the
benchmark datasets. The datasets (a), (b), and (c) are taken from Section 4.1. The
‘demosig’ dataset is taken from the FastICA package. The ‘10halo’, ‘Sergio7’, ‘Speech4’,
and ‘c5signals’ datasets are taken from the ICALAB benchmarks datasets. The best
method in terms of the mean Amari index and comparable ones based on the one-sided
t-test at the significance level 1% are indicated by boldface.

dataset n NG-LICA KICA FICA JADE

(a) 200 0.05(0.03) 0.04(0.02) 0.06(0.03) 0.04(0.02)
500 0.03(0.01) 0.03(0.01) 0.03(0.02) 0.02(0.01)

(b) 200 0.06(0.04) 0.12(0.15) 0.16(0.20) 0.15(0.17)
500 0.04(0.03) 0.05(0.04) 0.11(0.12) 0.05(0.04)

(c) 200 0.08(0.05) 0.09(0.06) 0.14(0.11) 0.13(0.09)
500 0.04(0.03) 0.04(0.03) 0.09(0.08) 0.10(0.06)

demosig 200 0.04(0.01) 0.05(0.11) 0.08(0.05) 0.08(0.08)
500 0.02(0.01) 0.04(0.09) 0.04(0.03) 0.04(0.02)

10halo 200 0.29(0.02) 0.38(0.03) 0.33(0.07) 0.36(0.00)
500 0.22(0.02) 0.37(0.03) 0.22(0.03) 0.28(0.00)

Sergio7 200 0.04(0.01) 0.38(0.04) 0.05(0.02) 0.07(0.00)
500 0.05(0.02) 0.37(0.03) 0.04(0.01) 0.04(0.00)

Speech4 200 0.18(0.03) 0.29(0.05) 0.20(0.03) 0.22(0.00)
500 0.07(0.00) 0.10(0.04) 0.10(0.04) 0.06(0.00)

c5signals 200 0.12(0.01) 0.25(0.15) 0.10(0.02) 0.12(0.00)
500 0.06(0.04) 0.07(0.06) 0.04(0.02) 0.07(0.00)

for (a), (b), (c) and ‘demosig’; we conjecture that the contrast functions in FICA and the
fourth-order statistics in JADE did not appropriately catch the non-Gaussianity of the
datasets (a), (b), (c) and ‘demosig’. Overall, the proposed LICA algorithm is shown to
be a promising ICA method.

5 Conclusions

In this paper, we proposed a new ICA method based on a squared-loss variant of mu-
tual information. The proposed method, named least-squares ICA (LICA), has several
preferable properties, e.g., it is distribution-free and hyper-parameter selection by cross-
validation is available.

Similarly to other ICA algorithms, the optimization problem involved in LICA is non-
convex. Thus it is practically very important to develop good heuristics for initialization
and avoiding local optima in the gradient procedures, which is an open research topic to
be investigated. Moreover, although our SMI estimator is analytic, the LICA algorithm is
still computationally rather expensive due to linear equations and cross-validation. Our
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future work will address the computational issue, e.g., by vectorization and parallelization.

Appendix: Derivation of the Gradient of the SMI Es-

timator

Here we show the derivation of the gradient (14) of the SMI estimator (10). Since Îs =
1
2
ĥ

⊤
α̂+ 1

2
(see Eq.(10)), the derivative of Îs with respect to Wk,k′ is given as follows:

∂Îs
∂Wk,k′

=
1

2
ĥ

⊤ ∂α̂

∂Wk,k′
+

1

2
α̂⊤ ∂ĥ

∂Wk,k′
. (23)

Remind that dB(x)−1

dx
= −B(x)−1 dB(x)

dx
B(x)−1 for an arbitrary matrix function B(x).

Then the partial derivative of α̂ = (Ĥ + λR)−1ĥ with respect to Wk,k′ is given by

∂α̂

∂Wk,k′
= −(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
(Ĥ + λR)−1ĥ+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′

= −(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
α̂+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′
.

Substituting this in Eq.(23), we have

∂Îs
∂Wk,k′

=
1

2
ĥ

⊤
(
−(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
α̂+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′

)
+

1

2
α̂⊤ ∂ĥ

∂Wk,k′

=− 1

2
α̂⊤ ∂Ĥ

∂Wk,k′
α̂− λ

2
α̂⊤ ∂R

∂Wk,k′
α̂+ α̂⊤ ∂ĥ

∂Wk,k′
,

which gives Eq.(14).
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