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Abstract

Methods for directly estimating the ratio of two probability density functions have
been actively explored recently since they can be used for various data processing
tasks such as non-stationarity adaptation, outlier detection, and feature selection. In
this paper, we develop a new method which incorporates dimensionality reduction
into a direct density-ratio estimation procedure. Our key idea is to find a low-
dimensional subspace in which densities are significantly different and perform den-
sity ratio estimation only in this subspace. The proposed method, D3-LHSS (Direct
Density-ratio estimation with Dimensionality reduction via Least-squares Hetero-
distributional Subspace Search), is shown to overcome the limitation of baseline
methods.

Keywords

density ratio estimation, dimensionality reduction, unconstrained least-squares im-
portance fitting

1 Introduction

Recently, it has been demonstrated that various machine learning and data mining tasks
can be formulated in terms of the ratio of two probability density functions (Sugiyama
et al., 2009; Sugiyama et al., 2011). Examples of such tasks include covariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama et al., 2007; Sugiyama & Kawanabe,
2010), transfer learning (Storkey & Sugiyama, 2007), multi-task learning (Bickel et al.,
2008), outlier detection (Hido et al., 2008; Smola et al., 2009; Hido et al., 2010), condi-
tional density estimation (Sugiyama et al., 2010c), probabilistic classification (Sugiyama,
2010), variable selection (Suzuki et al., 2009a), independent component analysis (Suzuki
& Sugiyama, 2009), supervised dimensionality reduction (Suzuki & Sugiyama, 2010), and
causal inference (Yamada & Sugiyama, 2010), For this reason, estimating the density
ratio has been attracting a great deal of attention, and various approaches have been
explored (Silverman, 1978; Ćwik & Mielniczuk, 1989; Gijbels & Mielniczuk, 1995; Sun &
Woodroofe, 1997; Jacob & Oliveira, 1997; Qin, 1998; Cheng & Chu, 2004; Huang et al.,
2007; Bensaid & Fabre, 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al.,
2009a; Chen et al., 2009; Sugiyama et al., 2010b; Nguyen et al., 2010).

A naive approach to density ratio estimation is to approximate the two densities in
the ratio (i.e., the numerator and the denominator) separately using a flexible technique
such as non-parametric kernel density estimation (Silverman, 1986; Härdle et al., 2004),
and then take the ratio of the estimated densities. However, this naive two-step approach
is not reliable in practical situations since kernel density estimation performs poorly in
high-dimensional cases; furthermore, division by an estimated density tends to magnify
the estimation error. To improve the estimation accuracy, various methods have been
developed for directly estimating the density ratio without going through density esti-
mation, e.g., the moment matching method using reproducing kernels (Aronszajn, 1950;
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Knowing two densities Knowing  ratio

r(x) =
pnu(x)

pde(x)
pnu(x), pde(x)

Figure 1: Density ratio estimation is substantially easier than density estimation. The
density ratio r(x) can be computed if two densities pnu(x) and pde(x) are known. However,
even if the density ratio is known, the two densities cannot be computed in general.

Steinwart, 2001) called kernel mean matching (KMM) (Huang et al., 2007; Quiñonero-
Candela et al., 2009), the method based on logistic regression (LR) (Qin, 1998; Cheng
& Chu, 2004; Bickel et al., 2007), the distribution matching method under the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) called the KL importance estimation
procedure (KLIEP) (Sugiyama et al., 2008; Nguyen et al., 2010), and the density-ratio
matching methods under the squared-loss called least-squares importance fitting (LSIF)
and unconstrained LSIF (uLSIF) (Kanamori et al., 2009a). These methods have been
shown to compare favorably with naive kernel density estimation through extensive ex-
periments.

The success of these direct density-ratio estimation methods could be intuitively un-
derstood through Vapnik’s principle (Vapnik, 1998): “When solving a problem of interest,
one should not solve a more general problem as an intermediate step”. The support vec-
tor machine would be a successful example following this principle—instead of estimating
the data generation model, it directly models the decision boundary which is simpler and
sufficient for pattern recognition. In the current context, estimating the densities is more
general than estimating the density ratio since knowing the two densities implies knowing
the ratio, but not vice versa (Figure 1). Thus directly estimating the density ratio would
be more promising than density ratio estimation via density estimation.

However, density ratio estimation in high-dimensional cases is still challenging even
when the ratio is estimated directly without going through density estimation. Recently,
an approach called Direct Density-ratio estimation with Dimensionality reduction (D3)
has been proposed (Sugiyama et al., 2010a). The basic idea of D3 is the following two-
step procedure: First a subspace in which the numerator and denominator densities are
significantly different (called the hetero-distributional subspace) are identified, and then
density ratio estimation is performed in this subspace. The rationale behind this approach
is that, in practice, the distribution change does not occur in the entire space, but is
often confined in a subspace. For example, in non-stationarity adaptation scenarios, the
distribution change often occurs only for some attributes and other variables are stable; in
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outlier detection scenarios, only a small number of attributes would cause a data sample
to be an outlier.

In the D3 algorithm, the hetero-distributional subspace is identified by searching a
subspace in which samples drawn from the two distributions (i.e., the numerator and the
denominator of the ratio) are separated from each other—this search is carried out in
a computationally efficient manner using a supervised dimensionality reduction method
called local Fisher discriminant analysis (LFDA) (Sugiyama, 2007). Then, within the
identified hetero-distributional subspace, a direct density-ratio estimation method called
unconstrained least-squares importance Fitting (uLSIF)—which was shown to be com-
putationally efficient (Kanamori et al., 2009a) and numerically stable (Kanamori et al.,
2009b)—is employed for obtaining the final density-ratio estimator. Through experi-
ments, this D3 procedure (which we refer to as D3-LFDA/uLSIF) was shown to improve
the performance in high-dimensional cases.

Although the framework of D3 is promising, the above D3-LFDA/uLSIF method pos-
sesses two fundamental weaknesses: the restrictive definition of the hetero-distributional
subspace and the limiting ability of its search method. More specifically, the component
inside the hetero-distributional subspace and its complementary component are assumed
to be statistically independent in the original formulation (Sugiyama et al., 2010a). How-
ever, this assumption is rather restrictive and may not be fulfilled in practice. Also, in
the above D3 procedure, the hetero-distributional subspace is identified by searching a
subspace in which samples drawn from the numerator and denominator distributions are
separated from each other. If samples from the two distributions are separable, the two
distributions would be significantly different. However, the opposite may not be always
true, i.e., non-separability does not necessarily imply that the two distributions are dif-
ferent (consider two similar distributions with the common support). Thus LFDA (and
any other supervised dimensionality reduction methods) does not necessarily identify the
correct hetero-distributional subspace.

The goal of this paper is to give a new procedure of D3 that can overcome the above
weaknesses. First, we adopt a more general definition of the hetero-distributional sub-
space. More precisely, we remove the independence assumption between the component
inside the hetero-distributional subspace and its complementary component. This allows
us to apply the concept of D3 to a wider class of problems. However, this general def-
inition in turn makes the problem of searching the hetero-distributional subspace more
challenging—supervised dimensionality reduction methods for separating samples drawn
from the two distributions cannot be used anymore, but we need an alternative method
that identifies the largest subspace such that the two conditional distributions are equiv-
alent in its complementary subspace.

We prove that the hetero-distributional subspace can be identified by finding a sub-
space in which two marginal distributions are maximally different under the Pearson
divergence, which is a squared-loss variant of the Kullback-Leibler divergence and is an
instance of the f -divergences (Ali & Silvey, 1966; Csiszár, 1967). Then we propose a
new method, which we call Least-squares Hetero-distributional Subspace Search (LHSS),
for searching a subspace such that the Pearson divergence between two marginal distri-
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� Naïve density estimation

� Direct density-ratio estimation (the above two steps are merged into a single process)

� Direct density-ratio estimation with dimensionality reduction (D3-LFDA/uLSIF)

� Proposed approach: Direct density-ratio estimation with dimensionality reduction    
(D3-LHSS; the above two steps are merged into a single process)
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Figure 2: Existing and proposed density-ratio estimation approaches.

butions are maximized. An advantage of the LHSS method is that the subspace search
(divergence estimation within a subspace) is carried out also using the density-ratio es-
timation method uLSIF. Thus the two steps in the D3 procedure (first identifying the
hetero-distributional subspace and then estimating the density ratio within the subspace)
are merged into a single step. Thanks to this, the final density-ratio estimator can be au-
tomatically obtained without additional computation. We call the combined single-shot
density-ratio estimation procedure D3 via LHSS (D3-LHSS). Through experiments, we
show that the weaknesses of the existing approach can be successfully overcome by the
D3-LHSS approach.

Relation among the existing and proposed density-ratio estimation methods is sum-
marized in Figure 2.

2 Formulation of Density-ratio Estimation Problem

In this section, we formulate the problem of density ratio estimation and review a relevant
density-ratio estimation method. We briefly summarize possible usage of density ratios
in various data processing tasks in Appendix A.
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2.1 Problem Formulation

Let D (⊂ Rd) be the data domain and suppose we are given independent and identi-
cally distributed (i.i.d.) samples {xnu

i }nnu
i=1 from a distribution with density pnu(x) and

i.i.d. samples {xde
j }

nde
j=1 from another distribution with density pde(x). We assume that

the latter density pde(x) is strictly positive, i.e.,

pde(x) > 0 for all x ∈ D.

The problem we address in this paper is to estimate the density ratio

r(x) :=
pnu(x)

pde(x)

from samples {xnu
i }nnu

i=1 and {xde
j }

nde
j=1. The subscripts ‘nu’ and ‘de’ denote ‘numerator’ and

‘denominator’, respectively.

2.2 Directly Estimating Density Ratios by Unconstrained
Least-squares Importance Fitting (uLSIF)

As described in Appendix A, density ratios are useful in various data processing tasks.
Since the density ratio is usually unknown and needs to be estimated from data, methods
of estimating the density ratio have been actively explored recently (Qin, 1998; Cheng &
Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al.,
2009a). Here, we briefly review a direct density-ratio estimation method called uncon-
strained least-squares importance fitting (uLSIF) proposed by Kanamori et al. (2009a).
For convenience in later sections, we replace the symbol x with u, i.e., let us consider the
problem of estimating the density ratio

r(u) :=
pnu(u)

pde(u)

from the i.i.d. samples {unu
i }nnu

i=1 and {ude
j }

nde
j=1.

2.2.1 Linear Least-squares Estimation of Density Ratios

Let us model the density ratio r(u) by the following linear model:

r̂(u) :=
b∑
ℓ=1

αℓψℓ(u),

where

α := (α1, α2, . . . , αb)
⊤
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are parameters to be learned from data samples, b denotes the number of parameters, ⊤

denotes the transpose of a matrix or a vector, and {ψℓ(u)}bℓ=1 are basis functions such
that

ψℓ(u) ≥ 0 for all u and for ℓ = 1, 2, . . . , b.

Note that b and {ψℓ(u)}bℓ=1 could be dependent on the samples {unu
i }nnu

i=1 and {ude
j }

nde
j=1,

meaning that kernel models are also allowed. We explain how the basis functions
{ψℓ(u)}bℓ=1 are designed in Section 2.2.2.

The parameters {αℓ}bℓ=1 in the model r̂(u) are determined so that the following squared
error J0 is minimized:

J0(α) :=
1

2

∫
(r̂(u)− r(u))2 pde(u)du

=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du+

1

2

∫
r(u)pnu(u)du,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) :=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du. (1)

Note that the same objective function can be obtained via the Legendre-Fenchel duality
of a divergence (Nguyen et al., 2010).

Approximating the expectations in J by empirical averages, we obtain

Ĵ(α) :=
1

2nde

nde∑
j=1

r̂(ude
j )2 − 1

nnu

nnu∑
i=1

r̂(unu
i )

=
1

2
α⊤Ĥα− ĥ

⊤
α,

where Ĥ is the b× b matrix with the (ℓ, ℓ′)-th element

Ĥℓ,ℓ′ :=
1

nde

nde∑
j=1

ψℓ(u
de
j )ψℓ′(u

de
j ), (2)

and ĥ is the b-dimensional vector with the ℓ-th element

ĥℓ :=
1

nnu

nnu∑
i=1

ψℓ(u
nu
i ). (3)

Now the optimization problem is formulated as follows.

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+

λ

2
α⊤α

]
, (4)
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where a penalty term λα⊤α/2 is included for regularization purposes, and λ (≥ 0) is a
regularization parameter that controls the strength of regularization. It is easy to confirm
that the solution α̂ can be analytically computed as

α̂ = (Ĥ + λIb)
−1ĥ, (5)

where Ib is the b-dimensional identity matrix. Thanks to this analytic-form expression,
uLSIF is computationally efficient compared with other density-ratio estimators which
involve non-linear optimization (Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007;
Bickel et al., 2007; Sugiyama et al., 2008; Nguyen et al., 2010).

In the original uLSIF paper (Kanamori et al., 2009a), the above solution is further
modified as

α̂ℓ ←− max(0, α̂ℓ).

This modification may improve the estimation accuracy in finite sample cases since the
true density ratio is non-negative. Even so, we still use Eq.(5) as it is since it is differen-
tiable with respect to U , where u = Ux. This differentiability will play a crucial role in
the next section. Note that, even without the above round-up modification, the solution
is guaranteed to converge to the optimal vector asymptotically both in parametric and
non-parametric cases (Kanamori et al., 2009a; Kanamori et al., 2009b). Thus omitting
the above modification step may not have a strong effect.

It was theoretically shown that uLSIF possesses superior theoretical properties in
statistical convergence and numerical stability (Kanamori et al., 2009a; Kanamori et al.,
2009b).

2.2.2 Basis Function Design

The performance of uLSIF depends on the choice of the basis functions {ψℓ(u)}bℓ=1. As
explained below, the use of Gaussian basis functions would be reasonable:

r̂(u) =
nnu∑
ℓ=1

αℓK(u,unu
ℓ ),

where K(u,u′) is the Gaussian kernel with kernel width σ (> 0):

K(u,u′) = exp

(
−∥u− u′∥2

2σ2

)
.

By definition, the density ratio r(u) tends to take large values if pnu(u) is large and
pde(u) is small; conversely, r(u) tends to be small (i.e., close to zero) if pnu(u) is small
and pde(u) is large. When a non-negative function is approximated by a Gaussian kernel
model, many kernels may be needed in the region where the output of the target function
is large; on the other hand, only a small number of kernels would be enough in the region
where the output of the target function is close to zero (see Figure 3). Following this
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Figure 3: Heuristic of Gaussian kernel allocation.

heuristic, we allocate many kernels in the region where pnu(u) takes large values, which
may be approximately achieved by setting the Gaussian centers at {unu

i }nnu
i=1.

Alternatively, we may locate (nnu + nde) Gaussian kernels at both {unu
i }nnu

i=1 and
{ude

j }
nde
j=1. However, in our preliminary experiments, this did not further improve the

performance, but slightly increased the computational cost. When nnu is very large, just
using all the test input points {unu

i }nnu
i=1 as Gaussian centers is already computationally

rather demanding. To ease this problem, a subset of {unu
i }nnu

i=1 may be used as Gaussian
centers for computational efficiency, i.e., for a prefixed b (∈ {1, 2, . . . , nnu}), we use

r̂(u) =
b∑
ℓ=1

αℓK(u, cℓ),

where {cℓ}bℓ=1 are template points randomly chosen from {unu
i }nnu

i=1 without replacement.
The performance of uLSIF depends on the kernel width σ and the regularization

parameter λ. Model selection of uLSIF is possible based on cross-validation (CV) with
respect to the error criterion (1) (Kanamori et al., 2009a).

3 Direct Density-ratio Estimation with Dimension-

ality Reduction

Although uLSIF was shown to be a useful density ratio estimation method (Kanamori
et al., 2009a), estimating the density ratio in high-dimensional spaces is still challenging.
In this section, we propose a new method of direct density-ratio estimation that involves
dimensionality reduction.

3.1 Hetero-distributional Subspace

Our basic idea is to first find a low-dimensional subspace in which the two densities are
significantly different from each other, and then perform density ratio estimation only
in this subspace. Although a similar framework has been explored in Sugiyama et al.
(2010a), the current formulation is substantially more general than the previous approach,
as explained below.
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Let u be an m-dimensional vector (1 ≤ m ≤ d) and v be a (d−m)-dimensional vector
defined as [

u

v

]
:=

[
U

V

]
x,

where U is an m × d matrix and V is a (d − m) × d matrix. In order to ensure the
uniqueness of the decomposition, we assume (without loss of generality) that the row
vectors of U and V form an orthonormal basis, i.e., U and V correspond to “projection”
matrices that are orthogonally complementary to each other (see Figure 4). Then the two
densities pnu(x) and pde(x) can be decomposed as

pnu(x) = pnu(v|u)pnu(u),
pde(x) = pde(v|u)pde(u).

The key theoretical assumption which forms the basis of our proposed algorithm is
that the conditional densities pnu(v|u) and pde(v|u) agree with each other, i.e., the two
densities pnu(x) and pde(x) are decomposed as

pnu(x) = p(v|u)pnu(u),
pde(x) = p(v|u)pde(u),

where p(v|u) is the common conditional density. This assumption implies that the
marginal densities of u are different, but the conditional density of v given u is com-
mon to pnu(x) and pde(x). Then the density ratio is simplified as

r(x) =
pnu(u)

pde(u)
=: r(u).

Thus, the density ratio does not have to be estimated in the entire d-dimensional space,
but it is sufficient to estimate the ratio only in the m-dimensional subspace specified by
U .

Below, we will use the term, the hetero-distributional subspace, for indicating the
subspace specified by U in which pnu(u) and pde(u) are different. More precisely, let S
be a subspace specified by U and V such that

S = {U⊤Ux | pnu(v|u) = pde(v|u), u = Ux, v = V x}.

Then the hetero-distributional subspace is defined as the intersection of all subspaces
S. Intuitively, the hetero-distributional subspace is the ‘smallest’ subspace specified by
U such that pnu(v|u) and pde(v|u) agree with each other. We refer to the orthogonal
complement of the hetero-distributional subspace as the homo-distributional subspace (see
Figure 4).

This formulation is a generalization of the one proposed in Sugiyama et al. (2010a) in
which the components in the hetero-distributional subspace and its complimentary sub-
space are assumed to be independent of each other. On the other hand, we do not impose
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Hetero-distributional subspace

∈

pnu v|u pde v|u p v|u

| |

pnu u � pde u

̂
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(m−d)×d

̂

∈

v ∈ R
m−d

∈

x ∈ R
d

∈

U ∈ R
m×d

∈

u ∈ R
m

Homo-distributional subspace

Figure 4: Hetero-distributional subspace.

such an independence assumption in the current paper. As will be demonstrated in Sec-
tion 4.1, this generalization has a remarkable effect in extending the range of applications
of direct density-ratio estimation with dimensionality reduction.

For the moment, we assume that the true dimensionalitym of the hetero-distributional
subspace is known. Later, we explain how m is estimated from data.

3.2 Estimating Pearson Divergence Using uLSIF

Here, we introduce a criterion for hetero-distributional subspace search and how it is
estimated from data.

We use the Pearson divergence (PD) as our criterion for evaluating the discrepancy
between two distributions. PD is a squared-loss variant of the Kullback-Leibler divergence
(Kullback & Leibler, 1951), and is an instance of the f -divergences, which are also known
as the Csiszár f -divergences (Csiszár, 1967) or the Ali-Silvey distances (Ali & Silvey,
1966). PD from pnu(x) to pde(x) is defined and expressed as

PD[pnu(x), pde(x)] :=
1

2

∫ (
pnu(x)

pde(x)
− 1

)2

pde(x)dx

=
1

2

∫
pnu(x)

pde(x)
pnu(x)dx−

1

2
.

PD[pnu(x), pde(x)] vanishes if and only if pnu(x) = pde(x).
The following lemma (called the “data processing” inequality) characterizes the hetero-

distributional subspace in terms of PD.

Lemma 1 Let

PD[pnu(u), pde(u)] =
1

2

∫ (
pnu(u)

pde(u)
− 1

)2

pde(u)du

=
1

2

∫
pnu(u)

pde(u)
pnu(u)du−

1

2
. (6)
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(constant)

�

pnu x , pde x

pnu u , pde u

)

∫
(

pnu x

pde x

−

pnu u

pde u

)2

pde x x

Figure 5: Since PD[pnu(x), pde(x)] is constant, minimizing 1
2

∫ (pnu(x)
pde(x)

− pnu(u)
pde(u)

)2
pde(x)dx

is equivalent to maximizing PD[pnu(u), pde(u)].

Then we have

PD[pnu(x), pde(x)]− PD[pnu(u), pde(u)] =
1

2

∫ (
pnu(x)

pde(x)
− pnu(u)

pde(u)

)2

pde(x)dx (7)

≥ 0.

A proof of the above lemma (for a class of f -divergences) is provided in Ap-
pendix B. The right-hand side of Eq.(7) is non-negative, and it vanishes if and only
if pnu(v|u) = pde(v|u). Since PD[pnu(x), pde(x)] is a constant with respect to U , max-
imizing PD[pnu(u), pde(u)] with respect to U leads to pnu(v|u) = pde(v|u) (Figure 5).
That is, the hetero-distributional subspace can be characterized as the maximizer1 of
PD[pnu(u), pde(u)].

Although the hetero-distributional subspace can be characterized as the maximizer of
PD[pnu(u), pde(u)], we cannot directly find the maximizer since pnu(u) and pde(u) are un-
known. Here, we utilize a direct density-ratio estimator uLSIF (see Section 2.2) for approx-
imating PD[pnu(u), pde(u)] from samples. Let us replace the density ratio pnu(u)/pde(u)
in Eq.(6) by a density ratio estimator r̂(u). Approximating the expectation over pnu(u)
by an empirical average over {unu

i }nnu
i=1, we have the following PD estimator.

P̂D[pnu(u), pde(u)] :=
1

2nnu

nnu∑
i=1

r̂(unu
i )− 1

2
.

Since uLSIF was shown to be consistent (i.e., the solution converges to the optimal
value) both in parametric and non-parametric cases (Kanamori et al., 2009a; Kanamori

et al., 2009b), P̂D would be a consistent estimator of the true PD.

1As shown in Appendix B, the data processing inequality holds not only for PD, but also for any
f -divergences. Thus the characterization of the hetero-distributional subspace is not limited to PD, but
is applicable to all f -divergences.
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3.3 Least-squares Hetero-distributional Subspace Search
(LHSS)

Given the uLSIF-based PD estimator P̂D[pnu(u), pde(u)], our next task is to find a max-

imizer of P̂D[pnu(u), pde(u)] with respect to U , and identify the hetero-distributional
subspace (cf. the data processing inequality given in Lemma 1). We call this procedure
Least-squares Hetero-distributional Subspace Search (LHSS).

We may employ various optimization techniques to find a maximizer of
P̂D[pnu(u), pde(u)]. Here we describe several possibilities.

3.3.1 Plain Gradient Algorithm

A gradient ascent algorithm would be a fundamental approach to non-linear smooth
optimization. We utilize the following lemma.

Lemma 2 The gradient of P̂D[pnu(u), pde(u)] with respect to U is expressed as

∂P̂D

∂U
=

b∑
ℓ=1

α̂ℓ
∂ĥℓ
∂U
− 1

2

b∑
ℓ,ℓ′=1

α̂ℓα̂ℓ′
∂Ĥℓ,ℓ′

∂U
, (8)

where α̂ is given by Eq.(5) and

∂ĥℓ
∂U

=
1

nnu

nnu∑
i=1

∂ψℓ(u
nu
i )

∂U
, (9)

∂Ĥℓ,ℓ′

∂U
=

1

nde

nde∑
j=1

(
∂ψℓ(u

de
j )

∂U
ψℓ′(u

de
j ) + ψℓ(u

de
j )
∂ψℓ′(u

de
j )

∂U

)
, (10)

∂ψℓ(u)

∂U
= − 1

σ2
(u− cℓ)(x− c′ℓ)

⊤ψℓ(u). (11)

c′ℓ (∈ Rd) is a pre-image of cℓ (∈ Rm):

cℓ = Uc′ℓ.

A proof of the above lemma is provided in Appendix C. Note that {α̂ℓ}bℓ=1 in Eq.(8)

depend on Û through Ĥ and ĥ in Eq.(5), which was taken into account when deriving
the gradient (see Appendix C). A plain gradient update rule is then given as

U ←− U + t
∂P̂D

∂U
,

where t (> 0) is a learning rate. t may be chosen in practice by some approximate line
search method such as Armijo’s rule (Patriksson, 1999) or backtracking line search (Boyd
& Vandenberghe, 2004).

A naive gradient update does not necessarily fulfill the orthonormality UU⊤ = Im,
where Im is the m-dimensional identity matrix. Thus, after every gradient step, we
need to orthonormalize U by, e.g., the Gram-Schmidt process (Golub & Loan, 1996) to
guarantee its orthonormality. However, this may be rather time-consuming.
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3.3.2 Natural Gradient Algorithm

In the Euclidean space, the ordinary gradient ∂P̂D
∂U

gives the steepest direction. On the
other hand, in the current setup, the matrix U is restricted to be a member of the Stiefel
manifold Sdm(R):

Sdm(R) := {U ∈ Rm×d | UU⊤ = Im}.

On a manifold, it is known that, not the ordinary gradient, but the natural gradient
(Amari, 1998) gives the steepest direction. The natural gradient ∇P̂D(U) at U is the

projection of the ordinary gradient ∂P̂D
∂U

onto the tangent space of Sdm(R) at U .
If the tangent space is equipped with the canonical metric, i.e., for any G and G′ in

the tangent space,

⟨G,G′⟩ = 1

2
tr
(
G⊤G′) , (12)

the natural gradient is given by

∇P̂D(U ) =
1

2

(
∂P̂D

∂U
−U

∂P̂D

∂U

⊤

U

)
.

Then the geodesic from U to the direction of the natural gradient ∇P̂D(U ) over Sdm(R)
can be expressed using t ∈ R as

U t := U exp

{
t

(
U⊤∂P̂D

∂U
− ∂P̂D

∂U

⊤

U

)}
,

where ‘exp’ for a matrix denotes the matrix exponential, i.e., for a square matrix T ,

exp(T ) :=
∞∑
k=0

1

k!
T k. (13)

Thus, line search along the geodesic in the natural gradient direction is equivalent to
finding a maximizer from

{U t | t ≥ 0}.

More details of geometric structure of the Stiefel manifold can be found in Nishimori and
Akaho (2005).

A natural gradient update rule is then given as

U ←− U t,

where t (> 0) is the learning rate. Since the orthonormality of U is automatically satisfied
in the natural gradient method, it would be computationally more efficient than the
plain gradient method. However, optimizing the m× d matrix U is still computationally
expensive.
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Hetero-distributional

subspace

Rotation across

the subspace

Rotation within

the subspace

Figure 6: In the hetero-distributional subspace search, rotation which changes the sub-
space only matters (the solid arrow); rotation within the subspace (dotted arrow) can be
ignored since this does not change the subspace. Similarly, rotation within the orthogonal
complement of the hetero-distributional subspace can also be ignored (not depicted in the
figure).

3.3.3 Givens Rotation

Another simple strategy for optimizing U is to rotate the matrix in the plane spanned
by two coordinate axes (which is called the Givens rotations ; see Golub & Loan, 1996).
That is, we randomly choose a two-dimensional subspace spanned by the i-th and j-th
variables, and rotate the matrix U within this subspace:

U ←− R
(i,j)
θ U ,

where R
(i,j)
θ is the rotation matrix by angle θ within the subspace spanned by the i-th

and j-th variables. R
(i,j)
θ is equal to the identity matrix except that its elements (i, i),

(i, j), (j, i), and (j, j) form a two-dimensional rotation matrix:[
[R

(i,j)
θ ]i,i [R

(i,j)
θ ]i,j

[R
(i,j)
θ ]j,i [R

(i,j)
θ ]j,j

]
=

[
cos θ sin θ

− sin θ cos θ

]
.

The rotation angle θ (0 ≤ θ ≤ π) may be optimized by some secant method (Press et al.,
1992).

As shown above, the update rule of the Givens rotations is computationally very
efficient. However, since the update direction is not optimized as in the plain/natural
gradient methods, the Givens-rotation method could be potentially less efficient as an
optimization strategy.

3.3.4 Subspace Rotation

Since we are searching for a subspace, rotation within the subspace does not have any
influence on the objective value P̂D (see Figure 6). This implies that the number of
parameters to be optimized in the gradient algorithm can be reduced.
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For a skew-symmetric matrix M (∈ Rd×d), i.e., M⊤ = −M , rotation of U can be
expressed as follows (Plumbley, 2005):

[
Im Om,(d−m)

]
exp(M )

[
U

V

]
,

where Od,d′ is the d× d′ matrix with all zeros, and exp(M) is the matrix exponential of
M (see Eq.(13)). M = Od,d (i.e., exp(Od,d) = Id) corresponds to no rotation. Here we
update U through the matrix M .

Let us adopt Eq.(12) as the inner product in the space of skew-symmetric matrices.
Then we have the following lemma.

Lemma 3 The derivative of P̂D with respect to M at M = Od,d is given by

∂P̂D

∂M

∣∣∣∣∣
M=Od,d

=

[
Om,m

∂P̂D
∂U

V ⊤

−(∂P̂D
∂U

V ⊤)⊤ O(d−m),(d−m)

]
. (14)

A proof of the above lemma is provided in Appendix D. The block structure of Eq.(14)
has an intuitive explanation: the non-zero off-diagonal blocks correspond to the rotation
angles between the hetero-distributional subspace and its orthogonal complement which
do affect the objective function P̂D. On the other hand, the derivative of rotation within
the two subspaces vanishes because this does not change the objective value. Thus the
variables to be optimized are only the angles corresponding to the non-zero off-diagonal

blocks ∂P̂D
∂U

V ⊤, which includes only m(d − m) variables. In contrast, the plain/natural
gradient algorithms optimize the matrix U , which contains md variables. Thus, when m
is large, the subspace rotation approach may be computationally more efficient than the
plain/natural gradient algorithms.

The gradient ascent update rule of M is given by

M ←− t
∂P̂D

∂M

∣∣∣∣∣
M=Od,d

,

where t is a step-size. Then U is updated as

U ←−
[
Im Om,(d−m)

]
exp(M )

[
U

V

]
.

The conjugate gradient method (Golub & Loan, 1996) may be used for the update of M .
Following the update of U , its counterpart V also needs to be updated accordingly

since the hetero-distributional subspace and its complement specified by U and V should
be orthogonal to each other (see Figure 4). This can be achieved by setting

V ←−
[
φ1 φ2 · · · φd−m

]⊤
,

where φ1,φ2, . . . ,φd−m are orthonormal basis vectors in the orthogonal complement of
the hetero-distributional subspace.



Direct Density-ratio Estimation with Dimensionality Reduction 17

3.4 Proposed Algorithm: D3-LHSS

Finally, we estimate the density ratio in the hetero-distributional subspace detected by
the above LHSS method.

A notable fact of the LHSS algorithm is that the density ratio estimator in the hetero-
distributional subspace has already been obtained during the hetero-distributional sub-
space search procedure. Thus, we do not need an additional estimation procedure—our
final solution is simply given by

r̂(x) =
b∑
ℓ=1

α̂ℓψℓ(Ûx),

where Û is a projection matrix obtained by the LHSS algorithm. {α̂ℓ}bℓ=1 are the learned

parameters for Û , which have been obtained and used when computing the gradient (see
Lemma 2).

This expression implies that if the dimensionality is not reduced (i.e., m = d), the
proposed method agrees with the original uLSIF (see Section 2.2). Thus, the proposed
method could be regarded as a natural extension of uLSIF to high-dimensional data.

Given the true dimensionalitym of the hetero-distributional subspace, we can estimate
the hetero-distributional subspace by the LHSS algorithm. When m is unknown, we may
choose the best dimensionality based on the CV score of the uLSIF estimator. We refer
to our proposed procedure D3-LHSS (D-cube LHSS; Direct Density-ratio estimation with
Dimensionality reduction via Least-squares Hetero-distributional Subspace Search).

The complete procedure of D3-LHSS is summarized in Figure 7. A MATLAB R⃝ im-
plementation of D3-LHSS is available from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/D3LHSS/’.

4 Experiments

In this section, we investigate the experimental performance of the proposed method.
We employ the subspace rotation algorithm explained in Section 3.3.4 in our D3-LHSS
implementation. In uLSIF, the number of parameters is fixed to b = 100; the Gaussian
width σ and the regularization parameter λ are chosen based on cross-validation.

4.1 Illustrative Examples

First, we illustrate how the D3-LHSS algorithm behaves.
As explained in Section 1, the previous D3 method, D3-LFDA/uLSIF (Sugiyama et al.,

2010a), has two potential weaknesses:

• The component u inside the hetero-distributional subspace and its complementary
component v are assumed to be statistically independent (cf. Section 3.1).
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Input: Two sets of samples {xnu
i }nnu

i=1 and {xde
j }

nde
j=1 on Rd

Output: Density ratio estimator r̂(x)

For each reduced dimension m = 1, 2, . . . , d
Initialize embedding matrix Um (∈ Rm×d);
Repeat until Um converges

Choose Gaussian width σ and regularization parameter λ by CV;
Update U by some optimization method (see Section 3.3);

end

Obtain embedding matrix Ûm and corresponding density-ratio estimator r̂m(x);
Compute its CV value as a function of m;

end
Choose the best reduced dimensionality m̂ that minimizes the CV score;
Set r̂(x) = r̂m̂(x);

Figure 7: Pseudo code of D3-LHSS.

• Separability of samples drawn from two distributions implies that the two distri-
butions are different, but non-separability does not necessarily imply that the two
distributions are equivalent. Thus, D3-LFDA/uLSIF may not be able to detect the
subspace in which the two distributions are different, but samples are not really
separable.

Here, through numerical examples, we illustrate these weaknesses of D3-LFDA/uLSIF,
and show these problems can be overcome by D3-LHSS. Let us consider two-dimensional
examples (i.e., d = 2), and suppose that the two densities pnu(x) and pde(x) are different
only in the one-dimensional subspace (i.e., m = 1) spanned by (1, 0)⊤:

x = (x(1), x(2))⊤ = (u, v)⊤,

pnu(x) = p(v|u)pnu(u),
pde(x) = p(v|u)pde(u).

Let nnu = nde = 1000. We use the following three datasets:

“Rather-separate” dataset (Figure 8):

p(v|u) = p(v) = N(v; 0, 12),

pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12),

where N(u;µ, σ2) denotes the Gaussian density with mean µ and variance σ2 with
respect to u. This is an easy and simple dataset for the purpose of illustrating the
usefulness of dimensionality reduction in density ratio estimation.
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“Highly-overlapped” dataset (Figure 9):

p(v|u) = p(v) = N(v; 0, 12),

pnu(u) = N(u; 0, 0.62),

pde(u) = N(u; 0, 1.22).

Since v is independent of u, D3-LFDA/uLSIF is still applicable in principle. How-
ever, unu and ude are highly overlapped and are not clearly separable. Thus this
dataset would be hard for D3-LFDA/uLSIF.

“Dependent” dataset (Figure 10):

p(v|u) = N(v;u, 12),

pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12).

In this dataset, the conditional distribution p(v|u) is common, but the marginal
distributions pnu(v) and pde(v) are different. Since v is not independent of u, this
dataset would be out of scope for D3-LFDA/uLSIF.

The true hetero-distributional subspace for the “rather-separate” dataset is depicted
by the dotted line in Figure 8(a); the solid line and the dashed line depict the hetero-
distributional subspace found by LHSS and LFDA with reduced dimensionality m = 1,
respectively. This graph shows that LHSS and LFDA both give very good estimates of
the true hetero-distributional subspace. In Figure 8(c), Figure 8(d), and Figure 8(e),
density ratio functions estimated by the plain uLSIF without dimensionality reduction,
D3-LFDA/uLSIF, and D3-LHSS for the “rather-separate” dataset are depicted. These
graphs show that both D3-LHSS and D3-LFDA/uLSIF give much better estimates of the
density ratio function (see Figure 8(b) for the profile of the true density ratio function)
than the plain uLSIF without dimensionality reduction. Thus, the usefulness of dimen-
sionality reduction in density ratio estimation was illustrated.

For the “highly-overlapped” dataset (Figure 9), LHSS gives a reasonable estimate of
the hetero-distributional subspace, while LFDA is highly erroneous due to less separability.
As a result, the density ratio function obtained by D3-LFDA/uLSIF does not reflect the
true redundant structure appropriately. On the other hand, D3-LHSS still works well.

Finally, for the “dependent” dataset (Figure 10), LHSS gives an accurate estimate of
the hetero-distributional subspace. However, LFDA gives a highly biased solution since
the marginal distributions pnu(v) and pde(v) are no longer common in the “dependent”
dataset. Consequently, the density ratio function obtained by D3-LFDA/uLSIF is highly
erroneous. In contrast, D3-LHSS still works very well for the “dependent” dataset.

The experimental results for the “highly-overlapped” and “dependent” datasets illus-
trated typical failure modes of LFDA, and LHSS was shown to be able to successfully
overcome these weaknesses of LFDA.
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Figure 8: “Rather-separate” dataset.
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Figure 9: “Highly-overlapped” dataset.
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Figure 10: “Dependent” dataset.
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4.2 Evaluation on Artificial Data

Next, we systematically compare the performance of the proposed D3-LHSS with that of
the plain uLSIF and D3-LFDA/uLSIF for high-dimensional artificial data.

For the three datasets used in the previous experiments, we increase the entire dimen-
sionality as d = 2, 3, . . . , 10 by adding dimensions consisting of standard normal noise.
The dimensionality of the hetero-distributional subspace is estimated based on the CV
score of uLSIF. We evaluate the error of a density ratio estimator r̂(x) by

Error :=
1

2

∫
(r̂(x)− r(x))2 pde(x)dx, (15)

which uLSIF tries to minimize (see Section 2.2).
The left graphs in Figure 11 show the density-ratio estimation error averaged over

100 runs as functions of the entire input dimensionality d. The best method in terms
of the mean error and comparable methods according to the t-test (Henkel, 1979) at the
significance level 1% are specified by ‘◦’; otherwise methods are specified by ‘×’.

These plots show that, while the error of the plain uLSIF increases rapidly as the entire
dimensionality d increases, that of the proposed D3-LHSS is kept moderate. Consequently,
the proposed method consistently outperforms the plain uLSIF. D3-LHSS is comparable
to D3-LFDA/uLSIF for the “rather-separate” dataset, and D3-LHSS significantly out-
performs D3-LFDA/uLSIF for the “highly-overlapped” and “dependent” datasets. Thus,
D3-LHSS was overall shown to compare favorably with the other approaches.

The choice of the dimensionality of the hetero-distributional subspace in D3-LHSS
and D3-LFDA/uLSIF is illustrated in the middle and right columns of Figure 11; the
darker the color is, the more frequently the corresponding dimensionality is chosen. The
plots show that D3-LHSS reasonably identifies the true dimensionality (m = 1 in the cur-
rent setup) for all the three datasets, while D3-LFDA/uLSIF performs well only for the
“rather-separate” dataset. This happened because D3-LFDA/uLSIF cannot find appro-
priate low-dimensional subspaces for the “highly-overlapped” and “dependent” datasets,
and therefore the CV scores misled the choice of subspace dimensionality.

4.3 Inlier-based Outlier Detection for Benchmark Data

Finally, we apply the proposed method to inlier-based outlier detection, i.e., finding out-
liers in an evaluation dataset based on another “model” dataset that only contains inliers
(see Section A.2 for details).

We use the USPS hand-written digit dataset taken from the UCI Machine Learning
Repository (Asuncion & Newman, 2007). We regard samples in the class ‘1’ as inliers
and samples in other classes as outliers. We randomly take 500 samples from the class
‘1’, and assign them to the model dataset. Then we randomly take 500 samples from
the class ‘1’ without overlap, and 25 samples from one of the other classes. From these
samples, density ratio estimation is performed and the outlier score is computed. Since
the USPS hand-written digit dataset contains 10 classes (i.e., from ‘0’ to ‘9’), we have 9
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Figure 11: Top: “Rather-separate” dataset. Middle: “Highly-overlapped” dataset. Bot-
tom: “Dependent” dataset. Left: Density-ratio estimation error (15) averaged over 100
runs as a function of the entire data dimensionality d. The best method in terms of the
mean error and comparable methods according to the t-test at the significance level 1%
are specified by ‘◦’; otherwise methods are specified by ‘×’. Center: The dimensionality
of the hetero-distributional subspace chosen by CV in LHSS. Right: The dimensionality
of the hetero-distributional subspace chosen by CV in LFDA.
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different tasks in total. The dimensionality of the samples is d = 256. For the D3-LHSS
and D3-LFDA/uLSIF methods, we choose the dimensionality of the hetero-distributional
subspace from m = 1, 2, . . . , 5 by cross-validation.

When evaluating the performance of outlier detection methods, it is important to take
into account both the detection rate (i.e., the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (i.e., the amount of true inliers an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric (Bradley, 1997).

The mean and standard deviation of AUC scores over 100 runs with different random
seeds are summarized in Table 1, where the best method in terms of the mean AUC
and comparable methods according to the t-test at the significance level 1% are speci-
fied by ‘◦’. The table shows that the proposed D3-LHSS tends to outperform the plain
uLSIF and D3-LFDA/uLSIF. It is also note worthy that D3-LFDA/uLSIF is actually
outperformed by the plain uLSIF—the baseline method. This is perhaps because the
numerator and denominator datasets are highly overlapped in outlier detection scenarios,
so D3-LFDA/uLSIF performs rather poorly (cf. Figure 9)

We also evaluate the performance of each method for an additional test dataset which
is not used for density ratio estimation. The test dataset consists of 100 randomly chosen
samples from the class ‘1’ and 5 randomly chosen samples from the outlier class (which
is the same as the evaluation dataset). The results are summarized in Table 2, showing
that the advantage of the proposed method is still valid in this more challenging scenario.

5 Conclusions

Density ratios are becoming quantities of interest in the machine learning and data mining
communities since it can be used for solving various important data processing tasks such
as non-stationarity adaptation, outlier detection, and feature selection (Sugiyama et al.,
2009; Sugiyama et al., 2011). In this paper, we tackled a challenging problem of estimating
density ratios in high-dimensional spaces, and gave a new procedure in the framework of
Direct Density-ratio estimation with Dimensionality reduction (D3; D-cube). The basic
idea of D3 is to identify a subspace called the hetero-distributional subspace, in which two
distributions (corresponding to the numerator and denominator of the density ratio) are
different.

In the existing approach of D3 (Sugiyama et al., 2010a), the hetero-distributional sub-
space is identified by finding a subspace in which samples drawn from the two distributions
are maximally separated from each other. To this end, supervised dimensionality reduc-
tion methods such as local Fisher discriminant analysis (LFDA) (Sugiyama, 2007) are
utilized. This approach was shown to work well when the components inside and outside
the hetero-distributional subspace are statistically independent, and samples drawn from
the two distributions are highly separable from each other in the hetero-distributional
subspace.
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Table 1: Outlier detection for the USPS hand-written digit dataset (d = 256). The
means (and standard deviations in the bracket) of AUC scores over 100 runs for the
evaluation dataset are summarized. The best method in terms of the mean AUC value
and comparable methods according to the t-test at the significance level 1% are specified
by ‘◦’. The means (and standard deviations in the bracket) of the chosen dimensionality
by cross-validation are also included in the table.

D3-LHSS D3-LFDA/uLSIF Plain uLSIF
Data AUC m̂ AUC m̂ AUC

Digit 2 ◦0.956 (0.035) 4.3 (0.8) 0.889 (0.104) 1.7 (1.1) 0.902 (0.038)
Digit 3 ◦0.967 (0.032) 4.4 (0.8) 0.868 (0.136) 1.8 (1.1) 0.921 (0.039)
Digit 4 ◦0.907 (0.061) 4.4 (0.9) 0.825 (0.104) 1.4 (0.6) 0.870 (0.036)
Digit 5 ◦0.965 (0.037) 4.3 (0.9) 0.882 (0.109) 1.6 (0.9) 0.906 (0.037)
Digit 6 ◦0.974 (0.022) 4.4 (0.8) 0.891 (0.090) 1.7 (1.1) 0.941 (0.029)
Digit 7 ◦0.924 (0.072) 4.4 (0.9) 0.642 (0.139) 2.3 (1.4) 0.878 (0.035)
Digit 8 ◦0.929 (0.051) 4.2 (1.0) 0.804 (0.147) 1.8 (1.1) 0.860 (0.033)
Digit 9 ◦0.942 (0.048) 4.6 (0.7) 0.790 (0.136) 1.8 (1.1) 0.892 (0.035)
Digit 0 ◦0.986 (0.019) 4.2 (0.9) 0.920 (0.071) 1.9 (0.8) ◦0.979 (0.019)

Average 0.950 (0.051) 4.4 (0.9) 0.835 (0.142) 1.8 (1.1) 0.905 (0.049)

Table 2: Outlier detection for the USPS hand-written digit dataset (d = 256). The means
(and standard deviations in the bracket) of AUC scores over 100 runs for unlearned test
dataset are summarized.

D3-LHSS D3-LFDA/uLSIF Plain uLSIF
Data AUC m̂ AUC m̂ AUC

Digit 2 ◦0.946 (0.047) 4.3 (0.8) 0.817 (0.132) 1.7 (1.1) 0.905 (0.044)
Digit 3 ◦0.953 (0.061) 4.4 (0.8) 0.780 (0.161) 1.8 (1.1) 0.924 (0.045)
Digit 4 ◦0.880 (0.094) 4.4 (0.9) 0.767 (0.121) 1.4 (0.6) ◦0.870 (0.063)
Digit 5 ◦0.954 (0.057) 4.3 (0,9) 0.813 (0.142) 1.6 (0.9) 0.906 (0.047)
Digit 6 ◦0.959 (0.052) 4.4 (0.8) 0.806 (0.141) 1.7 (1.1) 0.939 (0.040)
Digit 7 ◦0.909 (0.079) 4.4 (0.9) 0.689 (0.173) 2.3 (1.4) 0.877 (0.056)
Digit 8 ◦0.903 (0.078) 4.2 (1.0) 0.741 (0.173) 1.8 (1.1) 0.861 (0.049)
Digit 9 ◦0.932 (0.072) 4.6 (0.7) 0.793 (0.128) 1.8 (1.1) 0.894 (0.054)
Digit 0 ◦0.982 (0.039) 4.2 (0.9) 0.859 (0.098) 1.9 (0.8) ◦0.982 (0.022)

Average 0.935 (0.073) 4.4 (0.9) 0.785 (0.150) 1.8 (1.1) 0.906 (0.060)
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However, as illustrated in Section 4.1, violation of these conditions can cause signif-
icant performance degradation. This problem can be overcome in principle by finding a
subspace such that two conditional distributions are similar to each other in its comple-
mentary subspace. However, comparing conditional distributions is a cumbersome task.
To cope with this problem, we first proved that the hetero-distributional subspace can
be characterized as the subspace in which two marginal distributions are maximally dif-
ferent under the Pearson divergence (Lemma 1). Based on this lemma, we proposed a
new algorithm for finding the hetero-distributional subspace called Least-squares Hetero-
distributional Subspace Search (LHSS). Since a density-ratio estimation method is uti-
lized during hetero-distributional subspace search in the LHSS procedure, an additional
density-ratio estimation step is not needed after hetero-distributional subspace search.
Thus, two steps in the previous method (hetero-distributional subspace search followed
by density ratio estimation in the identified subspace) were merged into a single step (see
Figure 2). The proposed single-shot procedure, D3-LHSS (D-cube LHSS), was shown to
be able to overcome the limitations of the D3-LFDA/uLSIF approach through experi-
ments.

In the experiments in Section 4, we employed the subspace rotation algorithm ex-
plained in Section 3.3.4 in our D3-LHSS implementation. Although we experimentally
found that the subspace rotation algorithm is useful, this does not necessarily mean that
subspace rotation is always the best performing algorithm. Other approaches explained in
Section 3.3 may also be useful in some situations. Further investigating the optimization
issue is an important future work.

We gave a general proof of the data processing inequality (Lemma 1) for a class of f -
divergences (Ali & Silvey, 1966; Csiszár, 1967). Thus, the hetero-distributional subspace
is characterized not only by the Pearson divergence, but also by any f -divergences. Since
a framework of density ratio estimation for f -divergences has been provided in Nguyen
et al. (2010), an interesting future direction is to develop hetero-distributional subspace
search methods for general f -divergences.
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A Usage of Density Ratios in Data Processing

We are interested in estimating density ratios since they are useful in various data pro-
cessing tasks. Here, we briefly review possible usage of density ratios (Sugiyama et al.,
2009; Sugiyama et al., 2011).

A.1 Covariate Shift Adaptation

Covariate shift (Shimodaira, 2000) is a situation in supervised learning where input dis-
tributions change between the training and test phases, but the conditional distribution of
outputs given inputs remains unchanged. Extrapolation (i.e., prediction is made outside
the training region) would be a typical example of covariate shift. Standard learning tech-
niques such as maximum likelihood estimation are biased under covariate shift; the bias
caused by covariate shift can be asymptotically canceled by weighting the loss function ac-
cording to the importance2 (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller, 2005;
Sugiyama et al., 2007; Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe, 2010).

2The test input density over the training input density is referred to as the importance in the context
of importance sampling (Fishman, 1996).
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The basic idea of covariate shift adaptation is summarized in the following importance
sampling identity:

E
pnu(x)

[loss(x)] =

∫
loss(x)pnu(x)dx

=

∫
loss(x)r(x)pde(x)dx = E

pde(x)
[loss(x)r(x)].

That is, the expectation of a function loss(x) over pnu(x) can be computed by the
importance-weighted expectation of loss(x) over pde(x). Similarly, standard model selec-
tion criteria such as cross-validation (Stone, 1974; Wahba, 1990) or Akaike’s information
criterion (Akaike, 1974) lose their unbiasedness under covariate shift; proper unbiasedness
can be recovered by modifying the methods based on importance weighting (Shimodaira,
2000; Zadrozny, 2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007). Furthermore,
the performance of active learning or the experiment design, i.e., the training input dis-
tribution is designed by the user to enhance the generalization performance, could also
be improved by the use of the importance (Wiens, 2000; Kanamori & Shimodaira, 2003;
Sugiyama, 2006; Sugiyama & Nakajima, 2009).

Thus, the importance plays a central role in covariate shift adaptation, and density-
ratio estimation methods could be used for reducing the estimation bias under covariate
shift. Examples of successful real-world applications include brain-computer interface
(Sugiyama et al., 2007), robot control (Hachiya et al., 2009a; Akiyama et al., 2010;
Hachiya et al., 2009b), speaker identification (Yamada et al., 2010), age prediction from
face images (Ueki et al., 2010), wafer alignment in semiconductor exposure apparatus
(Sugiyama & Nakajima, 2009), and natural language processing (Tsuboi et al., 2009). A
similar importance-weighting idea also plays a central role in domain adaptation (Storkey
& Sugiyama, 2007) and multi-task learning (Bickel et al., 2008).

A.2 Inlier-based Outlier Detection

Let us consider an outlier detection problem of finding irregular samples in a dataset
(“evaluation dataset”) based on another dataset (“model dataset”) that only contains
regular samples. Defining the density ratio over the two sets of samples, we can see
that the density ratio values for regular samples are close to one, while those for outliers
tend to be significantly deviated from one. Thus, the density ratio value could be used
as an index of the degree of outlyingness (Hido et al., 2008; Smola et al., 2009; Hido
et al., 2010). Since the evaluation dataset usually has a wider support than the model
dataset, we regard the evaluation dataset as samples corresponding to pde(x) and the
model dataset as samples corresponding to pnu(x). Then outliers tend to have smaller
density-ratio values (i.e., close to zero). As such, density-ratio estimation methods could
be employed in outlier detection scenarios.

A similar idea could be used for change-point detection in time-series (Kawahara &
Sugiyama, 2009).
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A.3 Conditional Density Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). The goal is to estimate the conditional density q(y|x). When the
domain of x is continuous, conditional density estimation is not straightforward since a
naive empirical approximation cannot be used (Bishop, 2006; Takeuchi et al., 2009).

In the context of density ratio estimation, let us regard {(xk,yk)}nk=1 as samples
corresponding to the numerator of the density ratio and {xk}nk=1 as samples corresponding
to the denominator of the density ratio, i.e., we consider the density ratio defined by

r(x,y) :=
q(x,y)

q(x)
= q(y|x),

where q(x) is the marginal density of x. Then a density-ratio estimation method directly
gives an estimate of the conditional density (Sugiyama et al., 2010c).

When y is categorical, the same method can be used for probabilistic classification
(Sugiyama, 2010).

A.4 Mutual Information Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). Let us denote the marginal densities of x and y by q(x) and q(y),
respectively. Then mutual information MI(X,Y ) between random variables X and Y is
defined by

MI(X,Y ) :=

∫∫
q(x,y) log

q(x,y)

q(x)q(y)
dxdy,

which plays a central role in information theory (Cover & Thomas, 2006).
Let us regard {(xk,yk)}nk=1 as samples corresponding to the numerator of the density

ratio and {(xk,yk′)}nk,k′=1 as samples corresponding to the denominator of the density
ratio, i.e.,

r(x,y) :=
q(x,y)

q(x)q(y)
.

Then mutual information can be directly estimated using a density-ratio estimation
method (Suzuki et al., 2008; Suzuki et al., 2009b). General divergence functionals can
also be estimated in a similar way (Nguyen et al., 2010).

Mutual information can be used for measuring independence between random vari-
ables (Kraskov et al., 2004; Hulle, 2005) since it vanishes if and only if X and Y are
statistically independent. Thus density-ratio estimation methods are applicable, e.g.,
to variable selection (Suzuki et al., 2009a), independent component analysis (Suzuki &
Sugiyama, 2009), supervised dimensionality reduction (Suzuki & Sugiyama, 2010), and
causal inference (Yamada & Sugiyama, 2010).
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B Proof of Lemma 1

Here, let us consider the f -divergences (Ali & Silvey, 1966; Csiszár, 1967) and prove a
similar inequality for a broader class of divergences. An f -divergence is defined using a
convex function f such that f(1) = 0 as

If [pnu(x), pde(x)] :=

∫
pde(x)f

(
pnu(x)

pde(x)

)
dx.

The f -divergence is reduced to the Kullback-Leibler divergence if

f(t) = − log t,

and the Pearson divergence if

f(t) =
1

2
(t− 1)2.

Using Jensen’s inequality (Bishop, 2006), we have

If [pnu(x), pde(x)] =

∫∫
pde(v|u)pde(u)f

(
pnu(v|u)pnu(u)
pde(v|u)pde(u)

)
dudv

≥
∫
pde(u)f

(∫
pde(v|u)

pnu(v|u)pnu(u)
pde(v|u)pde(u)

dv

)
du

=

∫
pde(u)f

(
pnu(u)

pde(u)

∫
pnu(v|u)dv

)
du

=

∫
pde(u)f

(
pnu(u)

pde(u)

)
du

= If [pnu(u), pde(u)].

Thus, we have

If [pnu(x), pde(x)]− If [pnu(u), pde(u)] ≥ 0,

and the equality holds if and only if pnu(v|u) = pde(v|u).

C Proof of Lemma 2

For

F = (Ĥ + λIb)
−1,

P̂D[pnu(u), pde(u)] can be expressed as

P̂D[pnu(u), pde(u)] =
1

2

b∑
ℓ=1

α̂ℓĥℓ −
1

2

=
1

2

b∑
ℓ,ℓ′=1

ĥℓĥℓ′Fℓ,ℓ′ −
1

2
.
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Thus, its partial derivative with respect to U is given by

∂P̂D

∂U
=

b∑
ℓ=1

α̂ℓ
∂ĥℓ
∂U

+
1

2

b∑
ℓ,ℓ′=1

ĥℓĥℓ′
∂Fℓ,ℓ′

∂U
. (16)

Since

∂B−1

∂t
= −B−1∂B

∂t
B−1

holds for a square invertible matrix B (Petersen & Pedersen, 2008), it holds that

∂F

∂Uk,k′
= −(Ĥ + λIb)

−1 ∂Ĥ

∂Uk,k′
(Ĥ + λIb)

−1.

Then we have

b∑
ℓ,ℓ′=1

ĥℓĥℓ′

[
∂F

∂Uk,k′

]
ℓ,ℓ′

= −ĥ
⊤
(Ĥ + λIb)

−1 ∂Ĥ

∂Uk,k′
(Ĥ + λIb)

−1ĥ

= −
b∑

ℓ,ℓ′=1

α̂ℓα̂ℓ′

[
∂Ĥ

∂Uk,k′

]
ℓ,ℓ′

.

Substituting this into Eq.(16), we obtain Eq.(8). Eqs.(9) and (10) are clear from Eqs.(3)
and (2). Finally, we prove Eq.(11). The basis function ψℓ(u) can be expressed as

ψℓ(u) = ψℓ(Ux) = exp

(
−∥U (x− c′ℓ)∥2

2σ2

)
.

Since ∂a⊤A⊤Aa
∂A

= 2Aa⊤a (Petersen & Pedersen, 2008), we have

∂ψℓ(u)

∂U
= − 1

σ2
U(x− c′ℓ)(x− c′ℓ)

⊤ exp

(
−∥U(x− c′ℓ)∥2

2σ2

)
,

from which we obtain Eq.(11).

D Proof of Lemma 3

The proof we provide here essentially follows the argument in Plumbley (2005).
For

W =

[
U

V

]
, W 0 =

[
U 0

V 0

]
,
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rotation W from some W 0 can be expressed as follows (Plumbley, 2005):

W = exp(M)W 0, (17)

where M is some skew-symmetric matrix. Let us consider the space of skew-symmetric
matrices, and let E be an element in that space with unit length. Then the gradient of

a function P̂D(M ) with respect to M , ∂P̂D
∂M

, in this space is given as an element whose

inner product
⟨
∂P̂D
∂M

,E
⟩
is equal to the derivative of P̂D(M ) in the directionE (Plumbley,

2005). Thus, for M = tE with t being a scalar, we have

∂P̂D(tE)

∂t
=

⟨
∂P̂D(M )

∂M
,E

⟩
.

If we adopt Eq.(12) as the inner product of the space of skew-symmetric matrices, we
have

∂P̂D(tE)

∂t
=

1

2
tr

(
∂P̂D(M )

∂M
E⊤

)
. (18)

On the other hand, from Eq.(17) with M = tE, ∂W
∂t

can be expressed as follows
(Petersen & Pedersen, 2008):

∂W

∂t
= E exp(tE)W 0 = EW .

Then ∂P̂D(tE)
∂t

can be expressed as

∂P̂D(tE)

∂t
= tr

(
∂P̂D

∂W

∂W

∂t

⊤
)

= tr

(
∂P̂D

∂W
W⊤E⊤

)
. (19)

Since E is skew-symmetric, it can be expressed as

E =
1

2
E +

1

2
E =

1

2
E − 1

2
E⊤.

Substituting this into Eq.(19), we have

∂P̂D(tE)

∂t
=

1

2
tr

(
∂P̂D

∂W
W⊤E⊤

)
− 1

2
tr

(
∂P̂D

∂W
W⊤E

)

=
1

2
tr

(
∂P̂D

∂W
W⊤E⊤

)
− 1

2
tr

(
W

∂P̂D

∂W

⊤

E⊤

)

=
1

2
tr

((
∂P̂D

∂W
W⊤ −W

∂P̂D

∂W

⊤)
E⊤

)
. (20)
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Combining Eqs.(18) and (20), we have

∂P̂D

∂M
=
∂P̂D

∂W
W⊤ −W

∂P̂D

∂W

⊤

=

∂P̂D
∂U

U⊤ −U
(
∂P̂D
∂U

)⊤
∂P̂D
∂U

V ⊤ −U
(
∂P̂D
∂V

)⊤
∂P̂D
∂V

U⊤ − V
(
∂P̂D
∂U

)⊤
∂P̂D
∂V

V ⊤ − V
(
∂P̂D
∂V

)⊤
 . (21)

Eq.(11) implies that ∂ψℓ(u)
∂U

U⊤ is symmetric. Then Eqs.(8) and (9) imply that ∂ĥℓ
∂U

U⊤

and
∂Ĥℓ,ℓ′

∂U
U⊤ are also symmetric. Consequently, Eq.(10) imply that ∂P̂D

∂U
U⊤ is symmetric:

∂P̂D

∂U
U⊤ =

(
∂P̂D

∂U
U⊤

)⊤

= U
∂P̂D

∂U

⊤

.

Since the range of V is assumed to be orthogonal to the range of U (see Section 3.1), P̂D
is independent of V , and thus we have

∂P̂D

∂V
= O(d−m),d,

where Od,d′ is the d× d′ matrix with all zeros. Then Eq.(21) yields

∂P̂D

∂M
=

[
Om,m

∂P̂D
∂U

V ⊤

−(∂P̂D
∂U

V ⊤)⊤ O(d−m),(d−m)

]
,

which concludes the proof.


