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Abstract

In probabilistic PCA, the fully Bayesian esti-
mation is computationally intractable. To cope
with this problem, two types of approximation
schemes were introduced: the partially Bayesian
PCA (PB-PCA) where only the latent variables
are integrated out, and the variational Bayesian
PCA (VB-PCA) where the loading vectors are
also integrated out. The VB-PCA was proposed
as an improved variant of PB-PCA for enabling
automatic dimensionality selection (ADS). In
this paper, we investigate whether VB-PCA is re-
ally the best choice from the viewpoints of com-
putational efficiency and ADS. We first show that
ADS is not the unique feature of VB-PCA—PB-
PCA is also actually equipped with ADS. We fur-
ther show that PB-PCA is more advantageous in
computational efficiency than VB-PCA because
the global solution of PB-PCA can be computed
analytically. However, we also show the nega-
tive fact that PB-PCA results in a trivial solu-
tion in the empirical Bayesian framework. We
next consider a simplified variant of VB-PCA,
where the latent variables and loading vectors are
assumed to be mutually independent (while the
ordinary VB-PCA only requires matrix-wise in-
dependence). We show that this simplified VB-
PCA is the most advantageous in practice be-
cause its empirical Bayes solution experimen-
tally works as well as the original VB-PCA, and
its global optimal solution can be computed effi-
ciently in a closed form.
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by the author(s)/owner(s).

1. Introduction
Principal component analysis (PCA) is a well-established
technique for unsupervised dimensionality reduction
(Hotelling, 1933). A decade ago, PCA was given its
probabilistic interpretation as a latent variable model
called probabilistic PCA (PPCA) (Tipping & Bishop,
1999; Roweis & Ghahramani, 1999). In the first formula-
tion of PPCA, only the latent variables are integrated out
and the loading vectors are estimated by maximizing the
marginal likelihood (Tipping & Bishop, 1999). Since the
loading vectors are point-estimated, we refer to this ap-
proach as partially Bayesian PCA (PB-PCA) in the follow-
ing.

Subsequently, a variant of PPCA was proposed (Bishop,
1999b), which has the following two features:

(A) The fully Bayesian treatment: both the latent variables
and the loading vectors are integrated out. We refer to
this as fully Bayesian PCA (FB-PCA).

(B) The empirical Bayesian procedure: the prior variances
of the loading vectors can also be estimated from ob-
servation.

A notable advantage of FB-PCA is that it offers auto-
matic dimensionality selection (ADS). However, since ex-
act FB-PCA is computationally intractable, the Laplace ap-
proximation (Bishop, 1999b; Hoyle, 2008), Markov chain
Monte Carlo (Bishop, 1999b), and the variational approx-
imation (Bishop, 1999a) were used for approximate infer-
ence in practice. Among them, the variational approxima-
tion (which we refer to as VB-PCA) seems to be the most
popular choice.

The purpose of this paper is to revisit PPCA, and investi-
gate whether VB-PCA is really the best choice from the
viewpoints of computational efficiency and ADS, within a
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unified framework of free energy minimization under dif-
ferent constraints on the posterior distribution.

First, in defense of PB-PCA, we theoretically show the fol-
lowing two positive facts:

• Neither (A) nor (B) is essential for PPCA to induce
ADS. PB-PCA is actually equipped with ADS. Thus,
the original unique advantage of VB-PCA is lost.

• The global solution of PB-PCA can be computed very
efficiently in a closed form (which is an extension of
the result given in Tipping & Bishop (1999)). On the
other hand, VB-PCA requires a number of iterations
to find a local optimal solution (Bishop, 1999a).

These facts encourage the use of PB-PCA. However, we
next show that the following negative fact:

• PB-PCA has a critical drawback when hyperparame-
ters are learned from data in the empirical Bayesian
framework. More precisely, the empirical Bayes
method in PB-PCA results in a trivial solution (i.e.,
zero), and thus cannot be used in practice. On the
other hand, the empirical VB-PCA works well.

Based on this fact, we conclude that PB-PCA cannot be a
practical alternative to VB-PCA unfortunately.

We next consider a simplified variant of VB-PCA, where
the latent variables and loading vectors are mutually in-
dependent (cf. the latent variables and loading matrix are
matrix-wise independent in the original VB-PCA). We re-
fer to this method as simple-VB-PCA. For simple-VB-PCA,
we show the following two positive facts:

• The global optimal solution of simple-VB-PCA can
be computed analytically (which can be immedi-
ately obtained from the result given in Nakajima et al.
(2010)). On the other hand, the ordinary VB-PCA re-
quires a number of iterations to find a local optimal
solution (Bishop, 1999a).

• The mutual independence assumption of the latent
variables and loading vectors is not restrictive in prac-
tice. More specifically, we experimentally show that
the performance of simple-VB-PCA is comparable to
that of the original VB-PCA.

Based on these observations, we conclude that simple-VB-
PCA is the most attractive as a Bayesian PCA method.

This paper is organized as follows. In Section 2, we for-
mulate PPCA, and introduce approximation methods to
the fully Bayesian inference. In Section 3, we derive the

analytic-form solution for PB-PCA, and discuss its behav-
ior in comparison with VB-PCA. In Section 4, we intro-
duce a simplified variant of VB-PCA, and compare its be-
havior with the original VB-PCA. We further discuss vari-
ous issues of PPCA in Section 5, and conclude in Section 6.

2. Formulation
In this section, we formulate PPCA, and review approxi-
mation methods to the fully Bayesian inference. Then, we
describe the empirical Bayesian procedure.

2.1. Probabilistic PCA

PPCA assumes that the observation y ∈ RL is driven by a
latent vector ã ∈ RH as follows:

y = Bã + ε,

where B ∈ RL×H specifies the linear relationship be-
tween ã and y, and ε ∈ RL is a Gaussian noise sub-
ject to NL(0, σ2IL). Here, we denote by Nd(µ, Σ) the
d-dimensional Gaussian distribution with mean µ and co-
variance Σ, and by Id the d-dimensional identity matrix.
We assume that the latent vector ã is subject to NH(0, IH).

Suppose that we are given M observed samples
{y1, . . . , yM}, which are generated from the latent vectors
{ã1, . . . , ãM}. Define the following matrices:

Y=(y1, . . . , yM ) ∈ RL×M, A⊤=(ã1, . . . , ãM ) ∈ RH×M.

Then the PPCA model is written as follows1:

p(Y |A,B) ∝ exp
(
− 1

2σ2
∥Y − BA⊤∥2

Fro

)
, (1)

φA(A) ∝ exp
(
−1

2
∥A∥2

Fro

)
, (2)

φB(B) ∝ exp
(
−1

2
tr

(
BC−1

B B⊤))
, (3)

where ∥ · ∥Fro and tr(·) denote the Frobenius norm and the
trace of a matrix, respectively, and CB ∈ RH×H is a di-
agonal matrix with positive entries. The column vectors of
B = (b1, . . . , bH) correspond to the loading vectors, and
the diagonal elements of CB = diag(c2

b1
, . . . , c2

bH
) corre-

spond to the prior variances of the loading vectors. With-
out loss of generality, we assume that {cbh

} are arranged in
non-increasing order.

Note that the above PPCA model can be seen as Bayesian
matrix factorization (Salakhutdinov & Mnih, 2008), if U =
BA⊤ is regarded as a low rank matrix approximating Y .

1 Note that, for controlling the regularization effect and intro-
ducing an empirical Bayesian variant, we added the prior (3) on
B to the original PPCA formulation given in Tipping & Bishop
(1999). When the diagonal elements of CB tend to infinity, the
model (1)–(3) is reduced to the original formulation.
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Throughout the paper, we denote a column vector of a ma-
trix by a bold smaller letter, and a row vector by a bold
smaller letter with a tilde, namely,

Y = (y1, . . . , yM ) = (ỹ1, . . . , ỹL)⊤ ∈ RL×M ,

A = (a1, . . . , aH) = (ã1, . . . , ãM )⊤ ∈ RM×H ,

B = (b1, . . . , bH) =
(
b̃1, . . . , b̃L

)⊤
∈ RL×H .

2.2. Approximate Bayesian Inference

The Bayes posterior is given by

p(A,B|Y ) =
p(Y |A,B)φA(A)φB(B)

Z(Y )
, (4)

where Z(Y ) = 〈p(Y |A,B)〉φA(A)φB(B). Here, 〈·〉p denotes
the expectation over the distribution p. Since this expecta-
tion is intractable, it needs to be approximated. Here we
review methods of approximate Bayesian inference.

2.2.1. FREE ENERGY MINIMIZATION

First, we describe an approximation framework.

Let r(A, B), or r for short, be a trial distribution. The fol-
lowing functional with respect to r is called the free energy:

F (r|Y ) = −
〈

log
r(A,B)

p(Y |A,B)φA(A)φB(B)

〉
r(A,B)

(5)

= −
〈

log
r(A,B)

p(A,B|Y )

〉
r(A,B)

− log Z(Y ).

In the last equation, the first term is the Kullback-Leibler
(KL) distance from the trial distribution to the Bayes pos-
terior, and the second term is a constant. Therefore, mini-
mizing the free energy (5) amounts to finding a distribution
closest to the Bayes posterior in the sense of the KL dis-
tance.

A general approach to Bayesian approximate inference is
to find the minimizer of the free energy (5) with respect to
r in some restricted function space.

Let r̂ be such a minimizer. In the context of PCA, the solu-
tion is the subspace spanned by the estimated loading vec-
tors:

S = span
(
〈B〉

br(A,B)

)
, (6)

where span(·) denotes the subspace spanned by the column
vectors of a matrix. Let

Y =
H∑

h=1

γhωbh
ω⊤

ah
(7)

be the singular value decomposition of Y . In many meth-
ods, the PCA solution can be written in the following form:

S = span

(
H∑

h=1

θ(γh > γ
h
)ωbh

ω⊤
ah

)
, (8)

where θ(·) is the function taking one if the event is true and
zero otherwise, and γ

h
is a threshold.

Below, we review two types of approximation methods.

2.2.2. PARTIALLY BAYESIAN PCA (PB-PCA)

In the first formulation of PPCA by Tipping & Bishop
(1999), only the latent matrix A is integrated out, and the
loading matrix B is point-estimated. This amounts to re-
stricting the posterior to the following form:

rPB-A(A,B) = rPB-A
A (A)δ(B;B∗), (9)

where δ(B; B∗) denotes a (pseudo-)Dirac delta function of
B located at B = B∗.2

We refer to this method as PB-A-PCA since A is inte-
grated out. An analytic-form solution for PB-A-PCA when
{cbh

→ ∞} is given as follows (this proposition is obtained
by combing Eqs.(6) and (7) in Tipping & Bishop (1999).):

Proposition 1 (Tipping & Bishop, 1999) The PB-A-PCA
solution when {cbh

→ ∞} is given by Eq.(8) with the fol-
lowing threshold:

γPB-A
h

= σ
√

M. (10)

In the above formulation, A is integrated out and B is point-
estimated. On the other hand, we can naturally think of the
opposite variant, i.e., B is integrated out and A is point-
estimated (which we refer to as PB-B-PCA):

rPB-B(A,B) = δ(A;A∗)rPB-B
B (B). (11)

In this paper, we slightly extend the formulation by
Tipping & Bishop (1999) and allow the posterior to be cho-
sen from (9) or (11) that gives a smaller free energy. We call
this adaptive method partially Bayesian PCA (PB-PCA).

In Section 3, we derive an analytic-form solution of PB-
PCA for arbitrary {cbh

}.

2 By a pseudo-Dirac delta function, we mean an extremely

localized density function, e.g., δ(B; B∗) ∝ exp
“

− ∥B−B∗∥2
Fro

2c2

”

with a very small but strictly positive variance c2, such that its tail
effect can be neglected, while χB = −〈log δ(B; B∗)〉δ(B;B∗)

remains finite.
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2.2.3. VARIATIONAL BAYESIAN PCA (VB-PCA)

In the VB approximation, the independence between the
entangled parameter matrices A and B is assumed:

rVB(A,B) = rVB
A (A)rVB

B (B). (12)

With this constraint, an iterative algorithm for minimiz-
ing the free energy (5) was derived (Bishop, 1999a;
Lim & Teh, 2007).

The VB posterior can be written as

rVB(A,B)=
M∏

m=1

NH(ãm;µ
eam

, Σ
eA)

L∏
l=1

NH(b̃l; µ
ebl

, Σ
eB),

where the means and the covariances necessarily satisfy

µ
eam

=
Σ

eA

σ2

(
µ

eb1
, . . . , µ

ebL

)
ym, (13)

µ
ebl

=
Σ

eB

σ2

(
µ

ea1
, . . . , µ

eaM

)
ỹl, (14)

Σ
eA = σ2

(
L∑

l=1

(
µ

ebl
µ⊤

ebl
+ Σ

eB

)
+ σ2IH

)−1

, (15)

Σ
eB = σ2

(
M∑
l=1

(
µ

eam
µ⊤

eam
+ Σ

eA

)
+ σ2C−1

B

)−1

. (16)

We may obtain a local minimizer by iterating (13)–(16).
After convergence, the VB-PCA solution is given as

SVB = span
(
(µ

eb1
, . . . , µ

ebL
)⊤

)
.

2.3. Empirical Bayesian Procedure

PPCA has a hyperparameter CB in the prior (3), which con-
trols the sparsity of the result (i.e., the PCA dimensions).
A popular way to set the hyperparameter in the Bayesian
framework is again based on the minimization of the free
energy (5).

ĈB = argmin
CB

(
min

r
F (r; CB |Y )

)
.

We refer to this method as an empirical Bayes method.

3. Behavior of PB-PCA
Among the PPCA methods reviewed in the previous sec-
tion, VB-PCA seems to be a popular choice. The purpose
of this paper is to revisit PPCA, and investigate whether
VB-PCA is really the best choice from the viewpoints of
computational efficiency and automatic dimensionality se-
lection (ADS).

In this section, we investigate properties of PB-PCA.

3.1. Analytic-Form Solution for PB-PCA

Here, we derive an analytic-form solution for PB-PCA and
discuss its properties.

We first consider PB-A-PCA. Substituting Eq.(9) into
Eq.(5), we have

F (rPB-A
A , B∗|Y )=−

〈
log

rPB-A
A (A)

p(Y |A,B∗)φA(A)φB(B∗)

〉
rPB-A

A (A)

+χB

=−
〈

log
rPB-A

A (A)
p(A|Y,B∗)

〉
rPB-A

A (A)

− log Z(Y |B∗)φB(B∗) + χB ,

(17)

where

p(A|Y,B) =
p(Y |A,B)φA(A)

Z(Y |B)
, (18)

Z(Y |B) = 〈p(Y |A,B)〉φA(A) , (19)

χB = −〈log δ(B; B∗)〉δ(B;B∗). (20)

Note that Eq.(17) is a functional of rPB-A
A and B∗, and χB

is a constant with respect to them. Since only the first
term depends on rPB-A

A on which we impose no restriction,
Eq.(17) is minimized when

r̂PB-A
A (A) = p(A|Y,B∗) (21)

for any B∗. With Eq.(21), the first term in Eq.(17) vanishes,
and thus an estimator for B∗ is given by

B̂PB-A = argmin
B∗

F PB-A(B∗|Y ),

where

F PB-A(B|Y ) = − log Z(Y |B)φB(B) + χB . (22)

We call Eq.(22) the PB-A free energy.

Minimizing Eq.(22), we obtain the following solution.

Theorem 1 The PB-A-PCA solution is given by Eq.(8)
with the following threshold:

γPB-A
h

= σ
√

M + σ2/c2
bh

. (23)

When cbh
→ ∞, Eq.(23) converges to Eq.(10). Therefore,

Theorem 1 is an extension of Proposition 1 for arbitrary
{cbh

}.

The PB-B-PCA solution with the constraint (11) is simi-
larly obtained by minimizing the PB-B free energy:

F PB-B(A|Y ) = − log Z(Y |A)φA(A) + χA. (24)

The threshold for PB-B-PCA is similarly given by

γPB-B
h

= σ
√

L + σ2/c2
bh

. (25)

By comparing Eqs.(22) and (24), we obtain the following
lemma:
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Lemma 1 In PB-PCA, the constraint (9) is chosen when
M > L, and the constraint (11) is chosen when M < L.

Based on this, we can express the PB-PCA subspace ana-
lytically as follows (we can also derive the PB-PCA pos-
terior analytically, but we omit the details due to lack of
space):

Theorem 2 The PB-PCA solution is given by Eq.(8) with
the following threshold:

γPB
h

= σ
√

max(L,M) + σ2/c2
bh

. (26)

Thanks to Theorem 2, the solution of PB-PCA can be com-
puted analytically in a very efficient way. On the other
hand, VB-PCA requires a number of iterations to find a
local optimal solution (see Section 2.2.3). Thus, PB-PCA
is computationally more attractive than VB-PCA.

Theorem 2 also shows that PB-PCA has a thresholding ef-
fect, i.e., the components with singular values smaller than
γPB

h
are eliminated. Moreover, this thresholding effect re-

mains even when the prior is flat (cbh
→ ∞).3 Actually,

such a thresholding effect is also observed in the existing
work (see Proposition 1) for PB-A-PCA with cbh

→ ∞.
However, it was regarded as an artifact in the original pa-
per by Tipping & Bishop (1999).

Bishop (1999a) proposed VB-PCA (see Section 2.2.3) for
the purpose of enabling ADS. However, our analysis above
shows that PB-PCA also has the thresholding effect. We
further show in Section 5.2 that PB-PCA behaves similarly
to a simplified variant of VB-PCA.

3.2. Empirical PB-PCA

A critical drawback of PB-PCA appears when the hyper-
parameter CB is estimated from data. Specifically, the em-
pirical Bayesian procedure for PB-PCA always results in
the trivial solution, i.e., cbh

→ 0. This is because the first
term of the free energy (22), as well as (24), is not lower-
bounded (i.e., it tends to minus infinity). More generally, in
order to obtain a meaningful solution when a hyperparame-
ter is estimated through the empirical Bayes procedure, the
corresponding parameter must be integrated out.

Consequently, despite the existence of the ADS effect, PB-
PCA cannot be a practical alternative to VB-PCA unfortu-
nately.

3 This applies only to the case when the noise variance σ2

is strictly positive. When σ2 is unkown, the free energy min-
imization fails to estimate it in PB-PCA with cbh → ∞, be-
cause σ2 → 0 is the global minimizer (see Appendix A.2 in
Tipping & Bishop (1999)). We would say that it is essential for
inducing ADS to correctly estimate σ2 when it is unknown. When
cbh is finite, σ2 is estimated to be positive, although we experi-
mentally found that it tends to be underestimated.

4. Behavior of Simplified VB-PCA
(Simple-VB-PCA)

In this section, we introduce a simplified variant of VB-
PCA, and investigate its properties.

4.1. Analytic-Form Solution for simple-VB-PCA

In the context of collaborative filtering, Raiko et al. (2007)
proposed a simple VB iterative algorithm under the follow-
ing stronger decomposability constraint:

rsimple-VB(A,B) =
H∏

h=1

rsimple-VB
ah

(ah)rsimple-VB
bh

(bh). (27)

That is, all column-vectors of A and B are assumed to
be mutually independent. Under this stronger constraint,
Nakajima et al. (2010) derived the VB global solution in a
closed-form.

From their result, the following theorem can be immedi-
ately obtained.

Theorem 3 The simple-VB-PCA solution is given by
Eq.(8) with the following threshold:

γsimple-VB
h

= σ

√
κh +

√
κ2

h − LM, (28)

κh = (L + M)/2 + σ2/(2c2
bh

).

Theorem 3 shows that the solution of simple-VB-PCA can
be computed analytically in a very efficient way. On the
other hand, the ordinary VB-PCA (with matrix-wise inde-
pendence) requires a number of iterations to find a local op-
timal solution (see Section 2.2.3). Thus, simple-VB-PCA
is computationally more attractive than the ordinary VB-
PCA.

4.2. Simple Empirical VB-PCA (Simple-EVB-PCA)

As opposed to PB-PCA, the empirical Bayesian variant of
simple-VB-PCA is well-defined, and its global solution can
be obtained in a closed form as follows:

Theorem 4 The simple-EVB-PCA solution is given by
Eq.(8) with the following threshold:

γsimple-EVB
h

=

{
σ(
√

L +
√

M) if ∆h < 0,

∞ otherwise,
(29)

where

∆h = M log
( γh

Mσ2
γ̆simple-VB

h + 1
)

+ L log
( γh

Lσ2
γ̆simple-VB

h + 1
)

+
1
σ2

(
LMc̆2

bh
− 2γhγ̆simple-VB

h

)
,

c̆2
bh

=
τh +

√
τ2
h − 4LMσ4

2LM
, τh = γ2

h − (L + M)σ2.
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Figure 1. EVB-PCA vs. simple-EVB-PCA. Performance of the
PCA dimensionality selection is highly comparable to each other
(left), while simple-EVB-PCA is computationally more efficient
than EVB-PCA (right).

γ̆simple-VB
h = 〈∥ah∥∥bh∥〉

brsimple-VB(A,B) is the simple-VB solu-
tion for cbh

= c̆bh
.

Below, we experimentally show that the above analytic-
form solution of simple-VB-PCA works as well as the or-
dinary VB-PCA.

4.3. Experimental Comparison

In this section, we experimentally compare the perfor-
mance of EVB-PCA and simple-EVB-PCA on artificial
and real-world datasets. Through all the experiments, H
is set to be the full rank (H = min(L, M)), and the
noise variance σ2 is estimated based on the free energy
minimization, similarly to the hyperparameter estimation
through the empirical Bayes method (see Section 2.3).

In EVB-PCA, hyperparameters are updated in each itera-
tion as

c2
bh

= ∥µbh
∥2/L +

(
Σ

eB

)
hh

, (30)

which is obtained as a stationary point of the free energy
with respect to {c2

bh
} (Bishop, 1999a). The noise variance

σ2 is estimated by using the following update rule in each
iteration

σ2 =
∥Y −

∑H
h=1 µbh

µ⊤
ah
∥2

Fro

LM
+

∑L
l=1 µ⊤

ebl
Σ

eAµ
ebl

L

+

∑M
m=1 µ⊤

eam
Σ

eBµ
eam

M
+ tr

(
Σ

eAΣ
eB

)
, (31)

which is obtained again as a stationary point of the free
energy with respect to σ2 (Bishop, 1999a).

In simple-EVB-PCA, we use Theorem 4 combined with a
naive 1-dimensional search strategy over the free energy
for the estimation of σ2 (Nakajima et al., 2010).

The strong independence assumption of simple-VB-PCA
given in Eq.(27) naturally leads to the question, whether
simple-VB-PCA can provide accurate estimation when the
data has a correlated structure. To investigate this, we cre-
ated an artificial dataset having variances 5 and covariances

Table 1. Estimated effective data dimensions of real datasets.
bHEVB and bH simple-EVB denote the PCA dimensions estimated by
EVB-PCA and simple-EVB-PCA, respectively.

Data set M L bHEVB
bH simple-EVB

Chart 600 60 11 10
Glass 214 9 7 7
Wine 178 13 7 8
Optical Digits 5620 64 56 56
Satellite 6435 36 32 31
Segmentation 2310 19 12 13
Letter 20000 16 15 15

1 in the first H∗ directions, and variances 0.1 and no covari-
ance in the remaining L − H∗ directions.

Figure 1 shows the estimated PCA dimensions with varying
true dimension H∗. It can be observed that EVB-PCA and
simple-EVB-PCA have very similar dimension estimation
performance, while simple-EVB-PCA is computationally
more efficient than EVB-PCA4. We also performed similar
experiments with various settings (e.g., different levels of
correlation, different number of samples M , and different
dimensionality L), and empirically observed similar trends
to Figure 1.5

We we further tested both methods on seven datasets taken
from the UCI repository (Asuncion & Newman, 2007).
The specification of the dataset as well as the number of
PCA dimensions retained by EVB-PCA and simple-EVB-
PCA is shown in Table 1. As with the synthetic data, the
behavior of the two methods is very similar to each other.

In summary, we observed that the stronger independence
assumption (27) does not significantly change the perfor-
mance. Given that simple-EVB-PCA and EVB-PCA per-
form similarly, we conclude that simple-EVB-PCA is more
attractive than EVB-PCA because it has an analytic-form
solution that can be computed very efficiently.

5. Discussion
In this section, we further discuss various issues in several
PPCA methods, and give insights.

5.1. Maximum A Posteriori PCA (MAP-PCA)

For comparison purposes, we define the maximum a pos-
teriori PCA (MAP-PCA), where both A and B are point-

4 Note that slightly different hyperpriors are used in the orig-
inal EVB-PCA papers (Bishop, 1999a;b). We also tested them
and confirmed that they also behave similarly to the simple-EVB-
PCA.

5 We also observed that the iterative algorithm (Eqs.(2) and
(3) in Nakajima et al. (2010)) for simple-EVB-PCA gives similar
dimension estimation performance.
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Figure 2. Behavior of the thresholds, γsimple-VB
h

, γPB
h
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, and
γMAP
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. The noise variance is set to σ2 = 1.
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Figure 3. Behavior of the thresholds when the number M of sam-
ples is changed.

estimated. This corresponds to the posterior restricted to
the product of delta functions:

rMAP(A,B) = δ(A; A∗)δ(B; B∗). (32)

Its solution is given as follows.

Proposition 2 (Srebro et al., 2005) The MAP-PCA solu-
tion is given by Eq.(8) with the following threshold:

γMAP
h

= σ2/cbh
. (33)

When cbh
→ ∞, MAP-PCA is reduced to the classical

PCA, i.e., no automatic dimensionality selection (ADS).

5.2. Comparison between PB-A-PCA, PB-PCA, and
simple-VB-PCA

The threshold (26) becomes simpler when the prior is flat:

lim
cbh

→∞
γPB

h
= σ

√
max(L, M). (34)

Interestingly, the simple-VB-PCA solution agrees with the
PB-PCA solution under the flat prior:

lim
cbh

→∞
γsimple-VB

h
= σ

√
max(L, M). (35)

Below, we numerically investigate the behavior of the
PPCA thresholds in more general settings.

Figure 2 compares the thresholds of simple-VB-PCA (28),
PB-PCA (26), PB-A-PCA (23), and MAP-PCA (33) in
two situations. In the left graph (when the dimensional-
ity of the original space is L = 20 and the number of
samples is M = 50), PB-PCA and PB-A-PCA coincide,

and simple-VB-PCA behaves similarly to them. On the
other hand, MAP-PCA behaves differently. This is be-
cause of the effect of model-induced regularization (MIR)
(Nakajima et al., 2010), which indicates the fact that, when
the model is non-identifiable, even if the prior is almost
flat (cbh

→ ∞), Bayesian methods have a regularization
effect as long as (a part of) parameters are integrated out.
PB-PCA and VB-PCA belong to this class, but MAP-PCA
does not.

In the right graph (when L = 20 and M = 10), PB-PCA
and simple-VB-PCA behave almost identically. Although
PB-A-PCA also shows its MIR effect (i.e., the threshold
do not converge to zero even in the limit cbh

→ ∞), a
significant difference from simple-VB-PCA and PB-PCA
is observed.

Figure 3 shows how the number M of samples affects the
thresholds. In the limit cbh

→ ∞ (left graph), Eqs.(34)
and (35) together state that the solutions of PB-PCA and
simple-VB-PCA agrees with each other. PB-A-PCA also
gives the identical solution to them when M ≥ L. How-
ever, its behavior changes at M = L; the threshold of PB-
A-PCA smoothly goes down as M decreases, while those
of PB-PCA and simple-VB-PCA make a sudden turn and
becomes constant. The right graph in Figure 3 shows the
case with a non-flat prior (cbh

= 1), which also shows a
similar phenomenon.

A question is which is more desirable, simple-VB-
PCA/PB-PCA (which are with a sudden turn in the thresh-
old curve), or PB-A-PCA (which is with smooth behavior).
When M < L, PB-PCA and VB-PCA more strongly reg-
ularize the solutions than PB-A-PCA. We argue that the
behavior of PB-PCA and VB-PCA is more reasonable be-
cause of the following reason. Let us consider the case
where no driving latent variable exists, i.e., the true dimen-
sion is H∗ = 0. In this case, we merely observe pure noise,
and the average of the squared singular values of Y over all
the components is given by

〈tr(Y Y ⊤)〉N (0,σ2)

min(L,M)
= σ2 max(L,M).

Comparing this with the thresholds (34) and (35) of PB-
PCA and simple-VB-PCA, we find that they eliminate the
components with singular values equal to the average noise
contribution. The sudden turn in the threshold curve actu-
ally follows the behavior of the noise contribution, which
would be reasonable. In this sense, PB-A-PCA is subopti-
mal since it strongly overfits the noise when L ≫ M .

5.3. Changing Behavior of Simple-VB-PCA

In the left graph of Figure 3, the behavior of PB-PCA and
simple-VB-PCA suddenly changes at L = M . Here, we
theoretically investigate the reason for this phenomenon.
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Table 2. Properties of approximate PPCA methods. Upper meth-
ods have weaker constraints on the posterior distribution. ‘⃝’
means the method positively possesses the corresponding prop-
erty, ‘△’ means weakly, and ‘×’ means not.

Method
Automatic

dimensionality
selection

Empirical
Bayes

Analytic-form
solution

VB ⃝ ⃝ ×
simple-VB ⃝ ⃝ ⃝
PB ⃝ × ⃝
PB-A (PB-B) △ × ⃝
MAP × × ⃝

As Lemma 1 states, the PB-PCA posterior drastically
changes depending on L > M or L < M . This leads to the
sudden turn in the thresholding curve. We can show that a
similar effect also occurs in simple-VB-PCA, which is ex-
plained below. Let σsimple-VB

ah and σsimple-VB
bh

be the standard
deviations of the simple-VB posteriors of ∥ah∥ and ∥bh∥,
respectively. Then the following lemma holds:

Lemma 2 When cbh
→ ∞ and γh = γsimple-VB

h
, it holds

that

σsimple-VB
ah

σsimple-VB
bh

=


(M−L)

σ
√

M
+ o (1) = O (1) if M > L,

1
cbh

+ o(c−1
bh

) = O(c−1
bh

) if M = L,

σ
√

L
(L−M)c2

bh

+ o(c−2
bh

) = O(c−2
bh

) if M < L.

This lemma implies that with the (almost) flat prior, the
shape of the simple-VB posterior suddenly changes. More
specifically, the shape is spherical when M > L, while it
is strongly elliptical in the bh-space when M ≤ L.

6. Conclusion
In this paper, we revisited approximate Bayesian methods
in PPCA, which are summarized in Table 2.

Although VB-PCA is the most general approximate PPCA
method, it is computationally less efficient because it re-
quires a number of iterations to find a local optimal so-
lution. On the other hand, we showed by providing
an analytic-form solution that PB-PCA is computation-
ally more efficient (Section 3.1). The analytic-form so-
lution also showed that, despite the fact that VB-PCA
was proposed to induce automatic dimensionality selec-
tion (ADS), PB-PCA is already equipped with ADS. We
also numerically showed that PB-PCA behaves similarly to
simple-VB-PCA (Section 5.2). However, as shown in Sec-
tion 3.2, PB-PCA has a critical disadvantage that its empir-
ical Bayesian variant is practically useless.

On the other hand, simple-VB-PCA (whose ‘complexity’ is
between PB-PCA and VB-PCA) still has an analytic-form

solution (Section 4.1), and its empirical Bayesian version,
simple-EVB-PCA, also has an analytic-form solution (Sec-
tion 4.2). Experimentally, simple-EVB-PCA was shown to
perform similarly to the computationally more demanding
counterpart, EVB-PCA (Section 4.3). Based on these find-
ings, we concluded that simple-VB-PCA is the most attrac-
tive PPCA method.

Our future work is to extend the current discussion to more
complex models such as a mixture of PPCAs and missing
value estimation. Also, we will further investigate the role
of column-wise independence in simple-VB-PCA.
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