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Abstract

Information-maximization clustering learns
a probabilistic classifier in an unsupervised
manner so that mutual information between
feature vectors and cluster assignments is
maximized. A notable advantage of this
approach is that it only involves continu-
ous optimization of model parameters, which
is substantially easier to solve than dis-
crete optimization of cluster assignments.
However, existing methods still involve non-
convex optimization problems, and there-
fore finding a good local optimal solution is
not straightforward in practice. In this pa-
per, we propose an alternative information-
maximization clustering method based on a
squared-loss variant of mutual information.
This novel approach gives a clustering so-
lution analytically in a computationally ef-
ficient way via kernel eigenvalue decompo-
sition. Furthermore, we provide a practical
model selection procedure that allows us to
objectively optimize tuning parameters in-
cluded in the kernel function. Through ex-
periments, we demonstrate the usefulness of
the proposed approach.

1. Introduction

The goal of clustering is to classify data samples into
disjoint groups in an unsupervised manner. K-means
is a classic but still popular clustering algorithm. How-
ever, since k-means only produces linearly separated
clusters, its usefulness is rather limited in practice.
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To cope with this problem, various non-linear clus-
tering methods have been developed. Kernel k-means
(Girolami, 2002) performs k-means in a feature space
induced by a reproducing kernel function. Spectral
clustering (Shi & Malik, 2000) first unfolds non-linear
data manifolds by a spectral embedding method, and
then performs k-means in the embedded space. Blur-
ring mean-shift (Fukunaga & Hostetler, 1975) uses
a non-parametric kernel density estimator for model-
ing the data-generating probability density and finds
clusters based on the modes of the estimated den-
sity. Discriminative clustering (Xu et al., 2005; Bach
& Harchaoui, 2008) learns a discriminative classifier
for separating clusters, where class labels are also
treated as parameters to be optimized. Dependence-
maximization clustering (Song et al., 2007; Faivi-
shevsky & Goldberger, 2010) determines cluster as-
signments so that their dependence on input data is
maximized.

These non-linear clustering techniques would be capa-
ble of handling highly complex real-world data. How-
ever, they suffer from lack of objective model selection
strategies1. More specifically, the above non-linear
clustering methods contain tuning parameters such as
the width of Gaussian functions and the number of
nearest neighbors in kernel functions or similarity mea-
sures, and these tuning parameter values need to be
heuristically determined in an unsupervised manner.
The problem of learning similarities/kernels was ad-
dressed in earlier works, but they considered super-
vised setups, i.e., labeled samples are assumed to be
given. Zelnik-Manor & Perona (2005) provided a use-
ful unsupervised heuristic to determine the similarity
in a data-dependent way. However, it still requires the
number of nearest neighbors to be determined man-

1‘Model selection’ in this paper refers to the choice of
tuning parameters in kernel functions or similarity mea-
sures, not the choice of the number of clusters.
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ually (although the magic number ‘7’ was shown to
work well in their experiments).

Another line of clustering framework called
information-maximization clustering (Agakov &
Barber, 2006; Gomes et al., 2010) exhibited the
state-of-the-art performance. In this information-
maximization approach, probabilistic classifiers such
as a kernelized Gaussian classifier (Agakov & Barber,
2006) and a kernel logistic regression classifier (Gomes
et al., 2010) are learned so that mutual information
(MI) between feature vectors and cluster assignments
is maximized in an unsupervised manner. A notable
advantage of this approach is that classifier training
is formulated as continuous optimization problems,
which are substantially simpler than discrete opti-
mization of cluster assignments. Indeed, classifier
training can be carried out in computationally ef-
ficient manners by a gradient method (Agakov &
Barber, 2006) or a quasi-Newton method (Gomes
et al., 2010). Furthermore, Agakov & Barber (2006)
provided a model selection strategy based on the
common information-maximization principle. Thus,
kernel parameters can be systematically optimized in
an unsupervised way.

However, in the above MI-based clustering approach,
the optimization problems are non-convex, and find-
ing a good local optimal solution is not straightfor-
ward in practice. The goal of this paper is to over-
come this problem by providing a novel information-
maximization clustering method. More specifically,
we propose to employ a variant of MI called squared-
loss MI (SMI), and develop a new clustering algo-
rithm whose solution can be computed analytically in
a computationally efficient way via eigenvalue decom-
position. Furthermore, for kernel parameter optimiza-
tion, we propose to use a non-parametric SMI esti-
mator called least-squares MI (LSMI) (Suzuki et al.,
2009), which was proved to achieve the optimal con-
vergence rate with analytic-form solutions. Through
experiments on various real-world datasets such as im-
ages, natural languages, accelerometric sensors, and
speech, we demonstrate the usefulness of the proposed
clustering method.

2. Information-Maximization
Clustering with Squared-Loss
Mutual Information

In this section, we describe our novel clustering algo-
rithm.

2.1. Formulation of Information-Maximization
Clustering

Suppose we are given d-dimensional i.i.d. feature vec-
tors of size n,

{xi | xi ∈ Rd}ni=1,

which are assumed to be drawn independently from a
distribution with density p∗(x). The goal of clustering
is to give cluster assignments,

{yi | yi ∈ {1, . . . , c}}ni=1,

to the feature vectors {xi}ni=1, where c denotes the
number of classes. Throughout this paper, we assume
that c is known.

In order to solve the clustering problem, we take the
information-maximization approach (Agakov & Bar-
ber, 2006; Gomes et al., 2010). That is, we regard clus-
tering as an unsupervised classification problem, and
learn the class-posterior probability p∗(y|x) so that ‘in-
formation’ between feature vector x and class label y
is maximized.

The dependence-maximization approach (Song et al.,
2007; Faivishevsky & Goldberger, 2010) is re-
lated to, but substantially different from the
above information-maximization approach. In the
dependence-maximization approach, cluster assign-
ments {yi}ni=1 are directly determined so that their
dependence on feature vectors {xi}ni=1 is maximized.
Thus, the dependence-maximization approach intrin-
sically involves combinatorial optimization with re-
spect to {yi}ni=1. On the other hand, the information-
maximization approach involves continuous optimiza-
tion with respect to the parameter α included in a
class-posterior model p(y|x;α). This continuous op-
timization of α is substantially easier to solve than
discrete optimization of {yi}ni=1.

Another advantage of the information-maximization
approach is that it naturally allows out-of-sample clus-
tering based on the discriminative model p(y|x;α),
i.e., a cluster assignment for a new feature vector can
be obtained based on the learned discriminative model.

2.2. Squared-Loss Mutual Information

As an information measure, we adopt squared-loss mu-
tual information (SMI). SMI between feature vector x
and class label y is defined by

SMI :=
1

2

∫ c∑
y=1

p∗(x)p∗(y)

(
p∗(x, y)

p∗(x)p∗(y)
− 1

)2

dx,

(1)
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where p∗(x, y) denotes the joint density of x and y,
and p∗(y) is the marginal probability of y. SMI is the
Pearson divergence (Pearson, 1900) from p∗(x, y) to
p∗(x)p∗(y), while the ordinary MI (Cover & Thomas,
2006) is the Kullback-Leibler divergence (Kullback &
Leibler, 1951) from p∗(x, y) to p∗(x)p∗(y):

MI :=

∫ c∑
y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx. (2)

The Pearson divergence and the Kullback-Leibler di-
vergence both belong to the class of Ali-Silvey-Csiszár
divergences (which is also known as f -divergences, see
(Ali & Silvey, 1966; Csiszár, 1967)), and thus they
share similar properties. For example, SMI is non-
negative and takes zero if and only if x and y are
statistically independent, as the ordinary MI.

In the existing information-maximization clustering
methods (Agakov & Barber, 2006; Gomes et al., 2010),
MI is used as the information measure. On the other
hand, in this paper, we adopt SMI because it allows
us to develop a clustering algorithm whose solution
can be computed analytically in a computationally ef-
ficient way via eigenvalue decomposition, as described
below.

2.3. Clustering by SMI Maximization

Here, we give a computationally-efficient clustering al-
gorithm based on SMI (1).

We can express SMI as

SMI =
1

2

∫ c∑
y=1

p∗(x, y)
p∗(x, y)

p∗(x)p∗(y)
dx− 1

2
(3)

=
1

2

∫ c∑
y=1

p∗(y|x)p∗(x)p
∗(y|x)
p∗(y)

dx− 1

2
. (4)

Suppose that the class-prior probability p∗(y) is set to
be uniform: p∗(y) = 1/c. Then Eq.(4) is expressed as

c

2

∫ c∑
y=1

p∗(y|x)p∗(x)p∗(y|x)dx− 1

2
. (5)

Let us approximate the class-posterior probability
p∗(y|x) by the following kernel model:

p(y|x;α) :=
n∑

i=1

αy,iK(x,xi), (6)

where K(x,x′) denotes a kernel function with a ker-
nel parameter t. In the experiments, we will use a

sparse variant of the local-scaling kernel (Zelnik-Manor
& Perona, 2005):

K(xi,xj) =


exp

(
−∥xi − xj∥2

2σiσj

)
if xi ∈ Nt(xj) or xj ∈ Nt(xi),

0 otherwise,

(7)

where Nt(x) denotes the set of t nearest neighbors for
x (t is the kernel parameter), σi is a local scaling factor

defined as σi = ∥xi−x
(t)
i ∥, and x

(t)
i is the t-th nearest

neighbor of xi.

Further approximating the expectation with respect
to p∗(x) included in Eq.(5) by the empirical average
of samples {xi}ni=1, we arrive at the following SMI
approximator:

ŜMI :=
c

2n

c∑
y=1

α⊤
y K

2αy −
1

2
, (8)

where ⊤ denotes the transpose, αy :=
(αy,1, . . . , αy,n)

⊤, and Ki,j := K(xi,xj).

For each cluster y, we maximize α⊤
y K

2αy under2

∥αy∥ = 1. Since this is the Rayleigh quotient, the
maximizer is given by the normalized principal eigen-
vector of K (Horn & Johnson, 1985). To avoid all the
solutions {αy}cy=1 to be reduced to the same princi-
pal eigenvector, we impose their mutual orthogonality:
α⊤

y αy′ = 0 for y ̸= y′. Then the solutions are given
by the normalized eigenvectors ϕ1, . . . ,ϕc associated
with the eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of K. Since
the sign of ϕy is arbitrary, we set the sign as

ϕ̃y = ϕy × sign(ϕ⊤
y 1n),

where sign(·) denotes the sign of a scalar and 1n de-
notes the n-dimensional vector with all ones.

On the other hand, since

p∗(y)=

∫
p∗(y|x)p∗(x)dx≈ 1

n

n∑
i=1

p(y|xi;α)=α⊤
y K1n,

and the class-prior probability p∗(y) was set to be uni-
form, we have the following normalization condition:

α⊤
y K1n = 1/c.

Furthermore, probability estimates should be non-
negative, which can be achieved by rounding up nega-
tive outputs to zero. Taking these issues into account,

2Note that this unit-norm constraint is not essential
since the obtained solution is renormalized later.
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cluster assignments {yi}ni=1 for {xi}ni=1 are determined
as

yi = argmax
y

[max(0n, ϕ̃y)]i

max(0n, ϕ̃y)
⊤1n

,

where the max operation for vectors is applied in the
element-wise manner and [·]i denotes the i-th element

of a vector. Note that we used Kϕ̃y = λyϕ̃y in the
above derivation.

We call the above method SMI-based clustering
(SMIC).

2.4. Kernel Parameter Choice by SMI
Maximization

Since the above clustering approach was developed
in the framework of SMI maximization, it would be
natural to determine the kernel parameters so that
SMI is maximized. A direct approach is to use the
above SMI estimator ŜMI also for kernel parameter
choice. However, this direct approach is not favor-
able because ŜMI is an unsupervised SMI estimator
(i.e., SMI is estimated only from unlabeled samples
{xi}ni=1). In the model selection stage, however, we
have already obtained labeled samples {(xi, yi)}ni=1,
and thus supervised estimation of SMI is possible. For
supervised SMI estimation, a non-parametric SMI esti-
mator called least-squares mutual information (LSMI)
(Suzuki et al., 2009) was shown to achieve the optimal
convergence rate. For this reason, we propose to use
LSMI for model selection, instead of ŜMI (8).

LSMI is an estimator of SMI based on paired samples
{(xi, yi)}ni=1. The key idea of LSMI is to learn the
following density-ratio function,

r∗(x, y) :=
p∗(x, y)

p∗(x)p∗(y)
, (9)

without going through density estimation of p∗(x, y),
p∗(x), and p∗(y). More specifically, let us employ the
following density-ratio model:

r(x, y;θ) :=
∑

ℓ:yℓ=y

θℓL(x,xℓ), (10)

where L(x,x′) is a kernel function with kernel param-
eter γ. In the experiments, we will use the Gaussian
kernel:

L(x,x′) = exp

(
−∥x− x′∥2

2γ2

)
. (11)

The parameter θ in the above density-ratio model is
learned so that the following squared error is mini-

mized:

1

2

∫ c∑
y=1

(
r(x, y;θ)− r∗(x, y)

)2

p∗(x)p∗(y)dx. (12)

Among n cluster assignments {yi}ni=1, let ny be the
number of samples in cluster y. Let θy be the
parameter vector corresponding to the kernel bases
{L(x,xℓ)}ℓ:yℓ=y, i.e., θy is the ny-dimensional sub-
vector of θ = (θ1, . . . , θn)

⊤ consisting of indices
{ℓ | yℓ = y}. Then an empirical and regularized ver-
sion of the optimization problem (12) is given for each
y as follows:

min
θy

[
1

2
θ⊤
y Ĥ

(y)
θy − θ⊤

y ĥ
(y)

+ δθ⊤
y θy

]
, (13)

where δ (≥ 0) is the regularization parameter. Ĥ
(y)

is the ny × ny matrix and ĥ
(y)

is the ny-dimensional
vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

ny

n2

n∑
i=1

L(xi,x
(y)
ℓ )L(xi,x

(y)
ℓ′ ),

ĥ
(y)
ℓ :=

1

n

∑
i:yi=y

L(xi,x
(y)
ℓ ),

where x
(y)
ℓ is the ℓ-th sample in class y (which corre-

sponds to θ̂
(y)
ℓ ).

A notable advantage of LSMI is that the solution θ̂
(y)

can be computed analytically as

θ̂
(y)

= (Ĥ
(y)

+ δI)−1ĥ
(y)

.

Then a density-ratio estimator is obtained analytically
as follows:

r̂(x, y) =

ny∑
ℓ=1

θ̂
(y)
ℓ L(x,x

(y)
ℓ ).

The accuracy of the above least-squares density-
ratio estimator depends on the choice of the ker-
nel parameter γ and the regularization parameter δ.
They can be systematically optimized based on cross-
validation as follows (Suzuki et al., 2009). The sam-
ples Z = {(xi, yi)}ni=1 are divided into M disjoint sub-
sets {Zm}Mm=1 of approximately the same size. Then
a density-ratio estimator r̂m(x, y) is obtained using
Z\Zm (i.e., all samples without Zm), and its out-of-
sample error (which corresponds to Eq.(12) without
irrelevant constant) for the hold-out samples Zm is
computed as

CVm :=
1

2|Zm|2
∑

x,y∈Zm̂

rm(x, y)2− 1

|Zm|
∑

(x,y)∈Zm̂

rm(x, y).
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This procedure is repeated for m = 1, . . . ,M , and the
average of the above hold-out error over all m is com-
puted. Finally, the kernel parameter γ and the regu-
larization parameter δ that minimize the average hold-
out error are chosen as the most suitable ones.

Based on the expression of SMI given by Eq.(3), an
SMI estimator called LSMI is given as follows:

LSMI :=
1

2n

n∑
i=1

r̂(xi, yi)−
1

2
, (14)

where r̂(x, y) is a density-ratio estimator obtained
above. Since r̂(x, y) can be computed analytically,
LSMI can also be computed analytically.

We use LSMI for model selection of SMIC. More specif-
ically, we compute LSMI as a function of the kernel pa-
rameter t of K(x,x′) included in the cluster-posterior
model (6), and choose the one that maximizes LSMI.

MATLAB implementation of the proposed clus-
tering method is available from ‘http://sugiyama-
www.cs.titech.ac.jp/˜sugi/software/SMIC’.

3. Existing Methods

In this section, we qualitatively compare the proposed
approach with existing methods.

3.1. Spectral Clustering

The basic idea of spectral clustering (Shi & Malik,
2000) is to first unfold non-linear data manifolds by
a spectral embedding method, and then perform k-
means in the embedded space. More specifically, given
sample-sample similarity Wi,j ≥ 0, the minimizer of
the following criterion with respect to {ξi}ni=1 is ob-
tained under some normalization constraint:

n∑
i,j

Wi,j

∥∥∥∥∥ 1√
Di,i

ξi −
1√
Dj,j

ξj

∥∥∥∥∥
2

,

where D is the diagonal matrix with i-th diagonal el-
ement given by Di,i :=

∑n
j=1 Wi,j . Consequently, the

embedded samples are given by the principal eigenvec-

tors of D− 1
2WD− 1

2 , followed by normalization. Note
that spectral clustering was shown to be equivalent to
a weighted variant of kernel k-means with some spe-
cific kernel (Dhillon et al., 2004).

The performance of spectral clustering depends heav-
ily on the choice of sample-sample similarity Wi,j .
Zelnik-Manor & Perona (2005) proposed a useful un-
supervised heuristic to determine the similarity in a
data-dependent manner, called local scaling : Wi,j =

exp
(
−∥xi−xj∥2

2σiσj

)
, where σi is a local scaling factor de-

fined as σi = ∥xi − x
(t)
i ∥, and x

(t)
i is the t-th nearest

neighbor of xi. t is the tuning parameter in the local
scaling similarity, and t = 7 was shown to be use-
ful (Zelnik-Manor & Perona, 2005; Sugiyama, 2007).
However, this magic number ‘7’ does not seem to work
always well in general.

If D− 1
2WD− 1

2 is regarded as a kernel matrix, spec-
tral clustering will be similar to the proposed SMIC
method described in Section 2.3. However, SMIC does
not require the post k-means processing since the prin-
cipal components have clear interpretation as parame-
ter estimates of the class-posterior model (6). Further-
more, our proposed approach provides a systematic
model selection strategy, which is a notable advantage
over spectral clustering.

3.2. Blurring Mean-Shift Clustering

Blurring mean-shift (Fukunaga & Hostetler, 1975) is a
non-parametric clustering method based on the modes
of the data-generating probability density.

In the blurring mean-shift algorithm, a kernel density
estimator (Silverman, 1986) is used for modeling the
data-generating probability density:

p̂(x) =
1

n

n∑
i=1

K
(
∥x− xi∥2/σ2

)
,

where K(ξ) is a kernel function such as a Gaussian
kernel K(ξ) = e−ξ/2. Taking the derivative of p̂(x)
with respect to x and equating the derivative at x = xi

to zero, we obtain the following updating formula for
sample xi (i = 1, . . . , n):

xi ←−
∑n

j=1 Wi,jxj∑n
j′=1 Wi,j′

,

where Wi,j := K ′
(
∥xi − xj∥2/σ2

)
and K ′(ξ) is the

derivative of K(ξ). Each mode of the density is re-
garded as a representative of a cluster, and each data
point is assigned to the cluster which it converges to.

Carreira-Perpiñán (2007) showed that the blur-
ring mean-shift algorithm can be interpreted as
an EM algorithm (Dempster et al., 1977), where
Wi,j/(

∑n
j′=1 Wi,j′) is regarded as the posterior prob-

ability of the i-th sample belonging to the j-th clus-
ter. Furthermore, the above update rule can be ex-
pressed in a matrix form as X ←− XP , where X =
(x1, . . . ,xn) is a sample matrix and P := WD−1 is
a stochastic matrix of the random walk in a graph
with adjacency W (Chung, 1997). D is defined as
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Di,i :=
∑n

j=1 Wi,j and Di,j = 0 for i ̸= j. If P is
independent of X, the above iterative algorithm cor-
responds to the power method (Golub & Loan, 1996)
for finding the leading left eigenvector of P . Then,
this algorithm is highly related to the spectral clus-
tering which computes the principal eigenvectors of

D− 1
2WD− 1

2 (see Section 3.1). Although P depends
on X in reality, Carreira-Perpiñán (2006) insisted that
this analysis is still valid since P and X quickly reach
a quasi-stable state.

An attractive property of blurring mean-shift is that
the number of clusters is automatically determined as
the number of modes in the probability density es-
timate. However, this choice depends on the kernel
parameter σ and there is no systematic way to deter-
mine σ, which is restrictive compared with the pro-
posed method. Another critical drawback of the blur-
ring mean-shift algorithm is that it eventually con-
verges to a single point (Cheng, 1995), and therefore a
sensible stopping criterion is necessary in practice. Al-
though Carreira-Perpiñán (2006) gave a useful heuris-
tic for stopping the iteration, it is not clear whether
this heuristic always works well in practice.

4. Experiments

In this section, we experimentally evaluate the perfor-
mance of the proposed and existing clustering meth-
ods.

4.1. Illustration

First, we illustrate the behavior of the proposed
method using artificial datasets described in the top
row of Figure 1. The dimensionality is d = 2 and the
sample size is n = 200. As a kernel function, we used
the sparse local-scaling kernel (7) for SMIC, where the
kernel parameter t was chosen from {1, . . . , 10} based
on LSMI with the Gaussian kernel (11).

The top graphs in Figure 1 depict the cluster assign-
ments obtained by SMIC, and the bottom graphs in
Figure 1 depict the model selection curves obtained
by LSMI. The results show that SMIC combined with
LSMI works well for these toy datasets.

4.2. Performance Comparison

Next, we systematically compare the performance of
the proposed and existing clustering methods using
various real-world datasets such as images, natural lan-
guages, accelerometric sensors, and speech.

We compared the performance of the following meth-
ods, which all do not contain open tuning parame-
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Figure 1. Illustrative examples. Cluster assignments ob-
tained by SMIC (top) and model selection curves obtained
by LSMI (bottom).

ters and therefore experimental results are fair and
objective: K-means (KM), spectral clustering with the
self-tuning local-scaling similarity (SC) (Zelnik-Manor
& Perona, 2005), mean nearest-neighbor clustering
(MNN) (Faivishevsky & Goldberger, 2010), MI-based
clustering for kernel logistic models (MIC) (Gomes
et al., 2010) with model selection by maximum-
likelihood MI (Suzuki et al., 2008), and the proposed
SMIC.

The clustering performance was evaluated by the ad-
justed Rand index (ARI) (Hubert & Arabie, 1985)
between inferred cluster assignments and the ground
truth categories. Larger ARI values mean better per-
formance, and ARI takes its maximum value 1 when
two sets of cluster assignments are identical. In addi-
tion, we also evaluated the computational efficiency of
each method by the CPU computation time.

We used various real-world datasets including im-
ages, natural languages, accelerometric sensors, and
speech: The USPS hand-written digit dataset (‘digit’),
the Olivetti Face dataset (‘face’), the 20-Newsgroups
dataset (‘document’), the SENSEVAL-2 dataset
(‘word’), the ALKAN dataset (‘accelerometry’), and
the in-house speech dataset (‘speech’). Detailed expla-
nation of the datasets is omitted due to lack of space.

For each dataset, the experiment was repeated 100
times with random choice of samples from a pool.
Samples were centralized and their variance was nor-
malized in the dimension-wise manner, before feeding
them to clustering algorithms.

The experimental results are described in Table 1. For
the digit dataset, MIC and SMIC outperform KM, SC,
and MNN in terms of ARI. The entire computation
time of SMIC including model selection is faster than
KM, SC, and MIC, and is comparable to MNN which
does not include a model selection procedure. For the
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Table 1. Experimental results on real-world datasets (with
equal cluster size). The average clustering accuracy (and
its standard deviation in the bracket) in terms of ARI and
the average CPU computation time in second over 100 runs
are described. The best method in terms of the average
ARI and methods judged to be comparable to the best
one by the t-test at the significance level 1% are described
in boldface. Computation time of MIC and SMIC cor-
responds to the time for computing a clustering solution
after model selection has been carried out. For references,
computation time for the entire procedure including model
selection is described in the square bracket.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

ARI 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
Time 835.9 973.3 318.5 84.4[3631.7] 14.4[359.5]

Face (d = 4096, n = 100, and c = 10)
KM SC MNN MIC SMIC

ARI 0.60(0.11) 0.62(0.11) 0.47(0.10) 0.64(0.12) 0.65(0.11)
Time 93.3 2.1 1.0 1.4[30.8] 0.0[19.3]

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
Time 77.8 9.7 6.4 3.4[530.5] 0.3[115.3]

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
Time 6.5 5.9 2.2 1.0[369.6] 0.2[203.9]

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
Time 0.4 3.3 1.9 0.8[410.6] 0.2[92.6]

Speech (d = 50, n = 400, and c = 2)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.00(0.00) 0.04(0.15) 0.18(0.16) 0.21(0.25)
Time 0.9 4.2 1.8 0.7[413.4] 0.3[179.7]

face dataset, SC, MIC, and SMIC are comparable to
each other and are better than KM and MNN in terms
of ARI. For the document and word datasets, SMIC
tends to outperform the other methods. For the ac-
celerometry dataset, MNN and SMIC work better than
the other methods. Finally, for the speech dataset,
MIC and SMIC work comparably well, and are signif-
icantly better than KM, SC, and MNN.

Overall, MIC was shown to work reasonably well, im-
plying that model selectoin by maximum-likelihood MI
is practically useful. SMIC was shown to work even
better than MIC, with much less computation time.
The accuracy improvement of SMIC over MIC was
gained by computing the SMIC solution in a closed-
form without any heuristic initialization. The compu-
tational efficiency of SMIC was brought by the analytic
computation of the optimal solution and the class-wise
optimization of LSMI (see Section 2.4).

The performance of MNN and SC was rather unsta-
ble because of the heuristic averaging of the number
of nearest neighbors and the heuristic choice of local
scaling. In terms of computation time, they are rela-

Table 2. Experimental results on real-world datasets under
imbalanced setup. ARI values are described in the table.
Class-imbalance was realized by setting the sample size of
the first classm times larger than other classes. The results
for m = 1 are the same as the ones reported in Table 1.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

m = 1 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
m = 2 0.52(0.01) 0.21(0.02) 0.43(0.04) 0.60(0.05) 0.63(0.05)

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

m = 1 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
m = 2 0.01(0.01) 0.10(0.03) 0.10(0.02) 0.01(0.02) 0.19(0.04)
m = 3 0.01(0.01) 0.10(0.03) 0.09(0.02) -0.01(0.03) 0.16(0.05)
m = 4 0.02(0.01) 0.09(0.03) 0.08(0.02) -0.00(0.04) 0.14(0.05)

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
m = 2 0.00(0.07) -0.01(0.01) 0.01(0.02) -0.02(0.05) 0.03(0.05)

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
m = 2 0.48(0.05) 0.54(0.14) 0.58(0.11) 0.49(0.19) 0.69(0.16)
m = 3 0.49(0.05) 0.47(0.10) 0.42(0.12) 0.42(0.14) 0.66(0.20)
m = 4 0.49(0.06) 0.38(0.11) 0.31(0.09) 0.40(0.18) 0.56(0.22)

tively efficient for small- to medium-sized datasets, but
they are expensive for the largest dataset, digit. KM
was not reliable for the document and speech datasets
because of the restriction that the cluster boundaries
are linear. For the digit, face, and document datasets,
KM was computationally very expensive since a large
number of iterations were needed until convergence to
a local optimum solution.

Finally, we performed similar experiments under im-
balanced setup, where the the sample size of the first
class was set to be m times larger than other classes.
The results are summarized in Table 2, showing that
the performance of all methods tends to be degraded
as the degree of imbalance increases. Thus, clustering
becomes more challenging if the cluster size is imbal-
anced. Among the compared methods, the proposed
SMIC still worked better than other methods.

Overall, the proposed SMIC combined with LSMI was
shown to be a useful alternative to existing clustering
approaches.

5. Conclusions

In this paper, we proposed a novel information-
maximization clustering method, which learns class-
posterior probabilities in an unsupervised manner so
that the squared-loss mutual information (SMI) be-
tween feature vectors and cluster assignments is maxi-
mized. The proposed algorithm called SMI-based clus-
tering (SMIC) allows us to obtain clustering solutions
analytically by solving a kernel eigenvalue problem.
Thus, unlike the previous information-maximization
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clustering methods (Agakov & Barber, 2006; Gomes
et al., 2010), SMIC does not suffer from the prob-
lem of local optima. Furthermore, we proposed to use
an optimal non-parametric SMI estimator called least-
squares mutual information (LSMI) for data-driven
parameter optimization. Through experiments, SMIC
combined with LSMI was demonstrated to compare
favorably with existing clustering methods.
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