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ABSTRACT

We propose a novel semi-supervised method for building
a statistical model that represents the relationship between
sounds and text labels (“tags”). The proposed method, named
semi-supervised canonical density estimation, makes use of
unlabeled sound data in two ways: 1) a low-dimensional
latent space representing topics of sounds is extracted by
a semi-supervised variant of canonical correlation analysis,
and 2) topic models are learned by multi-class extension of
semi-supervised kernel density estimationin the topic space.
Real-world audio tagging experiments indicate that our pro-
posed method improves the accuracy even when only a small
number of labeled sounds are available.

Index Terms— Audio tag classification, semi-supervised
learning, topic model, canonical correlation analysis, kernel
density estimation

1. INTRODUCTION

A central goal of music information retrieval is to develop a
system that can efficiently store and retrieve sounds from a
large database of musical contents. The most common way
is to usemetadatasuch as the name of composers and artists,
the title of songs, and the release date of albums; furthermore,
one may also use various additional information such as gen-
res, instruments, song lyrics, and reviews. These metadata
can be used as input to query-by-keyword systems and col-
laborative recommender systems [1, 2, 3]. However, all these
systems have a common drawback called thenew item prob-
lem—when a new song is added to the database, it needs to be
annotated manually. This requires a large amount of human
labor, and thus keeping the systems updated is highly costly.

To cope with this problem, most previous works have
tried to automatically associate sounds with words for query-
by-text retrieval or music annotation [4, 5, 6, 7, 8, 9, 10, 11].
Recently, inference techniques based ontopic models, such
as probabilistic latent semantic analysis(pLSA) and latent
Dirichlet allocation (LDA), have been exploited for auto-
matic image annotation and retrieval [12, 13]. Sincecanon-
ical correlation analysis(CCA) [14] can be interpreted as
an approximation to Gaussian pLSA and also be regarded as
an extension ofFisher linear discriminant analysis(FDA) to
multi-label classification [15], learning topic models through
CCA is not only computationally efficient, but also promising
for multi-label audio annotation and retrieval.

Fig. 1. Topic model for audio tag classification

All of the methods explained above considered a super-
vised learning setup, where annotated sounds are used as
training data. Thus, in order to further improve the annota-
tion and retrieval accuracy, high-quality semantic information
about sounds would be necessary. However, gathering such
high-quality semantic information is expensive, and thus a
big raise in the number of annotated sounds cannot be ex-
pected in reality. On the other hand, a large number of
unannotated sounds which have not yet been registered to
the system can be readily collected. Thus, a semi-supervised
learning approach which utilizes a small number of annotated
sounds and a large number of unannotated sounds would be
promising.

In this paper, we propose a semi-supervised learning
method for generic topic models namedsemi-supervised
canonical density estimation(SSCDE). SSCDE fully makes
use of unannotated sounds for both feature extraction and
model estimation. More specifically, we estimate a low-
dimensional latent space representing topics of music by
applying a semi-supervised variant of CCA calledSemiCCA
[16], which extends the ordinary CCA to be able to utilize
both paired and unpaired samples. Then, in the estimated
latent space, topic models are learned by multi-class exten-
sion of semi-supervised non-parametric density estimation
called semi-supervised kernel density estimation(SSKDE)
[17]. Through real-world audio tagging experiments, we
demonstrate the effectiveness of the proposed approach.

2. FRAMEWORK

Figs. 2 and 3 show the framework of the proposed method
briefly. Let X = {xn}N+Nx

n=1 andY = {yn}Nn=1 be a set
of audio and semantic features withDx andDy dimensions,
whereN andNx are the number of labeled and unlabeled



Fig. 2. Framework of the proposed method (1st part)

sounds, respectively. A topic model is estimated from feature
vectors(X,Y ), which consists of two steps.

The first step is to generate a latent variableZ =
{zn}N+Nx

n=1 of Dz dimensions with SemiCCA. More specif-
ically, a pair (fx, fxy) of functionsfx(x) and fxy(x,y) is
derived from(X,Y ) as training samples via SemiCCA, and
latent variablesZ are generated from(X,Y ) with (fx, fxy).
We describe the detail of the first step in Section 4.1.

The second step is to set up a topic model with the help of
kernel density estimation (KDE) on the latent space:

p(x,y) = (N +Nx)
−1∑N+Nx

n=1 p(x|zn)p(y|zn). (1)

The main procedure in this step is to estimate the conditional
densitiesp(x|zn) andp(y|zn) of features(x,y) for every
latent variablezn. Note that a conditional densityp(y|zn)
(n = N +1, N +2, . . . , N +Nx) can be derived even though
the corresponding text labelyn does not exist. We show the
detailed procedure in Section 4.2.

Once the model estimation has been finished, we are ready
to annotate an unseen sounds through maximum a posteriori
(MAP) estimation. The most probable semantic featureŷ can
be derived by using an audio featurex(s) extracted from a
given sounds as

ŷ = argmax
y∈[0,1]Dy

p(y|x(s)) (2)

= argmax
y∈[0,1]Dy

∑N+Nx

n=1 p(x(s)|zn)p(y|zn). (3)

When thed-th element of̂y exceeds a pre-defined threshold
θ, the text word of indexd is provided to the given sounds.

3. FEATURE REPRESENTATIONS

We describe an annotated sound corpus “Freesound” used in
our experiments and introduce audio and semantic feature
representations.

The Freesound Project is a collaborative database of Cre-
ative Commons licensed sounds [18]. Each sound sample has
been annotated using a vocabulary (e.g., genre, instrumenta-
tion, emotion, style, rhythm). We extract 2,012 WAV files
with a 44.1 kHz sampling rate, a 16 bit depth, and mono or
stereo. The stereo audio files are converted to the mono ones
by taking the average of the left and right channels. Then, we
obtain a vocabulary of 230 words used for annotating these
sounds.

Fig. 3. Framework of the proposed method (2nd part)

Each sound is represented as abag-of-feature-vectors
calculated by analyzing a short-time segment of the audio
signal. Specifically, we represent the audio with a time se-
ries of Mel-frequency cepstral coefficients(MFCCs) feature
vectors which are popular features for speech recognition and
music classification [9]. A time series of MFCC vectors is ex-
tracted by sliding a half-overlapping, short-time window (23
ms) over the audio file. The dynamic features (MFCC-Delta)
are derived by calculating the first and second instantaneous
derivatives of each element over consecutive vectors and are
appended them to the vector of MFCCs. We use the first 13
MFCCs resulting in about 5,200 39-dimensional feature vec-
tors per minute of audio contents. We create a vector quanti-
zation (VQ) codebook of sizeDx using about 1,000,000 fea-
ture vectors which are sampled randomly so that each sound
is represented by 500 feature vectors. Then, normalized code
histograms of VQ results are used asDx-dimensional audio
feature vectorsX = {{xn}Nn=1, {xn}N+Nx

n=N+1} (Dx=1,024),
representing the acoustic characteristics of sounds, where
{xn}Nn=1 are labeled sounds, while{xn}N+Nx

n=N+1 are unla-
beled sounds.

On the other hand, we also extractDy-dimensional binary
annotation vectorsY = {yn}Nn=1 (Dy = 230) from the 2,012
sounds. Each element of y is set to 1 if the corresponding
word is annotated and 0 otherwise.

4. ASSOCIATING SOUNDS WITH WORDS

We describe a semi-supervised learning method for generic
topic models called SSCDE to associate souonds with words.

4.1. Semi-supervised CCA

We have proposed SemiCCA [16] that combines CCA with
principal component analysis (PCA) for utilizing unlabeled
samples. Let us explain the idea of SemiCCA using an il-
lustrative two-dimensional data set depicted in Fig. 4, where
labeled (resp. unlabeled) samples are plotted with white
(resp. red and blue). When only the labeled samples are used,
poor projection directions may be obtained by CCA due to
overfittng. In contrast, unlabeled samples may be used for re-
vealing the global structure in each domain. Note that once a
basis in one sample space is rectified, the corresponding basis
in the other sample space is also rectified so that correlations
between two bases are maximized.



Fig. 4. Effects of unlabeled samples in SemiCCA

Motivated by the above illustration, we smoothly com-
bine the eigenvalue problems of CCA and PCA. More specif-
ically, the solution of SemiCCA is given by the leading gen-
eralized eigenvectors of the following generalized eigenvalue
problem:

Bw = λCw, w = (wx,wy)
⊤ (4)

B = β

(
0 S(L)

xy

S(L)
yx 0

)
+ (1− β)

(
Sxx 0
0 Syy

)
, (5)

C = β

(
S(L)

xx 0

0 S(L)
yy

)
+ (1− β)

(
IDx 0
0 IDy

)
, (6)

whereSxx is a scatter matrix ofX, S(L)
xy is a scatter ma-

trix obtained from a pair of labeled samples in(X,Y ), (all
the other scatter matrices can be defined similarly), andβ
(0 ≤ β ≤ 1) is a constant nameda trade-off parameter. The
trade-off parameter controls the trade-off between CCA and
PCA. Namely, whenβ = 1, the problem is reduced to the
CCA eigenvalue problem, while whenβ = 0 the problem is
reduced to the PCA eigenvalue problem, under the assump-
tion thatX andY are uncorrelated. In general, SemiCCA
with a trade-off parameter0 < β < 1 inherits the proper-
ties of both CCA and PCA so that the global structure in each
domain and the co-occurrence information of paired samples
are smoothly controlled. Picking up the topDz generalized
eigenvectors as row vectors, we can obtainDz-dimensional
mappingsW x andW y.

By introducing a stochastic interpretation of CCA [15],
we can derive two types of functionsfxy andfx to obtain a
latent variablez as follows:

fxy(x,y) = Λ1/2(IDz +Λ)−1(W xx+W yy), (7)

fx(x) = Λ1/2W xx, (8)

where Λ is the diagonal matrix with thed-th diagonal
component being thed-th largest singular valueλd (d =
1, 2, . . . , Dz).

4.2. Semi-supervised KDE

Based on the idea of KDE, we introduce the following topic
modelp(x,y) [19] describing the relationship between an au-

Fig. 5. SSKDE procedure

dio featurex and a semantic featurey as

p(x,y) = (N +Nx)
−1∑N+Nx

n=1 p(x|zn)p(y|zn), (9)
p(x|zn) = κ(fx(x)− zn), (10)

p(y|zn) =
∏Dy

d=1 p(yd|zn), (11)
p(yd|zn) = µδ(yd − yn,d) + (1− µ)Nd/N, (12)

where each latent variablezn is calculated as

zn =

{
fxy(xn,yn), n = 1, . . . , N
fx(xn), n = N + 1, . . . , Nx

(13)

κ(·) is a Gaussian kernel with a paramterγ, δ(·) is the Dirac
delta,yn,d is thed-th element ofyn, Nd is the number of the
audio signals containing thed-th word in labeled sounds, and
µ (0<µ<1) is a parameter representing how reliable a given
label is.

Note that this strategy with the traditional KDE can utilize
only labeled samples to estimate a topic modelp(x,y) due to
lack of labels (cf. Eq. (12)). This indicates that the accuracy
of density estimation heavily relies on the number of labeled
samples. Thus, we introduce an idea of semi-supervised KDE
[17] used for discrimination tasks, and extend it to multi-label
classification.

From Eq. (11), each conditional densityp(yd|zn) can be
viewed as a posterior of thed-th “class” given a “feature”
zn. Then, we can apply the idea of SSKDE to the estimation
of this conditional density. For simplicity, we introduce the
following matrix forms

P = {Pn,m}N+Nx
n,m=1, F = {Fn,d}N+Nx

n=1
Dy

d=1, (14)

Pn,m =
κ(zn − zm)∑N+Nx

m′=1 κ(zn − z′
m)

, (15)

Fn,d = p(yd|zn). (16)

What we want to derive is the matrixF of conditional den-
sities, which can be obtained through an iterative procedure
(see [17] for detail). Fig. 5 briefly depicts the procedure of
SSKDE.

5. EXPERIMENTS

This section describes the results for the automatic audio an-
notation task. We used 2,012 sounds in the Freesound dataset,



Fig. 6. Results for the automatic annotation task

and separated them into 1,912 sounds (N +Nx = 1, 912) for
training and 100 sounds for evaluation. ParametersDz, β, γ,
µ were set to 100, 0.99, 0.8, 0.99, respectively. We deter-
mined these parameters experimentally. As the evaluation
measures, we calculated the precision, recall and F-value
based on evaluation dataset.

Fig. 6 shows the experimental results for the automatic
annotation task, where the thresholdθ (see the last sentence
in Section 2) is varied from 0 to 5.0. In Tab. 1, we show recall
and precision when the F-value reach a maximum value. We
separated 1912 sounds for training into 1000 labeled sounds
(N = 1, 000) and 912 unlabeled sounds(Nx = 912), and
learned the proposed model using these sounds. We com-
pared the proposed model with the CCA-based model us-
ing all of training data as labeled sounds(N = 1, 912), the
CCA-based model using onlyX(L) (N = 1, 000), and the
SemiCCA-based model usingX(L) andX(U), namely multi-
class SSKDE was removed from the proposed method. As the
table shows, the topic model built with the help of SSCDE
outperformed that of SemiCCA. This is because the proposed
method incorporate semi-supervised latent space estimation
with SemiCCA and semi-supervised nonparametric model es-
timation with SSKDE into the existing learning method of
topic models.

6. CONCLUDING REMARKS

We have developed a new and efficient method to learn
topic models in a semi-supervised manner, named semi-
supervised canonical density estimation (SSCDE), and pre-
sented a way to integrate it to audio annotation/retrieval.
The proposed method contained two novel contributions: (a)
semi-supervised latent space estimation with SemiCCA and
(b) semi-supervised non-parametric model estimation with
SSKDE. Experiments with thousands of audio signals have
demonstrated that the proposed method is promising.

In the future, we plan to evaluate the proposed method
in detail on a larger database. We also want to compare the
performance of the proposed method with that of the con-
ventional methods [9, 11] and apply to various challenging
real-world problems e.g., multi-modal event correlation anal-

Table 1. Precision, Recall, and F-value
Precision Recall F-value

CCA (N=1,000) 0.355 0.240 0.287
SemiCCA (N=1,000,Nx=912) 0.355 0.274 0.310
SSCDE (N=1,000,Nx=912) 0.359 0.333 0.345

CCA (N=1,912) 0.462 0.356 0.402

ysis for audio-video synchronization and audio-visual speech
recognition.
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