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Much attention has been paid to the theoretical explanatidhe empirical success of AdaBoost.
The most influential work is the margin theory, which is esisdly an upper bound for the gen-
eralization error of any voting classifier in terms of the giardistribution over the training data.
However, important questions were raised about the masgitaeation. Breiman (1999) proved
a bound in terms of the minimum margin, which is sharper themmargin distribution bound.

He argued that the minimum margin would be better in predicthe generalization error. Grove
and Schuurmans (1998) developed an algorithm called LRBAdst which maximizes the min-

imum margin while keeping all other factors the same as AdsBo In experiments however,
LP-AdaBoost usually performs worse than AdaBoost, puttilregmargin explanation into serious
doubt. In this paper, we make a refined analysis of the mangiory. We prove a bound in terms of
a new margin measure called t&quilibrium margin (Emargin) The Emargin bound is uniformly
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sharper than Breiman'’s minimum margin bound. Thus our tesiggests that the minimum mar-

gin may be not crucial for the generalization error. We alsmsthat a large Emargin and a small
empirical error at Emargin imply a smaller bound of the gatieation error. Experimental results

on benchmark data sets demonstrate that AdaBoost usually lasger Emargin and a smaller test
error than LP-AdaBoost, which agrees well with our theory.

Keywords: boosting, margin bounds, voting classifier

1. Introduction

The AdaBoost algorithm (Freund and Schapire, 1996, 1997) hasvachgreat success in the past
ten years. It has demonstrated excellent experimental performancemdadnchmark data sets
and real applications (Bauer and Kohavi, 1999; Dietterich, 2000; Vinth Jones, 2001; Wang
et al., 2007). According to a recent evaluation (Caruana and NiculM&il) 2006), boosting with
decision trees as base learners is the leading classification algorithm. Artamtporoperty of
boosting is its relative (although not complete) resistance to overfitting. O oA sets it is
observed that the test error keeps decreasing even after thousfabdse classifiers have been
combined (Breiman, 1998; Quinlan, 1996). This fact, at first sight, alshoviolates Occam’s
razor.

Considerable efforts have been made to explain the “mystery” of booskngdman et al.
(2000) related boosting to fitting an additive logistic regression model. Fransttistical view
they developed the LogitBoost algorithm. Jiang (2004), Lugosi andtia§z004), Zhang (2004),
Bartlett et al. (2006) and others proved that boosting is Bayes cortgigtés properly regularized.
These works provide deep understanding of boosting. Howevee éxgdanations each focused on
some aspects of boosting. The consistency assures that boosting iga@sattp optimal, but it
does not explain boosting’s effectiveness on small sample problemstatigtical view led to many
new algorithms, but left boosting’s relative resistance to overfitting nditexglained. Boosting
algorithms involve several factors such as the type of base classiBgtdarization methods and
loss functions to minimize. Recently, Mease and Wyner (2008) studied tha{if these factors.
They provided a number of examples that are contrary to previous tiebexplanations.

Schapire et al. (1998) tried to give a comprehensive explanation in tdrthe margins of the
training examples. Roughly speaking, the margin of an example with respeclassifier is a mea-
sure of the confidence of the classification result. They proved arr bpped for the generalization
error of a voting classifier that does not depend on how many classifigescombined, but only on
the margin distribution over the training set, the number of the training exampletharsize (the
VC dimension for example) of the set of base classifiers. They also démaieusthat AdaBoost
has the ability to produce a “good” margin distribution. This theory suggeatptbducing a good
margin distribution is the key to the success of AdaBoost and explains wedlais/e resistance to
overfitting.

Soon after that however, there were serious doubt cast on this mapg@mation. First Breiman
(1999) and Grove and Schuurmans (1998) developed algorithms thahimexheminimum mar-
gin. (Minimum margin is the smallest margin over all training examples, see Sectiotfformal
definition). Breiman (1999) then gave an upper bound for the gendrahzzror of a voting classi-
fier in terms of the minimum margin, as well as the number of training examples asiz¢hef the
set of base classifiers. This bound is sharper than the bound ba#ieslmargin distribution given
in Schapire et al. (1998). Breiman (1999) argued that if the boundlwd@ie et al. implied that the
margin distribution is important to the generalization error, his bound implied nyegly that
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the minimum margin is the key to the generalization error, and the minimum margin maximizing
algorithms would achieve better performance than AdaBoost.

Grove and Schuurmans (1998) conducted a rigorous experimentahdsoipon the minimum
margin. They developed an algorithm called LP-AdaBoost which firss dsiaBoost to train a
series of base classifiers. Then by linear programming they obtaineicmra$ of the base clas-
sifiers, whose linear combination has the largest possible minimum margin. LPiAslaBoost
and AdaBoost have all relevant factors the same except the codfioktine base classifiers. Ac-
cording to the minimum margin bound, LP-AdaBoost would have smaller giezagian error than
AdaBoost. In experiments, although LP-AdaBoost always achievgsrlaninimum margins, its
test error is higher than AdaBoost on most data sets. This result puts ki ieeory into serious
doubt.

In this paper we provide a refined analysis of the margin theory. We peappoew upper bound
for the generalization error of voting classifiers. This bound is uniformbrger than Breiman’s
minimum margin bound. The key factor in this bound is a new margin notion whictefgeeto as
theEquilibrium margin (Emargin) The Emargin can be viewed as a measure of how good a margin
distribution is. In fact, the Emargin depends, in a complicated way, on the mdisgnibution,
and has little relation to the minimum margin. Experimental results show that AdaBsoally
produces a larger Emargin than LP-AdaBoost, which agrees with the Enexygjanation.

The margin theory has been studied and greatly improved by severatauispecially Koltchin-
skii and Panchenko (2002, 2005) developed new tools for empiricalepses and prove much
sharper margin distribution bounds. However it is difficult to compare tbesads to the min-
imum margin bound of Breiman (1999), since they contain unspecified cassthlevertheless,
these results suggest that the margin distribution may be more important than tmeimimargin
for the generalization error of voting classifiers.

We also show that if a boosting algorithm returns a classifier that minimizes thegErbaund
or the margin distribution bound of Schapire et al. (1998) then the cladgifisred converges to
the best classifier in the hypothesis space as the number of training exgopte® infinity.

The rest of this paper is organized as follows: In Section 2 we brieflgritesthe background
of the margin theory. Our main results—the Emargin bounds are given in 8&ctid/e provide
further explanation of the main bound in Section 4 and the consistency rigs8kstion 5. All the
proofs can be found in Section 6. We provide experimental justificationdtid®e7 and conclude
in Section 8.

2. Background

Consider binary classification problems. Examples are drawn indepindecording to an under-
lying distribution? overx x {—1,+41}, whereX is an instance space. L&f denote the space from
which the base hypotheses are chosen. A base hypothesifis a mapping fromx to {—1,+1}.

A voting classifierf (x) is of the form

fO) =S aihi(x), hie€ 4,

where
Zm =1 q;j>0.
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An error occurs on an examp(g,y) if and only if
yf(x) <O0.

We usePp(A(X,Y)) to denote the probability of the eveAtwhen an exampléx,y) is chosen ran-
domly according to the distributio®. Therefore Py (yf(x) < 0) is the generalization error df
which we want to bound. Lef be a training set containing examples. We usBs(A(x,y)) to
denote the probability with respect to choosing an exartiphg uniformly at random frong.

For an exampléx,y), the value ofy f(x) reflects the confidence of the prediction. Since each
base classifier outputsl or+1, one has

yf(x) = z oj — z ;.
i:y=hj(x) i:yZ£hi(x)

Hencey f(x) is the difference between the weights assigned to those base classifiesrthatly
classify (x,y) and the weights assigned to those that misclassify the examp(®) is called the
marginfor (x,y) with respect tof. If we consider the margins over the whole set of training ex-
amples, we can regaf (y f(x) < 0) as a distribution ove® (—1 < 8 < 1), sincePs(yf(x) <0) is
the fraction of training examples whose margin is at ntbsthis distribution is referred to as the
margin distribution

A description of AdaBoost is shown in Algorithm 1. In AdaBoost the linezefticientsa; is

set as 1 14
Yt
ot = =1lo
t 2 gl_yt’

wherey; is defined as:
n
ve= > De(i)yite(x).
20

Vt is an affine transformation of the error ratehpfvith respect to the weight distributidby.

AdaBoost often does not overfit. Although it is known that boosting@reloes overfit when
there is high classification noise, on many data sets the performance obgsiaeps improving
even after a large number of rounds.

The first margin explanation (Schapire et al., 1998) of the AdaBoostitiigois to upper bound
the generalization error of voting classifiers in terms of the margin distributiemnhumber of
training examples and the complexity of the set from which the base classifeehosen. The
theory contains two bounds: one applies to the case that the base classifiers finite, and the
other applies to the general case tiahas a finite VC dimension.

Theorem 1 (Schapire et al., 1998) For any > 0, with probability at leastl — & over the random
choice of the training sef of n examples, every voting classifier f satisfies the following bounds:

i <0) =, 1006 05 (2 o)) |

if | #| < 0. And

P@(Yf(X)SO> < inf [PS(yf(X)§6)+o< 1 (dk)g;gn/d)+log§>1/2>]’

S

6c(0,1]

where d is the VC dimension &f.
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Input: T, S={(X1,Y1), (X2,¥2),---, %n,¥n)}
wherex; € X, y; € {—1,1}.

Initialization: D1(i) = 1/n.
for t=1to T do

1. Train a base classifiby € #{ using distributiorD;, whereh; : X — {—1,1}.

2. Choose;.

3. Update:
D (i) exp(—0uyihk (%))

Z )

whereZ; is the normalization factor chosen so tBat 1 will be a distribution.
end
Output: The final classifier

Deya(i) =

F(x) = sgn(f(x)),

where
T

f(x) :t;atht(x).

Algorithm 1 : A description of AdaBoost.

The theorem states that if the voting classifier generates a good marginutigtrjlthat is, most
training examples have large margins so gty f(x) < 0) is small for not too smalb, then the
upper bound of the generalization error is also small. In Schapire eB8B])it has also been shown
that for the AdaBoost algorithnRs(y f(X) < 8) decreases to zero exponentially fast with respect
to the number of boosting iterationséfis not too large. These results suggest that the excellent
performance of AdaBoost is due to its good margin distribution.

Another important notion is the minimum margin which is the smallest margin achievétton
training set. Formally, the minimum margin, denoteddgyof a voting classifief on a training set
S is defined as

Bo = min{yf(x): (x,y) € S}.

Breiman (1999) proved an upper bound for the generalization erraotofg classifiers which de-
pends only on the minimum margin, not on the entire margin distribution.

Theorem 2 (Breiman, 1999) Assume thit/| < «. Let8y be a real number that satisfiég >

2
4 3] and

R 3200020 _
nB

Then for anyd > 0, with probability at leastlL — & over the random choice of the training sebf n
examples, every voting classifier f whose minimum margifi israt leasty satisfies the following
bound:

Py (yf(x) < 0) <R <Iog(2n) + Iog%Jr 1) + % log <|§|> .
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Breiman (1999) pointed out that his bound is sharper than the margin digindaound of
Schapire et al. 18 in Theorem 1 is taken to be the minimum mar@i the bound in Theorem 2
is about the square of the bound in terms of the margin distribution, since timg o Theorem 2

isO (';’%) and the bound in Theorem 1@(1 /'2’%) Breiman then argued that compared to the
margin &istribution explanation, his bound implieod more strongly that the minimum ngogarns
the generalization error.

Several authors developed algorithms to maximize the minimum margin. Amongttineesgst
representative one is the LP-AdaBoost proposed by Grove andiohos (1998). Lehy, ... hy
be the base classifiers returned by AdaBoost on the training exafiiglgs), i = 1,...,n}. Finding
a voting classifieg = thzlﬁtht such thag maximizes the minimum margin can be formulated as a
linear programming problem.

max m
B?m

T
st. hix)>m, i=12...,n
yt;& (%)
T
>0, =1,
Bt > t;Bt

wheref = (B1,---,Br). Grove and Schuurmans called this algorithm LP-AdaBoost.

Comparing the performance of AdaBoost and LP-AdaBoost is a goboafesgnificance of
the minimum margin bound. Except the linear coefficients, the voting classilidasned by the
two algorithms have all relevant factors the same. In experiments, althoudtdaBoost always
produces larger minimum margins, its test error is higher than AdaBoostafterethan not. This
result is different from what the minimum margin bound suggests and trergtits the margin
explanation into serious doubt.

Breiman (1999) and Meir andd®&sch (2003) developed arc-gv to maximize the minimum mar-
gin. Arc-gv can also be described by Algorithm 1. The only differemomfAdaBoost is how to set
0 at each round. It can be shown that arc-gv converges to the maximuginnsatution (Ratsch
and Warmuth, 2005; Rudin et al., 2007) whereas AdaBoost doeswaysido this (Rudin et al.,
2004). However on some data sets AdaBoost has larger minimum marginrthgn after a finite
number of rounds. Also note that arc-gv and AdaBoost generateatiffease classifiers. Recently
Reyzin and Schapire (2006) gained an important discovery that whetm&n (1999) tried to max-
imize the minimum margin by arc-gv, he had not make a good control of the coitypdéxhe base
classifiers, while comparing the margin is only meaningful when the complexibpasé learners
are the same.

3. Emargin Bounds

In this section we propose upper bounds in terms of the Emargin. The awedharper than the
minimum margin bound.

First let us introduce some notions. Consider the Bernoulli relative gnfroption D(q||p)
defined as L
D(dllp) =qlogg+(1—Q)logq

<p,g<l
1_p7 O—p’q l
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By convention, leD(0||0) = 0.
For a fixedq, D(q||p) is a monotone increasing function pffor g < p < 1. It is easy to check
that
D(ql[p) =0 whenp =g,
and
D(q||p) — « asp— 1.

Thus one can define the inverse functiorDgty||p) for fixed g asD~(g, u), such that
D (q||[D"*(q,u)) =u forallu>0andD *(q,u) > q.

See also Langford (2005).

The next theorem is our main result: the Emargin bound. Here we conseleage that the
base classifier se# is finite. For the case thak is infinite but has a finite VC dimension, the
bound is more complicated and will be given in Theorem 7. All the proofsedfiound in Section
6.

Theorem 3 If 8 < |#| < o, then for anyd > 0, with probability at leastl — & over the random
choice of the training sef of n examples (»- 1), every voting classifier f such that

8
Qo = PS (yf(x) < |j—[|> <1

satisfies the following bound:

oyt <0) <y it o (ulba). @
where
6(a) =sup{96 (0,1]: Ps(yf(X) < 9) sq}, (2)

1(8 2n? n
u(e) = - (eZ log (Iog]ﬂ\) log(2|#H|) + 2log|H | +Ioga> :

Note that the assumptiam < 1 in the theorem is very mild since it implies that at least one training
example has a large margin (larger thaih/8|), or equivalently théargestmargin is not too smafl.
This contrasts with the fact that the minimum margin bound applies whemithienummargin is
not too small.

Clearly the key factors in this bound are the optigaind the correspondir@(q).

Definition 4 Let ¢ be the optimal q in Equatiofi), and denote
0" =8(q).
We call6* the Equilibrium margin Emargin). It can be seen that'ds the empirical error at margin
0*, that is,
q° =Ps(yf(x) <6).
g* will be referred to as the Emargin error.

1. This observation is due to a reviewer.
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With Definition 4, the Emargin bound (1) can be simply written as

P@()/f(x) < 0) < Iogr|]}[\ +D’1<q*,u(e*)).

Theorem 3 provides an upper bound of the generalization error dfirgvclassifier that depends
on its Emargin and the Emargin error.

Our Emargin bound has a similar flavor to Theorem 1. Note that the Emargendspin a
complicated way, on the whole margin distribution. Roughly, if most training elesriave large
margins, the®* is large andy* is small. The minimum margin is only a special case of the Emargin.
From (2) one can see thé([O) is the minimum margin. Hence the Emargin is equal to the minimum
margin if and only if the optimad]* is zero.

We next compare our Emargin bound to the minimum margin bound. We showétattargin
bound is sharper than the minimum margin bound. Since the minimum margin bopiresagly
to the separable case, thatlg,> 0, we assume that the conditions in Theorem 2 are satisfied.

Theorem 5 Assume that the minimum mardg is larger than0. Then the bound given in Theo-
rem 3 is uniformly sharper than the minimum margin bound in Theorem 2.i§ &

R 32100207 _
nBg
then
log|#] | 1y (o* 1 117
T+D (q,u(e))gR Iog(2n)+|og§+1 +ﬁ|OgT'

This theorem suggests that the Emargin and Emargin error may be morentdtetviae gen-
eralization error than the minimum margin. The following theorem describegte&marging*
and the Emargin errag® affect the upper bound of the generalization ability. It states that a larger
Emargin and a smaller Emargin error result in a lower generalization erradbou

Theorem 6 Let f;, f, be two voting classifiers. Denote By, 8, the Emargins and by;q g, the
Emargin errors of f, f, respectively. Thus

qi:P5(yfi(x)<6i), i:1,2.

Also denote by B B, the Emargin upper bounds of the generalization error gf f (i.e., the
right-hand side of(1)). Then
B1 < By,

6:>62 and g <p.

Theorem 6 suggests that the Emargin and the Emargin error can be useghasres of the
quality of a margin distribution. A large Emargin and a small Emargin error indecgteod margin
distribution. Experimental results in Section 7 show that AdaBoost ofteanger Emargins and
smaller Emargin errors than LP-AdaBoost.

The last theorem of this section is the Emargin bound for the case that thiebsesie classifiers
has a finite VC dimension.
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Theorem 7 Suppose the set of base classifigfshas VC dimension d. Then for ady> 0, with
probability at leastl — & over the random choice of the training sgbf n examples, every voting
classifier f satisfies the following bound:

d?+1 . n-1 _ -
P. f(x)<0) < + inf — -D .ul6 7 3
l)(y = >_ N gefdodotd,..22 N (9.u[S(@]) 3)
where
o(a) ZSUP{GG (0.1] :Ps(yf(x <8) < q},
and

} log-lo —+3Io 16Io D+1 +lo @
nezgdg gezgd 96’

provided ¢ = Ps(yf(x) <0) <

4. Explanation of the Emargin Bound

In Theorem 3, we adopted the partial inverse of the relative entropygderupund the general-
ization error. The key term in the Emargin bound is;@f *(q,u [e(q)]) To better understand the
bound, we make use of three different upper bounds gint(q, u[8(q)]) to obtain simpler forms
and give explanations of the Emargin bound. We list in the following lemma therupminds of

infqD (g, u[B(a))-

Lemma 8 Let 1{6(q)] be the one defined in Theorem 3. Cet {qo, o+ i...,%1} where gwas
defined in Theorem 3. Then the following bounds hold. (In the first baveressume thatyg= 0.)

inf D *(qu[B(a)]) <D *(0,u[6(0)]) <u[B(0)].

~ 1/2
ég[fD—l(q,u [é(q)]) < ('12{— (q+ (u [ez(qﬂ> ) .

infD~%(q,u[6 < inf_ D 1(qul6 < inf  C'ulB(q)],
el (@ [(qm_qer, q<Cu[6(q)] (@ [(q)])_qer, q<Culb(q)] S(@)

where C is any constant such that there exists q such thka€q[6(q)]. Here C = max(2C, 8).

Note from Theorem 3 that
~ 1 /lognlog|#| 1))
ul6 =0 | ——"—+log=z | |,
5] <n ( 6(a)? ’5

a="Ps (yf(x) <8(q)).
Thus we can derive the following three bounds of the generalization feora the Emargin bound
by using the three inequalities in Lemma 8 respectively.

and

1843



WANG, SUGIYAMA , JING, YANG, ZHOU AND FENG

Corollary 9 If 8 < |#H| < o, then for anyd > 0, with probability at leastl — 6 over the random
choice of the training sef of n examples (o 1), every voting classifier € C(#) such thatg < 1
satisfies the following bounds:

Pp(yf(x) <0) <O (1 (

lognlog|#| 1))
e — :

| —
2 9%

Here we assum@y > /8/|#| is the minimum margin.

i 20) =, [ =9) 10 G (52 u0l) )|

7]

3. For any constant C anl € [\/8/|#],1) such that

8

2
Pely109 <)< ¢ (gatoa ooy ) 0@t +log| 1] +logg) ). (@

log|# | )

we have

Pp(yf(x) <6) <

log|#] C' (8
n n

(8 1og( 2 Viog(2is] + log|#] +log ")
02 %9\ jog|#] ) Y g 95’ )

where C = max(2C, 8).

The first bound in the corollary has the same order as the minimum margin bdbedgecond
bound is essentially the same as Theorem 1 excepétbabnot be too small. So previous bounds
can be derived from the Emargin bound. The third bound states that tiezadjeation error is
o <%) even in the non-zero error case, provided the margin &yoyf(x) < 0) is small
enough.

The third bound has a much simpler form than Theorem 1. If we use thisdbmudefine
Emargin, that is, the optimd in the bound, it can be greatly simplified. It is easy to see that the
optimal@ is just the largesh satisfying (4). The price however is that this approximate bound is not
uniformly sharper than the minimum margin bound.

5. Consistency

So far the results are finite sample generalization error bounds. In thisrsa@ point out that

the Emargin bound and the margin distribution bound in Theorem 1 imply statistinalstency.

In particular we show that if a boosting algorithm minimizes the bound, then tksifita learned
converges to the optimal classifier in the hypothesis space, that is, thexcbaoll of the base
classifiers. Here we assume that the set of base classifigsssymmetric. That is, ih € A then

—h e H. Therefore the best classifier in the convex hull#is also the best classifier in the linear
span of#. An immediate consequence of this consistency is that margin bound optimization is
Bayes consistent if the linear span of the base classifiers is dense inaitee afpall measurable

1844



A REFINED MARGIN ANALYSIS FORBOOSTINGALGORITHMS VIA EQUILIBRIUM MARGIN

functions. A typical example of such base classifiers is decision tree withuimber of leaves
larger than the dimension of the input space (Breiman, 2004).

Before stating the consistency theorem, we need some notion€(#£tbe the convex hull of
the set of base classifiers. Also let

L* = felg(];{) P@<yf(x) < 0).
That is,L* is the minimal generalization error of the classifier€i# ).

We consider an algorithm that optimizes the Emargin: Given a training sstntainingn
examples, the learning algorithm returns a functigre C(#/) which minimizes the finite VC
dimension Emargin bound (i.e., the right-hand side of (3)), or sirﬁplil(q*,u(e*)).

The next theorem states that margin bound optimization is consistent. With alrecsdrtie
arguments one can show that minimizing the margin distribution bound in Theoremso con-
sistent. But there is no such result for the minimum margin bound for the eyerable problems.

Theorem 10 Let C(#), L* and f, be defined as above. Then

lim EPy (yfn(x) <0) =L,

n—oo

where E is the expectation over the random draw of the training;set

6. Proofs

In this section, we give proofs of the theorems, lemmas and corollaries.

6.1 Proof of Theorem 3

The proof uses the tool developed in Schapire et al. (1998). Theatiffe is that we do not bound
the deviation of the generalization error from the empirical margin erroctiiréenstead we consider
the difference of the generalization error to a zero-one function oftaineempirical measure. This
allows us to unify the zero-error and nonzero-error cases andiitses a sharper bound. For the
sake of convenience, we follow the convention in Schapire et al. (1998)

Let C(H) denote the convex hull of{. Also letCy(#) denote the set of unweighted averages
overN elements from the base classifier $&£t Formally,

1 N
CN(}[):{g: g:NZhj, hj E.’]—[}.
=1
Any voting classifier
f= zBihi eC(H),

where

Z Bi =1, Bi >0,
can be associated with a distribution owrby the coefficient§p;}. We denote this distribution
asQ(f). By choosingN elements independently and randomly frefhaccording toQ(f), we
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can generate a classifigre Cy(#). The distribution ofg is denoted byQn(f). For any fixeda
(O<a<1)

Pp (yf(x) < 0) < Pp g au(f) (yg(x) < a) +Pop gon(f) (yg(x) >a, yf(x) < o)
No?
< Pp g qu(f) (yg(x) < d) +exp<—2> . 5)

We next bound the first term on the right-hand side of the inequality. Sthéaargument is the
same as Schapire et al. (1998). From now on we use some differenigeel. For any fixed
g € Cn(H), and for any positive numberand nonnegative integé&rsuch thak < ng, we consider
the probability (over the random draw ptraining examples) that the training error at margiis
less thark/n, while the true error of at margina is larger thare:

P <P5 (Yo(x) <a) < % Pp (yg(x) < a) > e) : (6)

Here Pg_pn denotes the probability over training examples chosen independently at random
according toD. Note that the proof in Schapire et al. (1998) considers only the differef

Pp (yg(x) < a) andPs (yg(x) < a), that is,Pp (yg(x) < a) — Ps (yg(x) < a); While here we con-
sider the values oPy (yg(x) < a) andPs (yg(x) < a) themselves. The benefit is that this allows
us to use the tightest version of Chernoff bound—the relative entropyn©ff bound—rather than
the relatively looser additive Chernoff bound. To derive the bouraywite (6) in the following
equivalent form.

Fr (P@(yg(X) <o) >1{Ps(yg(x) <a) > ﬂ +s> : (7)

wherel is the indicator function. (7) is important in our proof. It bounds the differe of the
true and empirical margin distributions asandk vary over their ranges. Bl anda can take
essentially finite number of values, so we can use union bounds. It'steage that no matter
Pp(yg(X) < a) > € or Pp(yg(X) < a) < g, we have the following inequality (In the former case, it
is the tail bound for Bernoulli trials; and in the latter case the probability is Hgtzero).

Pr (P@ (vao) <a) >1 [Ps (vao <a) > ﬂ +s) < i(?) e'(1—e)"".

Then applying the relative entropy Chernoff bound (Hoeffding, 3963he Bernoulli trials, we

further have
- (0 g (1-¢)" " <exp(-nD l—(Hs
We thus obtain

P <P@ (vaox) <a) >1 [Ps (va) <a) > ﬂ +s> < eXp<—nD <EH€>> SN C)

We only considen at the values in the set

1 2
U={——, = .1},
{WI |H| }
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There are no more thdti |N elements irCy (#). Using the union bound we get

5firyn <Hg eCn(H), JaeU, Py (yg(x) < G) > [P5 (yg(x) < G) - rlj] —|—s>

< |H|N+D exp<—nD (EHE)) :

The above formula upper bounds the probability thég & Cn(#)” certain inequality ofg holds.
The bound also applies t@‘a distribution ofg overCy(H)” such that the inequality of thexpec-
tation overg holds, since the latter implies the former. Note that

Eg~on(f)Po <yg(x) < 0‘) = Pp guqu(f) <yg(x) < O(),
Eg- (1) [Ps (va) <a) > ﬂ = Pyequ(n <P5 (va) <a) > E) -

We thus have

SVPEEH <3f € C(H),3a € U,Pp g.qy(f) (yg(x) < a) > Pyean(f) (PS(yg(x) <a) > > +s)

< | |(NFD) exp<—nD (EH&)) :
5= |H|(N+D exp<—nD (EHS)) :

k 1 1
Sl -
e=D (n,n[(N+1)Iog|}[+loga_)D.

We obtain that with probability at least-16 over the draw of the training examples, for &l
C(#), alla € U, but fixedk,

Let

then

k
Ppg-Qu) (yg(x) = 0‘) <Pg~au(f) <P5 (yg(x) < 0() > n> )
(kL 1
+D <n’ - (N+1)Iog]}[\+loga .

We next bound the first term in the right-hand side of (9). Using the sagugreant for deriving
(5), we have for any fixed, S, a, k, any8 > a

F~an(n <P5 (va <a) > E) <| [Ps (0 <8) > ﬂ

S x

) |

(10)

+Pyau(h) <P5 (yg(X) < a) > g,% (yf(x) < e) <
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Note that the last term in (10) can be written in the following equivalent fanchfarther bounded
by

_ 2
PQNQN(f)<E|(Xiayi) €S yigx) <a, yif(x) >9> <neXp<—N(92a)>. (11)

Combining (5), (9), (10) and (11), we have that with probability at leastdlover the draw of
training examples, for alf € C(#), alla € U, all 8 > a, but fixedk andN

2

P@(Yf(x) < 0) Sexp<—NZa) +nexp(_l\|(9;a)2>

+1 [P5(yf(x) < 6) > ﬂ +D? <:,i [(N+1) Iog|}[|+log§D.

Since0 is arbitrary, we sep = é(%). Now we constructi by rounding/2 to the nearest neighbor

of 1/|H|. Let

8 n
a_é—weu,

where 0< n < 1. The goal is to letr takes only a finite number of values. (Recall thht=
{‘—}1[‘,--' ,1}.) Itis easy to check that the sum of the first two terms on the right-hand Sithe o

above inequality can be bounded by the following.

exp(—Na2> +nexp<—N(eG)2>
2 2
8 2| H|? 2| H | 2| H |
< max<2n exp<N> +1> exp<—N92) .
- ’ 2| H| 8

The last inequality holds since08,n < 1. Replacing® by 8- 2N, we can get a union bound over
all N by replacing logg) in all previous equations by I¢g-x) = Nlog2+log(3). Put

8 2n?
N= [92"’9(!091%”

Now for any samples we only consideff € C(#) andk that satisfygy < 1 and

IN

k
2> 00
- = 0o (12)

Note that by (12) and the assumption thaf| > 8, we have

8
0>,/ —.
| ]
So by some numerical calculations one can show

2n > exp<2’N}[|> +1, (n>1).
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Recall that® = (k/n), soPs (yf(x) < 6> < 'ﬁ We thus obtain that for fixekl, with probability at

least 1— 6 over the random choice of the training Sevf n examples, every € C(H) with gp < 1
satisfies
log|#

P@(yf(x) < 0) < T+D’1 (E,u) ,

where )
1/8 2n 1
u=_ <92Iog <Iog\}[|> log(2|#|) + 2log| # | +Iogé> :

Finally using the union bound ovére {no,...,n— 1} and replacingd by 8/n, we have with
probability at least 1 6 over the random choice of the training Setf n examples, every € C(H)
with go < 1 satisfies

oy <0) < DI iy P (ﬁu) ,

n ke{nao,...,
where )
1/8 2n n
N -
u'=_ <62 log (Iog\}[) log(2|#|) + 2log| | +Ioga> .
The theorem follows. [ |
6.2 Proof of Theorem 5
The following lemma will be used to prove Theorem 5.
Lemma 11 D~%(0, p) < p for p> 0.
Proof of Lemma 11.We only need to show
D(0[[p) = p,
sinceD(q||p) is a monotonic increasing function pffor p > g. By Taylor expansion
S
D(O[[p) = —log(1—p) = p+ % + 5+ = P.

|
Proof of Theorem 5. By the assumption of Theorem 2 we h&g> 4 ‘—fﬂ Thenitis easy to see
that the right-hand side of the Emargin bound (1) is the minimum overalf0,..., "1} Take

g=0,itisclear thaé(O) is the minimum margin. By Lemma 11, the Emargin bound can be relaxed
to

1(8 2n? n
<0) <= = — -
Pp (yf(x) < O) < - (9% log <Iog|ﬂ-[|> log(2|#]) + 3log|H| +log 6)
< 16log(2n) I(ZJg(ZI}[\) N logn+2log|H| +}Iog (\?[[) ‘

nB3 n n o
We only need to show that this relaxed bound is sharper than Theoreon gheéeminimum margin

bound, we only consider the case tRat 1, since otherwise the bound is larger than one. Simple
calculations show that the right-hand side of (13) is smaller than the minimum niergnd. W

(13)
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6.3 Proof of Theorem 6

Remember that; = Ps(y fi(X) < 6;) is the optimalg* in the Emargin bound. Thus we only need to
show

D*l(ql,u(el)) < D*l(qz,uwz)).
<

Note that if6; > 6, thenu(61) < u(8). So

D (a2 u(82)) = D (ap,uley) ),

sinceD~1(g, u) is an increasing function af for fixed g. Also D~*(qg,u) is an increasing function
of g for fixed u, we have

D‘l(qz,U(Bl)) > D—l(ql,u(el))
sinceq; < gz. This completes the proof. -

6.4 Proof of Theorem 7

The next lemma is a modified version of the uniform convergence resydh{iand Chervonenkis,
1971; Vapnik, 1998) and its refinement (Devroye, 1982). It will bedufer proving Theorem 7.

Lemma 12 Let 4 be a class of subsets of a space Z. LetZ,i=1,...,n. Let N*(z,2,...,z,)
be the number of different sets in

{{zl,zz,...,zn}ﬂA: Aeﬂl}.

Define
s(a,n)= max NYz,2,...,2).
(2,22,....20)€Z"
Assume > % Lete = -fre— % Then for any distributiorD over Z and any nonnegative integer
k such thatt < ¢

Pr <3Aeﬂ1: Pp(A) > | {PS(A) > ﬂ —H-;) < Z.S(ﬂjnz)exp<_nD <n

1))
€ .
S~Dn

Proof of Lemma 12. The proof is the standard argument. We first show that for aryo0< 1,
€ > 0, and any integen’

s <3A€ A Pp(A) > [PS(A) > E] +s>

1 k
S [ — : K _ .
> (l_eZn/a2£2> Sv@n!:)srw@n’ <E|A€ A Pg(A) > | {PS(A) > n:| + (1 q)g)

Or equivalently,

o (igﬁ(P@(A) = [P5 (A) > ::D > s>

1 k
(yommwm) 7 <i££<P5'<A)" CE nD - 8)' .
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LetV denote the event

sup(P@(A) —1 [PS(A) > ED > €.

AcAa

If the above event occurs, 18t be anyA € 4 so thatPy(A) — | [Ps(A) > %] > €. Otherwise leA*
be anyA € 4. Note that the following two events

Pg(A") > Pp(A*) —ae

and ‘
Pp(A") —1 [PS(A*) > n] >€
imply that
Pg(A") — I [PS(A*) > E] > (1—a)e.
Then

Pr (sup(Pg(A)—l {P5(A) > ED > (1—0)8)

S~DN, S'~DV \ Ac

:/d@”/l ligﬂpl)(Py(A)—l [P5(A) > ED > (l—a)sldD”/

> /Vda)”/l :§g§<P5,(A)—| [PS(A) > ED > (1—a)e]da>”’

> /Vda)”/l Py (A*) — | [P5(A*) > ﬂ > (1—a)s]da>”’

Z/dﬂ)”/l Py (A*) > P@(A*)—as]d@”’
\Y%

> (l_e—Zn/azez)/d@n
\Y%

_ (1 _ o—2na?e? . lf
- (1 e )fgn (igﬁ(P@(A) | [PS(A) > n]) >s).
This completes the proof of (14).

Take
n=n?—n,
q— 1
~ (n—1)¢’
we have
k
P JAe 4. Pp(A) >1|Ps(A) > —
5@;( € n(A) > [3( >>n]+€>
k 1
<2 Pr A€ 4 Pg(A) >1 |Ps(A)>—|+(e——) |-
S~Dn, §' D n n-1
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Proceeding as Devroye (1982) and using the relative entropy Hogffidequality, the lemma
follows. [ |

Proof of Theorem 7. The proof is the same as Theorem 3 until we have (8)oLet2, we need to
bound

s (39 €Cn(5). 0>0, P@<yg(x) = g) > [Ps <yg(x) < g) > E] +s>.

Note that for fixed\, in order to derive a bound uniformly over alkQ8 < 1 it suffices to show the

bound holds foB = %, 2,... 1. Let

0
Ag) = {(x,y) e X x{-1,1}: ygx) < 2},
and
A={Ag): geCn(H)}.
By Sauer’s lemma (Sauer, 1972) it is easy to see that

s(4,n) < (?)Nd,

whered is the VC dimension of{. By Lemma 12, we have

Ky (39 €Cn(4), 36 >0, P@(YQ(X) < g) > | [PS (yg(x) < g) > k] +s>

n
canen () “m( wo()).

1

n-1" n
Proceeding as the proof of Theorem 3, we have that with probability st lead the following
holds for everyf € C(H), everyB > 0 but fixedk, where 0< k < ne.

0 0 k 1 n-1__,/k
Pop.g~au(f) (yg(x) < 2) < Pgeau(h) <P5 (yg(x) < 2) > n) to+—D ! <n7T> , (15)

where
€

where

d
Similar to the proof of Theorem 3, we can bound the first term of (15) as

1= % [Nd (Iogn2 +1> +Iog(2(N+1))+Iogal_J .

oo <P5 <yg<x) = 2) ~ E) = [Ps (yf(x) <8)> E]

e <P5 (yg(x) : 2) > X Pyt <) < E)
<1 [P(ytn <0) > +nexp<—[\l§2) | 6
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Settingd = é(%) and combining (15), (16) and (5); recalling= 6/2 we have with probability at
least 1-dforall f € C(H), all 0< 6 < 1, but fixedk andN

1 NO2\ n-1_,/k
P@(yf(x)<0)<n+(n+1)exp<—8)+nD <n,r>.

Use the union bound oveéd; putN = é—?logg and use the union bound ovkras in the proof of
Theorem 3 we obtain the theorem. |

6.5 Proof of Lemma 8

The first inequality has already been proved in Lemma 11.
For the second inequality, we only need to show

D Y(q,u) <q++/u/2,
or equivalently
D(a,9++/u/2) > u,
sinceD is an increasing function in the second parameter. But this is immediate by aneethk

result (Hoeffding, 1963):
D(q,q+ &) > 25

For the third inequality we first show that for alkOq < 1

-1(94
D(5.5) <@ (17)
which is equivalent to
q q
(5]a) = 5
For fixedq, let@(x) = D(gx|q), 0 < x < 1. Note that
®1)=¢(1)=0,
and q
!
= >
we have

q (1 q
D (5]a) —‘P(z> =
This completes the proof of (17).

Now if g < Cu[B(q)], recall thalC’ = max(2C, 8), and noteD 1 is increasing function on its first
and second parameter respectivelC'ii[8(q)] < 1 we have

ot (@uida)) < o*(Gub)l.ufba))

IN - IA

Q O

s -

@)/—\

—~

a N Q

SN—

o c
D>
—~
Q
=
o
c
D>
—~
Q
=
N——

The lemma follows. [ ]
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6.6 Proof of Corollary 9

The first and third bounds are straightforward from lemma 8. We onlyepttoe second bound.
Let ®(0) be the right hand side of the bound (without taking the infimum) we want toegprov

that is, )
1 /lognlog|H 1\ 2
¢(9):P5(yf(x)§6)+0<ﬁ (992£’||+|oga> )

Itis not difficult to see that there is ribthat can achieve igf g/ 1 P(0). To see this, first note
that for any®, eitherPs(yf(x) < 8) = Pg(yf(x) < 8) (a continuous point), oPs(yf(x) < 0) <
Ps(yf(x) <0) (ajump point). In the former case, increasthdecrease®(0) sincePs(y f(x) < 8)
does not change bui0) is decreasing. In the latter case, decrea$imdso decrease®(0), since
Ps(y f(x) < 8) decreases discontinuously whiléd) increases continuously.

Let 61,0,,..., be a sequence so th@t8;) converges to inf®(6). Let B be the limiting point
of 84,0,,.... Itis not difficult to see from the above argument that for sufficientlgdar 6; < 6,
since there is a jump @b(0) at thosed such thaPs(y f(x) < ) is discontinuous. Take arfy that is
sufficiently close td. Letq; = Ps(yf(x) < 8;), we must havé(q;) = 8 (recall that(q;) = sup(0 €
(0,1] : Ps(yf(x) < 8) < q;}). Thereforeu[8(q;)] < u(6;) and hencey + (u[6(q;)])Y/2 < ®(8;). Thus
infq(q+ (u[B(q)])¥/2) < infa®(B). The corollary follows. u

6.7 Proof of Theorem 10

We first give a simple lemma.

Lemma 13 Let& be a random variable and a positive constant. If for anyt 0 we have ¢ >
Kt) < exp(—t?), then E, < @K.

Proof of Lemma 13.
Es— /_iu d(—P(E > ) < /omu d(—P(E > ).

By the assumption, we have

EE < / Ktd(—e ) = @K.
0 2
]
Proof of Theorem 10.
LetB(f) be the right-hand-side of the Emargin bound in Theorem 7. Then for aimjrtg sets,
fnis the functionf in C(#) so thatB( f) is minimized, that isf,, = arg mincc(sr) B(f). According
to the Emargin bound, with probability-15

~ ~

Pp(yfn(x) <0) < B(fn).

Since f, = argmiry (s B(f), then for anyf € C(#f), we haveB(f,) < B(f). Therefore for
all f € C(H), with probability 1—

R 2
Pp(yfa(x) <0) <B(f) = d +1+ inf
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_For any fixedf € C(#), letq=Ps(yf(x) <n Y/4). Itis easy to see th&t(q) > n~%/4 and
u[B(q)] < u[n~Y4], whereu[8(q)] is defined in Theorem 7. By the second inequalityDof! in
lemma 8, we have

2 —_— ~
Poyh0<0) < T (g b)),
d®+1 n-1

<

e (Ps(yf(X) <n %+ (u [nfl/“} )1/2) :

It is easy to see that there is a constafihndependent of) such that the right-hand-side of the
above inequality can be further bounded by

n

n-1

dlog§
Tps(yf(x)gn*1/4)+c 94 logn

+Cy/ — !
nl/4 n 3

log(5).

Lett = Iog(%), we have that for anyy> 0 with probability at most ex@-t?)

R n—1 dlogt logn
Po(yfa(x) < 0) = T Ps(yf(x) <n ¥4 nlid > o[22,

According to lemma 13, we obtain

- n—1 N dlogg ¢y /logn
EP@(yfn(X)SO)_TEPS(yf(X)Sn Y —c n1/4d < \Zf g ;

where the expectation is over the random choice of the training set. Note that

EPs(yf(x) < n %) =Pp(yf(x) < n /%),

we have

f n-1 _1/a , dlogg cy/m [logn
EPp(yfn(}) <0) < ——=Pp(yf(x) <n /% 4c S+ Y 9,

Letn — o, we obtain

lim EPp(yfa(x) < 0) < lim Po(yf(x) < n*) =Pp(yf(x) <0).

n—oo

The last equality holds becauBg(y f(x) < 8) is a right continuous function @. Since the above
inequality is true for every € C(#), we have

lim EPp(yfa(x) <0) < Pp(yf(x) <0) = L".

inf
feC(#)

7. Experiments

In this section we provide experimental results to verify our theory. We eoenpdaBoost and
LP-AdaBoost in terms of their Emargin, Emargin error and the generalizatimm. Theorem 6
suggests that if a voting classifiér has a larger Emargin and a smaller Emargin error than another
classifierf,, thenf; has a smaller bound of the generalization error thai hus we expect; will
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Data Set # Examples # FeaturedPata Set # Examples # Features
Image 2310 16 Page-block 5473 10
Isolet 7797 617 Pendigits 10992 16
Letter 20000 16 Satimage 6435 36
Magic04 19022 10 Shuttle 58000 9
Mfeat-fac 2000 216 Spambase 4601 57
Optdigits 5620 64 Waveform 5000 30

Table 1: Description of the large data sets

Data Set # Examples # Features

Breast 683 9
Diabetes 768 8
German 1000 24
Vehicle 845 18
Wdbc 569 30

Table 2: Description of the small data sets

have better performance on the test data. The goal of the experimene&suwhsther the empirical
results agree with the theoretical prediction.

The experiments are conducted on 17 benchmark data sets all from thepiSitory (Asun-
cion and Newman, 2007). The data sets are grouped into two categoaiglg. ITlists 12 “large”
data sets, each containing at least 1000 data points. Table 7 lists 5 “smalBedstaach has at
most 1000 examples. (We distinguish large and small data sets becausendefey demonstrate
somewhat different results, see below for discussions.) If the data is las#tjeve group them into
two classes since we study binary classification problems. For instancéettee’ data set has 26
classes, we use the first 13 as the positive and the others as the ndgatieepreprocessing stage,
each feature is normalized [0, 1]. For all data sets we use 5-fold cross validation, and average the
results over 10 runs (for a total of 50 runs on each data set).

In order to study the effect of the margins, we need to control and cédctila complexity of
the base classifiers. We conduct two sets of experiments using diffexsatclassifiers. For one
set of experiments, we use decision stumps. For the other, we use tyeeeitght-leaf (complete)
binary decision trees (Therefore the shape of the trees are fixedt.olgider a finite set of base
classifiers. Specifically, for each feature we consider 100 thresbalétemly distributed o0, 1].
Therefore the size of the set of decision stumpsi#slP0x k, and for the three-layer eight-leaf trees
is (2 x 100x k), wherek denotes the number of features.

We run AdaBoost 100 rounds, and use the obtained base classifieamtthe LP-AdaBoost
voting classifier. We then calculate the Emargin, Emargin error, test ertgelaas the minimum
margin of them respectively. The calculation of the Emargin involves solviagniverse relative
entropyD~%(qg,u). SinceD is a monotone function on the second parameter, one can adopt the
Newton method to find the root @(q||-) — u= 0 on[g, 1]. Another simple way to solvB—(g, u)
is just applying binary search ¢q, 1: Let p; =g, p2 = 1. We haveD(q, p1) =0<uandD(q, p2) =
o > u. Then letps = 27P2, computeD(q, ps) and see iD(q, ps) > u or not, etc.
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Emargin Emargin Error Test Error Min margin

Image Ada 0.461+ 0.024 0.799+ 0.016 0.032-0.009 -0.076+ 0.010
LP  0.751+0.238 0.664t 0.075 0.029:0.009 0.000+ 0.001

Isolet Ada 0.172+ 0.057 0.714+ 0.040 0.163+0.045 -0.195+ 0.063
LP  0.145+ 0.031 0.763t0.021 0.180+ 0.053 -0.069+ 0.015

Letter Ada 0.199+ 0.010 0.804t+ 0.017 0.190+ 0.005 -0.309+ 0.009
LP  0.000+ 0.000 0.905t 0.021 0.202+0.012 0.00G+ 0.000

Magic04 Ada 0.190+ 0.007 0.716t+ 0.017 0.23G+ 0.006 -0.412+ 0.034
LP  0.000+ 0.000 0.859+ 0.063 0.265+0.017 0.000+ 0.000

Mfeat-fac Ada 0.184+ 0.008 0.538+ 0.033 0.040+ 0.009 -0.018+ 0.007
LP  0.171+ 0.009 0.558t 0.038 0.045+-0.010 0.033+ 0.003

Optdigits ~ Ada 0.173+0.009 0.654+ 0.022 0.11% 0.013 -0.231+ 0.016
LP  0.017+0.046 0.708+ 0.027 0.12A# 0.019 -0.01G+ 0.027

Page-block Ada 0.278+0.014 0.458+ 0.037 0.048: 0.005 -0.213+ 0.023
LP  0.232+ 0.374 0.686t+ 0.218 0.055+0.008 0.00G+ 0.000

Pendigits Ada 0.176+ 0.006 0.634+ 0.020 0.094 0.006 -0.243+ 0.015
LP  0.135+ 0.046 0.71: 0.028 0.13H0.010 -0.085+ 0.029

Satimage Ada 0.262+ 0.008 0594+ 0.018 0.05# 0.005 -0.161+ 0.014
LP  0.092+ 0.280 0.77k 0.036 0.066+ 0.007 0.0006+ 0.000

Shuttle Ada 0.173+0.017 0.062+ 0.038 0.001+ 0.000 -0.087 0.026
LP  0.204+ 0.032 0.251+0.065 0.00H 0.000 0.00G+ 0.000

Spambase Ada 0.315+0.217 0.59H4 0.201 0.055+ 0.020 -0.126+ 0.365
LP  0.116+ 0.316 0.737 0.257 0.080+ 0.028 0.096+ 0.291

Waveform Ada 0.371+0.014 0.724 0.013 0.096+ 0.008 -0.185+ 0.014
LP  0.000+ 0.000 0.78G+0.014 0.104+0.011 0.00G+ 0.000

and using thestump base classifiers.

Table 3: Margin measures and performances of AdaBoost and LBgudh on thdarge data sets

Emargin Emargin Error Test Error Min margin

Breast Ada 0.312+ 0.045 0.425+ 0.082 0.044+ 0.016 -0.048+ 0.017
LP  0.299+ 0.068 0.556+ 0.135 0.053+0.017 0.022t 0.012

Diabetes Ada 0.216+ 0.017 0.753+0.033 0.228+ 0.026 -0.199+ 0.018
LP  0.149+0.294 0.821 0.071 0.27H 0.040 -0.008t 0.015

German Ada 0.221+0.015 0.769t 0.029 0.240+ 0.026 -0.246+ 0.018
LP  0.059+0.173 0.818t0.073 0.272+0.030 0.00Gt 0.000

Vehicle  Ada 0.196t 0.012 0.688+ 0.035 0.223+0.026 -0.102+ 0.011
LP  0.273+0.285 0.790+ 0.075 0.23H-0.029 -0.018+ 0.008

Wdbc Ada 0.400+ 0.032 0.5374+0.048 0.028+ 0.014 0.096+ 0.012
LP  0.376+0.032 0.546+ 0.050 0.033+0.015 0.139t 0.008

and using thestump base classifiers.
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Emargin Emargin Error Test Error Min margin

Image Ada 0.370+0.016 0.375t0.034 0.01G+ 0.004 0.184+ 0.008
LP  0.374+0.023 0.374+ 0.054 0.01G+ 0.004 0.232+ 0.007

Isolet Ada 0.252+ 0.076 0.589t+ 0.028 0.074+ 0.067 0.020t 0.144
LP  0.240+0.010 0.591 0.040 0.074+-0.056 0.063+ 0.071

Letter Ada 0.246+0.017 0.714+0.034 0.077 0.006 -0.144+0.012
LP  0.236+ 0.019 0.775:0.031 0.086+0.006 0.06% 0.004

MagicO4  Ada 0.312+0.018 0.805+-0.018 0.156+ 0.006 -0.212+ 0.012
LP  0.282+0.038 0.879+0.028 0.225+0.013 -0.085t 0.003

Mfeat-fac Ada 0.377+0.029 0.293+ 0.104 0.017A 0.005 0.285+ 0.006
LP  0.350+ 0.044 0.146+0.174 0.018+ 0.006 0.314+ 0.005

Optdigits Ada 0.2884+ 0.009 0.460+ 0.025 0.018t 0.003 0.090+ 0.006
LP  0.288+0.010 0.466+ 0.022 0.018+0.003 0.124+ 0.004

Page-block Ada 0.392+ 0.024 0.4654+ 0.038 0.030+ 0.005 -0.068+ 0.009
LP  0.508+ 0.041 0.518+ 0.057 0.033:0.005 0.00Gt 0.000

Pendigits = Ada 0.305+ 0.008 0.3374+0.017 0.005+0.001 0.104 0.008
LP  0.301+0.010 0.345:0.022 0.005:0.001 0.137% 0.005

Satimage Ada 0.319+0.013 0.484+ 0.026 0.044+ 0.006 0.012+ 0.008
LP  0.284+ 0.014 0.496+ 0.039 0.046+ 0.006 0.055+ 0.004

Shuttle Ada 0.503+ 0.037 0.034+ 0.020 0.001+ 0.000 -0.049+ 0.013
LP  0.541+0.066 0.071+0.042 0.00H 0.000 0.00Gt 0.000

Spambase Ada 0.294+ 0.014 0.601+ 0.034 0.052+ 0.006 -0.092+ 0.008
LP  0.309+0.181 0.68L 0.077 0.064 0.008 -0.002t 0.002

Waveform Ada 0.494+ 0.023 0.709+ 0.011 0.100+4+ 0.009 0.001+ 0.006
LP  0.473+£0.033 0.714+0.018 0.103+0.008 0.0414 0.003

Table 5: Margin measures and performances of AdaBoost and LBgudh on thdarge data sets

and using th@ree base classifiers.

Emargin Emargin Error Test Error Min margin
Breast Ada 0.59% 0.057 0.392t 0.051 0.030+ 0.014 0.317+ 0.030
LP  0.667+0.059 0.404+ 0.053 0.033+-0.014 0.385t 0.033
Diabetes Ada 0.2360.032 0.706+ 0.062 0.272+ 0.027 0.035+ 0.007
LP  0.222+ 0.026 0.709+ 0.058 0.284+- 0.030 0.082t 0.004
German Ada 0.202+ 0.015 0.704+ 0.041 0.242+ 0.027 -0.010+ 0.010
LP  0.192+ 0.017 0.703+ 0.050 0.259 0.028 0.046+ 0.004
Vehicle  Ada 0.271+0.018 0.644+0.038 0.216t0.029 0.087A 0.007
LP  0.256+ 0.020 0.633+ 0.046 0.216+0.027 0.127 0.004
Wdbc Ada 0.539t 0.018 0.015+0.010 0.028+0.013 0.527 0.019
LP  0.582+ 0.020 0.002+ 0.000 0.030+ 0.014 0.582t 0.020

Table 6: Margin measures and performances of AdaBoost and LBgudh on thesmall data sets

and using theree base classifiers.
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The results are described in Tables 3, 4, 5 and 6 respectively acgdadihe type of base
classifiers used and the size of the data sets. To highlight the results veldfsee in the following
manner: By a t-test with significant level 0.0thrger Emargin, smaller Emargin error, and
smaller test error are denoted in boldface. If on a data set, the empirical result agrees with th
theory, thename of the data seis marked in boldface. For example, if one algorithm has larger
Emargin, smaller or equal Emargin error, and smaller test error, then thesdtis marked in
boldface. Similarly, if one algorithm has smaller Emargin error, larger caldguargin, and smaller
test error, then the data set is marked in boldface. Also if the two algorithwes(btatistically) the
same Emargin, Emargin error and test error, it agrees with the theory.

In Table 3 we use decision stump base classifiers on large data sets. Watsady one data
set is not marked in boldface. On this “Shuttle” data set, LP-AdaBoosahager Emargin and
also a larger Emargin error. In this case, the comparison theorem @rheérdoes not apply. We
mark such data sets by italic font. Note that AdaBoost does not alwagsla&aer Emargin than
LP-AdaBoost. On the “Image” data set, LP-AdaBoost achieves larger@in, smaller Emargin
error and, as the bound predicts, a smaller test error.

In Table 4 we use decision stump base classifiers on small data sets. feogrtdagree with the
theory. On the “Vehicle” data set, although the bound predicts that AdaBaedd have a smaller
generalization error, the test error of AdaBoost is not significantly smihiée LP-AdaBoost.

In Table 5 we use eight-leave decision tree base classifiers on largeetlatd&ght data sets
agree with the theory. For the “Mfeat-fac”, “Page-block” and “Shuttlata sets, our comparison
theorem does not apply. Only the “Pendigits” data set differs from tharétieal prediction: The
test errors are the same while the theory predicts AdaBoost would pebieiter.

The last set of experiments, listed in Table 6, in which we use eight-leavsiatetree base
classifiers on small data sets, behaves different from all the prevesudts. Only one data set
agrees with the theory. On the “Breast” data set, the test error is cotdrahat the bound predicts.

To summarize, on large data sets, the Emargin theory usually agrees with ahgtigervations.
AdaBoost has better performances because it has a larger Emargis@aatler Emargin error. Note
there are also cases that LP-AdaBoost achieves a larger Emargirsaradler Emargin error and a
smaller test error. However, on small data sets and with more complex bas#ietsa, the theory
does not often give the correct predictions. We think the reason is tbdiabnd is still loose,
especially when the data set contains only a few hundred of points. Alsathber of classifiers
is a loose bound for the complexity of complex decision trees.

Finally we plot in Figure 1 some margin distribution graphs and the corregppianargin and
Emargin errors to give an illustration. AdaBoost often has intuitively “bettergin distributions.

8. Conclusions

In this paper we provided a refined analysis on the margin theory fortibhgaalgorithms, which
extended our preliminary study (Wang et al., 2008). We proposed alboaerms of a new margin
measure called the Emargin, which depends on the whole margin distributismbdimd is uni-
formly sharper than the minimum margin bound whose prediction is different the empirical
observations. Our theory suggests that a boosting classifier may netbesarily achieve better
performance even though it generates a larger minimum margin.

Our bound suggests that the Emargin and the Emargin error play importestocguarantee
a smaller bound of the generalization error of a voting classifier—a langerdin and a smaller

1859



WANG, SUGIYAMA , JING, YANG, ZHOU AND FENG

Breast Breast
T 1 T T T bas
!
.
o9t 7?'*
o8 ot
[+
< o1l ¢
< S 07 )
g E | *
2 2 osf ,/‘*
= ha) |4
a o | ¥
05 [
2 2 #
g 8 oal #
E £ ::::::::::::::::::::::::::::,*
3 3 o3f *T
il
02f Ko
.
o I
o1f Pa "
#, i
Y2 T L
02 ~oa 06 08 1 04 02 0 02 4 06 08 1
Margin Margin
Satimage Satimage
1 1 T T T
09 /r 09
08l ) 08
S o7 f S o7t
=1 / =1
5 El
£ o6 ! = oo
z /' g
=} [a}
05— — —————— === 05k o _____
o d o
> R i
H , E
S o4 f Em—
g =]
303 3 03f
02 o2}
01 o1f
.
0.4 02 2 04 06 08 1 0.4 0.2 0 2 0 06 08 1
Margin Margin
Shuttle Shuttle
1 T T 1 T T T T
=
09 o9t
08 o8|

°

Cumulative Distrbutin
°
Cumulatve Distributin
°
o

03
O2F TTTTT T T T T T 02
,,,,,,,,,,,,, L
[
(513 f 01
P
L . . . . .
0.4 -0.2 o 02 04 06 0.8 1 04 B 0. 4 1
Margin

Figure 1: Margin distribution graphs with Emargin and Emargin errors. Tteslmarked with
stars are the margin distributions of LP-AdaBoost. The lines marked with giacke of
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column uses decision stump base classifiers, the right column uses deasiafassi-
fiers. The three rows are from the data sets of Breast, Satimage and &mp#etively.
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Emargin error result in better generalization ability. Experimental resultaatrt¢o-small) bench-
mark data sets agree well with our theory.

From a practical point of view, the Emargin bound is still too loose to givéulisgantitative
predictions. For most data sets, the bound is larger tlian@n the other hand we can employ the
bound to “compare” voting classifiers with the help of Emargin and Emargar.efhis provides
some guidance to choose classifiers. To calculate the Emargin, one né&aadsvtthe complexity
(e.g., VC dimension) of the base classifiers. This can be difficult for sase learners like C4.5
decision trees.

A future work is to develop algorithms that generate voting classifiers witd goargin distri-
butions, that is, large Emargin and small Emargin error. Directly optimizing Emargl Emargin
error would be computationally difficult. On the other hand, given a votinggdiary ah, it might
be possible to improve its margin distribution. One way is to solve the following lioygimization
problem to obtairy B¢h.

max > & (18)
sty Y Bhw(x) > yi ) aehe(x) +&, i=12,...

>0 >PB=1

& >0,

wherea = (ay,...,0r1), B = (B1,...,B7), & = (§1,...,&n). If there is a nontrivial solution (i.e.,
B # a), 3 Bth would have a uniformly better margin distribution thdrohy and therefore we
expect it has a smaller generalization error. However, there is usualipmtoivial solutions when
S othy is an AdaBoost classifie—it already has a good margin distribution. An ppbiem is to
modify and relax (18) and obtain a solution with larger Emargin and smaller Emamgr. Then it
would be a good test to see if such a classifier achieves better perf@msiar theory predicts.
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