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Abstract

The Local model fitting (LMF) method is a single-shot surface profiling algorithm. Its
measurement principle is based on the assumption that the target surface to be profiled
is locally flat, which enables us to utilize the information brought by nearby pixels in
the single interference image for robust local model fitting. Given that the shape and
size of the local area is appropriately determined, the LMF method was demonstrated
to provide very accurate measurement results. However, the appropriate choice of
the local area often requires prior knowledge on the target surface profile or manual
parameter tuning. To cope with this problem, we propose a method for automatically
determining the shape and size of local regions only from the single interference image.
The effectiveness of the proposed method is demonstrated through experiments.
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1 Introduction

Optical surface profiling can be used for the inspection of various industrial products such
as semi-conductors and flat-display panels. The phase-shift method [1], which uses multiple
interference images taken by changing the relative distance between the target object and the
reference mirror, is a classic but useful surface profiling algorithm. Although the phase-shift
method was shown to be very accurate, its high accuracy is vulnerable to vibration, and its
measurement speed is rather slow due to the need for taking several interference images.

In order to overcome these weaknesses, ‘single-shot’ surface profiling methods have been
developed. A key idea of single-shot methods is to slightly tilt the reference mirror so that
the interference patterns can be observed spatially. Single-shot methods are fast and robust
against vibration, and furthermore the measurement system can be highly simplified since
mechanical devices such as piezo actuators are not necessary. For these reasons, various
fundamental single-shot methods have been developed so far, e.g., the Fourier transform
method [2], the spatial-phase synchronization method [3], the windowed Fourier transform
method [4], the spatial phase-shift method [5, 6], and the local model fitting (LMF) method
[7]. Furthermore, more elaborate single-shot algorithms are studied recently [8, 9, 10, 11].

Among these single-shot methods, the LMF method was shown to be particularly useful.
Its measurement principle relies on the assumption that the target surface to be profiled is
locally flat. This assumption enables us to utilize the information brought by nearby pixels
in the single interference image for robust local model fitting. The locality of LMF allows
us to measure objects with sharp steps and/or covered with heterogeneous materials, which
is an advantage over the Fourier transform method and the spatial-phase synchronization
method. The windowed Fourier transform method also processes the fringe image locally,
but it requires an assumption that the target surface to be profiled is sufficiently smooth.
The spatial phase-shift method is accurate, but it requires the reference mirror to be exactly
tilted to a specified angle, which is hard to achieve in practice. On the other hand, the tilting
angle of the reference mirror can be arbitrary in LMF.

However, the accuracy of the LMF method depends on the choice of local regions, which
needs to be manually tuned appropriately in practice. The purpose of this paper is to
give a method for automatically determining such tuning parameters only from the single
interference image. Our key idea is that a pixel is held out from the estimation of the surface
profile, and it is used for validating the accuracy of the estimation. Based on this hold-out
validation, tuning parameters such as the size of local regions are determined so that the
validation error averaged over the entire image is minimized.

The rest of this paper is structured as follows. In Section 2, we briefly review the LMF
method and illustrate its sensitivity to the choice of a tuning parameter through computer
simulation. Then we describe our proposed method for automatically determining the tuning
parameter value. In Section 3, we extend our automatic parameter optimization method to
a flexible variant of LMF called the iteratively-reweighted LMF (IRLMF) method [12]. Its
practical usefulness is demonstrated through computer simulation and actual experiments.
Finally, we conclude this paper in Section 4.
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2 Automatic Parameter Determination for Local

Model Fitting

In this section, we describe a method for automatically determining tuning parameters in-
cluded in the LMF method.

2.1 The Local Model Fitting Method

First, let us briefly review the measurement principle of the LMF method [7]. We tilt the
reference mirror in an arbitrary angle. Then an interference pattern is modeled as

g(x, y) := a(x, y) + b(x, y) cos (ϕ(x, y) + 2πfxx+ 2πfyy) , (1)

where a(x, y) and b(x, y) are the bias and the amplitude, ϕ(x, y) contains information on
the surface profile, and fx and fy are the spatial carrier-frequencies along the x- and y-axes,
respectively.

In the LMF method, we assume that a(x, y), b(x, y), and ϕ(x, y) are constant in the
vicinity of a target point (xt, yt) on the surface. Let Tt be the set of indices of pixels in the
vicinity of (xt, yt). Note that Tt includes the target point (xt, yt) itself. Then the local model
around (xt, yt) is given and expressed as

ḡt(x, y) := at + bt cos(ϕt + 2πfxx+ 2πfyy)

= at + ξtφ(x, y) + ζtψ(x, y), (2)

where

ξt := bt cosϕt, φ(x, y) := cos(2πfxx+ 2πfyy),

ζt := bt sinϕt, ψ(x, y) := − sin(2πfxx+ 2πfyy). (3)

In the model Eq.(2), at, ξt, and ζt are parameters. To determine these parameters, this local
model is fitted to the observations in the vicinity of the target point by least-squares:

(ât, ξ̂t, ζ̂t) := argmin
(at,ξt,ζt)

∑
i∈Tt

(
gi − ḡt(xi, yi)

)2

,

where gi is the pixel value observed at (xi, yi). Since the model (2) is linear with respect to

at, ξt, and ζt, the least-squares solutions ât, ξ̂t, and ζ̂t can be analytically obtained as

(ât, ξ̂t, ζ̂t)
⊤ = (A⊤

t At)
−1A⊤

t gt,

where, for Tt = {t1, t2, . . . , t|Tt|} with |Tt| being the number of elements in the set Tt, the
matrix At and the vector gt are defined by

At :=


1 φ(xt1 , yt1) ψ(xt1 , yt1)
1 φ(xt2 , yt2) ψ(xt2 , yt2)
...

...
...

1 φ(x|Tt|, y|Tt|) ψ(x|Tt|, y|Tt|)

 , gt :=


gt1
gt2
...

g|Tt|

 .
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Given ξ̂t and ζ̂t, an estimate of the surface profile at (xt, yt) can be obtained by

ϕ̂(xt, yt) := arctan
(
ζ̂t/ξ̂t

)
+ 2mtπ,

where mt is an unknown integer which may be determined by a phase-unwrapping algorithm
[13]. In general, the value of ‘arctan’ can be determined only up to a π range. Nevertheless,

since the signs of cos ϕ̂(xt, yt) and sin ϕ̂(xt, yt) can be determined from ξ̂t and ζ̂t (see Eq.(3)),

ϕ̂(xt, yt) can be determined up to a 2π range.

2.2 Behavior of LMF

The measurement principle of the LMF method relies on the assumption that a(x, y), b(x, y),
and ϕ(x, y) are locally constant around the target point. Although such an assumption may
be fulfilled in a flat region of the target object, it is violated, e.g., at the edge of a bump.
Setting the vicinity size to a sufficiently small value can mitigate this problem to some extent.
However, this in turn degrades the noise reduction power because the number of samples
used for estimation is reduced.

In order to illustrate this trade-off phenomenon, we performed a computer simulation.
The simulated target object is illustrated in Figure 1(a). We generated a fringe image by
Eq.(1) with a(x, y) = b(x, y) = 1, and added Gaussian noise with mean 0 and standard
deviation 0.1. Figures 1(b) and (c) depict the fringe image. Figures 1(d)–(i) depict surface
profiles estimated by the LMF method with vicinity size 3× 3 (small), 5× 5 (medium), and
7 × 7 (large), respectively; below the figures, the root mean square error (RMSE) between

the true surface profile ϕ and its estimate ϕ̂ is described:

RMSEϕ :=

√
1

|T |
∑
t∈T

(
ϕ̂(xt, yt)− ϕ(xt, yt)

)2

, (4)

where T is the set of pixel indices for the entire image.
When the vicinity size is large (see Figures 1(f) and (i)), the number of samples to be used

for estimating the surface profile is large and thus the influence of noise can be sufficiently
suppressed. As a result, the estimated surface profile tends to be smooth. However, the
locally flat assumption is heavily violated around the sharp edges, and consequently the
sharp edges become blunt.

On the other hand, when the vicinity size is small (see Figures 1(d) and (g)), the number
of samples to be used for estimating the surface profile is small and thus the estimated
surface profile is highly noisy. However, since the locally flat assumption is well fulfilled, the
sharp edges are clearly recovered.

If the vicinity size is determined so that the trade-off between noise reduction and local
flatness is well controlled, the obtained surface profile preserves both sharp edges and smooth
surface, resulting in the smallest RMSE (see Figures 1(e) and (h)).

The above simulation result shows that, given that the vicinity size is chosen optimally,
the LMF method gives accurate estimation. Since this was a computer simulation where
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(a) Target object
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(c) Fringe image (y = 80)
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(d) LMF (3 × 3), RMSEϕ =
0.1377[rad]
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(e) LMF (5 × 5), RMSEϕ =
0.1001[rad]
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(f) LMF (7 × 7), RMSEϕ =
0.1083[rad]
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(g) LMF (3× 3, y = 80)
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(h) LMF (5× 5, y = 80)
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(i) LMF (7× 7, y = 80)
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(j) IRLMF with automatic pa-
rameter optimization (d1 = 6,
d2 = 30, c = 10−4) RMSEϕ =
0.0149[rad]

40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

x

φ[
ra

d]

(k) IRLMF with automatic pa-
rameter optimization (y = 80)

Figure 1: Experimental results for the artificial sharp bump.
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the true surface profile is known, the vicinity size could be manually optimized. However, in
practice, such a manual parameter choice is not possible without strong prior knowledge on
the true surface profile. This is a critical limitation of the LMF method for practical use.

The goal of this paper is to overcome this limitation by providing a method for automat-
ically determining the vicinity size, which is described below.

2.3 Automatic Parameter Optimization for LMF

Ideally, we would like to determine the vicinity size so that RMSEϕ defined by Eq.(4) is
minimized. However, since the true surface profile is not accessible in reality, RMSEϕ cannot
be directly evaluated. To cope with this problem, we instead propose to use RMSE between
the observed fringe image {gt}t∈T and its estimate {ĝt}t∈T :

RMSEg :=

√
1

|T |
∑
t∈T

(ĝt − gt)2.

The fact that the observed fringe image {gt}t∈T is estimated accurately implies that the
model parameters are determined appropriately. Consequently, the true surface profile
{ϕ(xt, yt)}t∈T would be accurately estimated.

However, naively obtaining an estimate ĝt based on the local model Eq.(2) with the

least-squares solutions ât, ξ̂t, and ζ̂t by

ât + ξ̂tφ(xt, yt) + ζ̂tψ(xt, yt)

significantly under-estimates the error since the observed sample gt itself is used for obtaining
ĝt. To avoid this under-estimation, we exclude the observed data gt from the data set when
estimating ĝt. Thus, when estimating the surface profile at (xt, yt), we solve the following
least-squares problem:

(ãt, ξ̃t, ζ̃t) := argmin
(at,ξt,ζt)

∑
i∈Tt\t

(
gi − ḡt(xi, yi)

)2

,

where Tt\t denotes the set Tt without element t. The solutions ãt, ξ̃t, and ζ̃t can still be

computed analytically, in the same way as ât, ξ̂t, and ζ̂t, and an estimate ĝt can be obtained
using the local model Eq.(2) with ãt, ξ̃t, and ζ̃t as

ĝt := ãt + ξ̃tφ(xt, yt) + ζ̃tψ(xt, yt).

Based on RMSEg with the above estimate {ĝt}t∈T , we determine the vicinity size so that
RMSEg is minimized.

We computed the values of RMSEg for the artificial data used in Section 2.2. Figure 2(a)
depicts the values of RMSEg for vicinity size s×s with s = 3, 5, . . . , 11. RMSEg is minimized
when s = 5, which is chosen as the best vicinity size. Figure 2(b) depicts the values of RMSEϕ

for s = 3, 5, . . . , 11, which is also minimized at s = 5. Thus, for this artificial data, the truly
best vicinity size (i.e., 5× 5) can be chosen by the proposed method.
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Figure 2: RMSEg and RMSEϕ as functions of vicinity size s for the artificial sharp bump.

3 Automatic Parameter Determination for Iteratively-

Reweighted Local Model Fitting

As shown in the previous section, the tuning parameter (i.e., the vicinity size) of the LMF
method can be successfully determined by the proposed method. On the other hand, one of
the limitations of the above approach is that the vicinity size is controlled globally. If the
vicinity size was controlled locally in a more adaptive manner (e.g., using a smaller vicinity
size around edges and using a larger vicinity size in a flat region), the measurement accuracy
would be further improved. Based on this idea, the iteratively-reweighted LMF (IRLMF)
method [12] was developed recently. In this section, we first review the IRLMF method in
a slightly generalized manner, and then we extend our automatic parameter optimization
technique to the IRLMF method.

3.1 The Iteratively-Reweighted Local Model Fitting Method

The IRLMF algorithm consists of the weighted LMF (WLMF) method, which involves the
following weighted least-squares problem:

(ât, ξ̂t, ζ̂t) := argmin
(at,ξt,ζt)

[∑
i∈Tt

wt,i(gi − ḡt(xi, yi))
2

]
,

where wt,i (∈ [0, 1]) is the weight for point (xi, yi) in the vicinity of the target point (xt, yt).

The above weighted least-squares solutions ât, ξ̂t, and ζ̂t can be obtained analytically as

(ât, ξ̂t, ζ̂t)
⊤ = (A⊤

t WtAt)
−1A⊤

t Wtgt,

where Wt is the diagonal matrix with diagonal elements wt,t1 , wt,t2 , . . . , wt,|Tt|. If the weights
take either zero or one, choosing the weights corresponds to determining the shape and size
of the vicinity region. Here, the weights are allowed to take real values in [0, 1], meaning that
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the vicinity regions are determined in a ‘soft’ manner. Furthermore, the weights can depend
on the target point (xt, yt), allowing the vicinity regions to be chosen in a local manner.
Thus, WLMF is more flexible than the original LMF method.

Typically, the weight wt,i are required to take a large value if (xi, yi) is close to (xt, yt) in
the (x, y)-space and if ϕ(xi, yi) is close to ϕ(xt, yt) in the ϕ-space. For example, the following
weight satisfies this requirement:√

1− d−2 ((xi − xt)2 + (yi − yt)2) ·
(
1 + c−1(ϕ(xi, yi)− ϕ(xt, yt))

2
)−1

,

where d and c are tuning parameters. However, since the true surface profile ϕ is unknown,
the paper [12] proposed the following two-step procedure: First, initial surface estimation
is performed for designing the weight pattern; in our implementation, the WLMF method
with the following weight pattern is used:

w
(1)
t,i :=

√
1− d−2

1 ((xi − xt)2 + (yi − yt)2). (5)

Then the final estimation is performed by the WLMF method; in our implementation, the
following weight pattern is used:

w
(2)
t,i :=

√
1− d−2

2 ((xi − xt)2 + (yi − yt)2) ·
(
1 + c−1(ϕ̃(xi, yi)− ϕ̃(xt, yt))

2
)−1

, (6)

where ϕ̃ is the surface profile obtained by the above initial estimation. This method is called
the IRLMF method.

The paper [12] demonstrated that IRLMF works excellently, given that the tuning pa-
rameters are determined appropriately. However, IRLMF involves three tuning parameters
(d1, d2, and c), and manually choosing them appropriately is highly cumbersome in prac-
tice. Below, we extend our automatic parameter selection method described in the previous
section to IRLMF, and show its practical usefulness through numerical experiments.

3.2 Automatic Parameter Optimization for IRLMF

Here we describe our automatic parameter optimization algorithm for IRLMF, and report
the results of computer simulation and actual experiments.

3.2.1 Algorithm

Our proposed procedure is described as follows:

1. Initial estimation is performed in a hold-out manner by WLMF with weight pattern
defined by Eq.(5) for various candidate parameter values d1.

2. For each d1, the second estimation is performed in a hold-out manner by WLMF with
weight pattern defined by Eq.(6) for various candidate parameter values d2 and c.

3. RMSEg is computed in a hold-out manner for all combination of d1, d2, and c.
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(c) Fringe image (y = 80)
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(d) IRLMF with automatic pa-
rameter optimization (d1 = 12,
d2 = 30, c = 10−4) RMSEϕ =
0.0143[rad]
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(e) IRLMF with automatic pa-
rameter optimization (y = 80)

Figure 3: Experimental results for the artificial sphere bump.

4. The parameter values (d̂1, d̂2, ĉ) that minimize the hold-out RMSEg are chosen.

5. Initial estimation is performed using all the samples (i.e., no hold-out) by WLMF with

weight pattern defined by Eq.(5) for d̂1.

6. Final estimation is performed using all the samples (i.e., no hold-out) by WLMF with

weight pattern defined by Eq.(6) for d̂2 and ĉ.

3.2.2 Computer Simulation

We applied the above automatic parameter selection procedure to the artificial data used
in Section 2.2. The tuning parameter values are chosen from d1 ∈ {3, 6, 9, 12, 15}, d2 ∈
{10, 15, 20, 25, 30}, and c ∈ {10−5, 10−4, 10−3, 10−2, 10−1}, respectively. Figures 1(j)(k) depict
the simulation results obtained by IRLMF combined with our automatic parameter selection
procedure, showing that both sharp edges and smooth surface are preserved much better
than the optimized LMF method (see Figures 1(e)(h)). Consequently, RMSEϕ becomes
much smaller than that of the LMF method.

We performed similar computer simulations also for other artificial data: a sphere bump
(Figure 3) and a fish-shaped object (Figure 4), showing that IRLMF equipped with our
automatic parameter selection procedure still works excellently.
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(c) Fringe image (y = 80)
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(d) IRLMF with automatic pa-
rameter optimization (d1 = 3,
d2 = 10, c = 10−3) RMSEϕ =
0.0167[rad]
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(e) IRLMF with automatic pa-
rameter optimization (y = 80)

Figure 4: Experimental results for the artificial fish-shaped object.

3.2.3 Actual Experiments

Finally, we report the results of actual experiments. We obtained interference images by using
the optical surface profiler SP-500 developed by Toray Engineering Co., Ltd. [14], which
allows a full-field measurement of 512×480 pixels (the actual size is 0.80 [mm]×0.72 [mm]).
In our experiments, we focused on the 120 × 120 pixels in the middle of the image. Each
pixel takes an integer value between 0 and 255 (i.e., 8-bit intensity), and the wavelength of
the light source is 603 [nm] (we used a narrow-band optical filter).

Figure 5(a) illustrates the surface profile of the target object, and Figures 5(b)(c) depict
the observed fringe image. The surface profile obtained by the proposed method is depicted
in Figures 5(d)(e), showing that the sharp edges and smooth surface are accurately recovered.

4 Conclusions

Single-shot methods are faster and more robust against disturbance such as vibration than
multiple-shot methods, and the LMF method has various practical advantages over other
single-shot methods. However, the LMF method requires the locally flat assumption, and its
accuracy can be degraded by the violation of this assumption. Appropriately choosing the
size of the local region is the key to mitigating this problem, but this is often cumbersome
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(d) IRLMF with automatic pa-
rameter optimization (d1 = 3,
d2 = 10, c = 10−3)
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(e) IRLMF with automatic pa-
rameter optimization (y = 80)

Figure 5: Actual measurement results.

in practice. In this paper, we proposed an automatic parameter optimization procedure for
LMF, which is based on the hold-out estimation of the fringe image. We further extended
the proposed method to a more flexible variant of LMF called IRLMF, and demonstrated
the usefulness of the proposed approach through simulation and actual experiments.

Due to exhaustive parameter search, the computation time of the proposed method is
proportional to the number of parameter combinations. However, we note that the parame-
ter search can easily be carried out in parallel, for example, using grid computers or graphics
processing units. Furthermore, such parameter tuning is necessary only once in advance to
create a “recipe” for the target experiment. Thus, the high computational cost of the pro-
posed method would not be critical in practice. Nevertheless, improving the computational
efficiency would be an important future work.
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