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1. Introduction

In recent years, demographic analysis in public places such as shopping malls and stations
is attracting a great deal of attention. Such demographic information is useful for various
purposes, e.g., designing effective marketing strategies and targeted advertisement based
on customers’ gender and age. For this reason, a number of approaches have been
explored for age estimation from face images (Fu et al., 2007; Geng et al., 2006; Guo et al.,
2009), and several databases became publicly available recently (FG-Net Aging Database,
n.d.; Phillips et al., 2005; Ricanek & Tesafaye, 2006). It has been reported that age can be
accurately estimated under controlled environment such as frontal faces, no expression, and
static lighting conditions. However, it is not straightforward to achieve the same accuracy
level in a real-world environment due to considerable variations in camera settings, facial
poses, and illumination conditions. The recognition performance of age prediction systems is
significantly influenced by such factors as the type of camera, camera calibration, and lighting
variations. On the other hand, the publicly available databases were mainly collected in
semi-controlled environments. For this reason, existing age prediction systems built upon
such databases tend to perform poorly in a real-world environment.

In this chapter, we address the problem of perceived age estimation from face images, and
describe our new approaches proposed in Ueki et al. (2010) and Ueki et al. (2011), which
involve three novel aspects.
The first novelty of our proposed approaches is to take the heterogeneous characteristics of
human age perception into account. It is rare to misjudge the age of a 5-year-old child as
15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus,
magnitude of the error is different depending on subjects’ age. We carried out a large-scale
questionnaire survey for quantifying human age perception characteristics, and propose to
utilize the quantified characteristics in the framework of weighted regression.
The second is an efficient active learning strategy for reducing the cost of labeling face
samples. Given a large number of unlabeled face samples, we reveal the cluster structure
of the data and propose to label cluster-representative samples for covering as many
clusters as possible. This simple sampling strategy allows us to boost the performance of
a manifold-based semi-supervised learning method only with a relatively small number of
labeled samples.

The third contribution is to apply a recently proposed machine learning technique called
covariate shift adaptation (Shimodaira, 2000; Sugiyama & Kawanabe, 2011; Sugiyama et al.,
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2007; 2008) to alleviating lighting condition change between laboratory and practical
environment.
Through real-world age estimation experiments, we demonstrate the usefulness of the
proposed approaches.

2. Age estimation based on age perception characteristics

In this section, we mathematically formulate the problem of age estimation, and show how
human age perception characteristics can be incorporated systematically.

2.1 Formulation

Throughout this chapter, we perform age estimation based not on subjects’ real age, but on
their perceived age. Thus, the ‘true’ age of the subject y is defined as the average perceived age
evaluated by those who observed the subject’s face images (the value is rounded-off to the
nearest integer).
Let us consider a regression problem of estimating the age y∗ of subject x (face features).
Suppose we are given labeled training data

{(xtr
i , ytr

i )}
l
i=1.

We use the following kernel model for age regression.

f (x;α) =
l

∑
i=1

αiK(x,xtr
i ), (1)

where α = (α1, . . . , αl)
⊤ is a model parameter, ⊤ denotes the transpose, and K(x,x′) is a

positive definite kernel (Schölkopf & Smola, 2002). We use the Gaussian kernel:

k(x, x′) = exp

(
−
‖x − x′‖2

2σ2

)
,

where σ2 is the Gaussian variance.

A standard approach to learning the model parameter α would be regularized least-squares
(Hoerl & Kennard, 1970).

min
α

[
1

l

l

∑
i=1

(ytr
i − f (xtr

i ;α))2 + λ‖α‖2

]
, (2)

where ‖ · ‖ denotes the Euclidean norm, and λ(> 0) is the regularization parameter to avoid

overfitting.

Below, we explain that merely using regularized least-squares is not appropriate in real-world
perceived age prediction, and show how to cope with this problem.
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Fig. 1. The relation between subjects’ true age y∗ (horizontal axis) and the standard deviation
of perceived age (vertical axis).

2.2 Incorporating age perception characteristics

Human age perception is known to have heterogeneous characteristics, e.g., it is rare to
misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person
is often misjudged as 45 years old.
In order to quantify this phenomenon, we investigated human age perception characteristics

through a large-scale questionnaire survey. We used an in-house face image database
consisting of approximately 500 subjects whose age almost uniformly covers the range of
our interest (i.e., age 1 to 70). For each subject, 5 to 10 face images with different face poses
and lighting conditions were taken. We asked each of 72 volunteers to give age labels y to
the subjects. The ‘true’ age of a subject is defined as the average of estimated age labels y
(rounded-off to the nearest integer) for that subject, and denoted by y∗. Then the standard
deviation of age labels y is calculated as a function of y∗, which is summarized in Figure 1.
The standard deviation is approximately 2 (years) when the true age y∗ is less than 15. The
standard deviation increases and goes beyond 6 as the true age y∗ increases from 15 to 35.
Then the standard deviation decreases to around 5 as the true age y∗ increases from 35 to
70. This graph shows that the perceived age deviation tends to be small in younger age
brackets and large in older age groups. This would well agree with our intuition considering
the human growth process.
Now let us incorporate the above survey result into the perceived age estimation framework
described in Section 2.1. When the standard deviation is small (large), making an error is
regarded as more (less) critical. This idea follows a similar line to the Mahalanobis distance

(Duda et al., 2001), so it would be reasonable to incorporate the above survey result into the
framework of weighted regression analysis. More precisely, weighting the goodness-of-fit term
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in Eq.(2) according to the inverse of the error variance optimally adjusts to the characteristics
of human perception:

min
α

[
1

l

l

∑
i=1

(ytr
i − f (xtr

i ;α))2

wage(ytr
i )

2
+ λ‖α‖2

]
, (3)

where wage(y) is the value given in Figure 1.

2.3 Evaluation criterion

Conventionally, the performance of an age prediction function f (x) for test samples
{(xte

j , yte
j )}

t
j=1 was evaluated by the mean absolute error (MAE) (Geng et al., 2006;

Lanitis et al., 2004; 2002; Ueki et al., 2008):

MAE =
1

t

t

∑
j=1

∣∣∣yte
j − f (xte

j )
∣∣∣ .

However, as explained above, this does not properly reflect human age perception
characteristics.
Here we propose to use the weighted criterion also for performance evaluation in
experiments. More specifically, we evaluate the prediction performance by the weighted mean
squared error (WMSE):

WMSE =
1

t

t

∑
j=1

(yte
j − f (xte

j ))
2

wage(yte
j )

2
. (4)

The smaller the value of WMSE is, the better the age prediction function would be.

3. Semi-supervised approach

In this section, we give an active learning strategy and a semi-supervised age regression
method within the age-weighting framework described in the previous section.

3.1 Clustering-based active learning strategy

First, we explain our active learning strategy for reducing the cost of labeling face samples.
Face samples contain various diversity such as individual characteristics, angles, lighting
conditions, etc. They often possess cluster structure, and face samples in each cluster tend to
have similar ages (Fu et al., 2007; Guo et al., 2008; Ueki et al., 2008). Based on these empirical
observations, we propose to label the face images which are closest to cluster centroids.
For revealing the cluster structure, we apply the k-means clustering method (MacQueen,
1967) to a large number of unlabeled samples. Since clustering of high-dimensional data is
often unreliable, we first apply principal component analysis (PCA) (Jolliffe, 1986) to the face
images for dimension reduction, which is a well-justified preprocessing for k-means clustering
(Ding & He, 2004). The proposed active learning strategy is summarized as follows.

1. For a set of d-dimensional unlabeled face image samples {X i}
n
i=1, we compute {xi}

n
i=1 of

r (≪ d) dimensions by the PCA projection.

2. Using the k-means clustering algorithm, we compute the l (≪ n) cluster centroids {mi}
l
i=1.
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3. We choose {xtr
i | xtr

i = xτ(i)}
l
i=1 from {xi}

n
i=1 as samples to be labeled, where

τ(i) = argmin
i′

‖xi′ − mi‖,

and ‖ · ‖ denotes the Euclidean norm.

Let {ytr
i }

l
i=1 be the labels for {xtr

i }
l
i=1, and let the remaining samples of size u (= n − l) that

were not chosen to be labeled be denoted as

{xtr
i }

n
i=l+1 = {xi}

n
i=1\{xtr

i }
l
i=1.

Thus, the first l training samples {xtr
i }

l
i=1 are labeled, and the remaining u training samples

{xtr
i }

l+u
i=l+1 are unlabeled.

3.2 Semi-supervised age regression with manifold regularization

Face images often possess cluster structure, and face samples in each cluster tend to have

similar ages. Here we utilize this cluster structure by employing a method of semi-supervised
regression with manifold regularization (Sindhwani et al., 2006).
For age regression, we use the following kernel model:

f (x) =
l+u

∑
i=1

αik(x, xtr
i ), (5)

where α = (α1, . . . , αl+u)
⊤ are parameters to be learned, ⊤ denotes the transpose, and k(x, x′)

is a reproducing kernel function. We included (l + u) kernels in the kernel regression model
(5), but u can be very large in age prediction. In practice, we may only use c (≤ u) elements

randomly chosen from the set {k(x, xtr
i )}

l+u
i=l+1 for reducing the computational cost; then the

total number of basis functions is reduced to b = l + c. However, we stick to Eq.(5) below for
keeping the explanation simple.
We employ a manifold regularizer (Sindhwani et al., 2006) in our training criterion, i.e., the
parameter α is learned so that the following criterion is minimized.

1

l

l

∑
i=1

(ytr
i − f (xtr

i ))
2

wage(ytr
i )

2
+λ‖α‖2+

μ

4(l + u)2

l+u

∑
i,i′=1

Ai,i′( f (xtr
i )− f (xtr

i′ ))
2, (6)

where λ and μ are non-negative regularization parameters. Ai,i′ represents the affinity
between xtr

i and xtr
i′ , which is defined by

Ai,i′ = exp

(
−
‖xi − xi′‖

2

2ν2

)
(7)

if xtr
i is a h-nearest neighbor of xtr

i′ or vice versa; otherwise Ai,i′ = 0.
The first term in Eq.(6) is the goodness-of-fit term and the second term is the ordinary
regularizer for avoiding overfitting. The third term is the manifold regularizer. The weight
Ai,i′ tends to take large values if xtr

i and xtr
i′ belong to the same cluster. Thus, the manifold

regularizer works for keeping the outputs of the function f (x) within the same cluster close
to each other.
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An important advantage of the above training method is that the solution can be obtained
analytically by

α̂=

(
K⊤DK + lλIl+u +

lμ

(l + u)2
K⊤LK

)−1

K⊤Dy, (8)

where K is the (l + u)× (l + u) kernel Gram matrix whose (i, i′)-th element is defined by

Ki,i′ = k(xtr
i , xtr

i′ ).

D is the (l + u)× (l + u) diagonal weight matrix with diagonal elements defined by

wage(y
tr
1 )

−2, . . . , wage(y
tr
l )

−2, 0, . . . , 0.

L is the (l + u)× (l + u) Laplacian matrix whose (i, i′)-th entry is defined by

Li,i′ = δi,i′

(
l+u

∑
i′′=1

Ai,i′′

)
− Ai,i′ ,

where δi,i′ is the Kronecker delta. Il+u denotes the (l + u)× (l + u) identity matrix. y is the
(l + u)-dimensional label vector defined as

y = (ytr
1 , . . . , ytr

l , 0, . . . , 0)⊤.

If u is very large (which would be the case in age prediction), computing the inverse of the
(l + u) × (l + u) matrix in Eq.(8) is not tractable. To cope with this problem, reducing the
number of kernels from (l + u) to a smaller number b would be a realistic option, as explained

above. Then the matrix K becomes an (l + u)× b rectangular matrix and the identity matrix
in Eq.(8) becomes Ib. Thus the size of the matrix we need to invert becomes b × b, which
would be tractable when b is kept moderate. We may further reduce the computational cost
by numerically computing the solution by a stochastic gradient-decent method (Amari, 1967).

3.3 Empirical evaluation

Here, we apply the above age prediction method to in-house face-age datasets, and
experimentally evaluate its performance.

3.3.1 Data acquisition and experimental setup

Age prediction systems are often used in public places such as shopping malls or train
stations. In order to make our experiments realistic, we collected face image samples from
video sequences taken by ceiling-mounted surveillance cameras with depression angle 5–10
degrees. The recording method, image resolution, and the image size are diverse depending
on the recording conditions—for example, some subjects were illuminated by dominant light
sources, walking naturally, seated on a stool, and keeping their heads still. The subjects’ facial
expressions were typically subtle, switching between neutral and smiling. We used a face

detector for localizing the two eye-centers, and then rescaled the image to 64 × 64 pixels.
Examples of face images are shown in Figure 2. Faces whose age ranges from 1 to 70 were
used in our experiments.
As pre-processing, we extracted 100-dimensional features from the 64 × 64 face images
using a neural network feature extractor proposed in Tivive & Bouzerdoumi (2006a) and
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Fig. 2. Examples of face images.

Fig. 3. Comparison of WMSE Eq.(4).

Tivive & Bouzerdoumi (2006b). In total, we have 28500 face samples in our database. Among
them, n = 27000 are treated as unlabeled samples and the remaining t = 1500 are used as
test samples. From the 27000 unlabeled samples, we choose l = 200 samples to be labeled by
active learning. The Gaussian-kernel variance σ2 and the regularization parameters λ and μ

were determined so that WMSE for the test data is minimized (i.e., they are optimally tuned).
For manifold regularization, we fixed the number of nearest neighbors and the decay rate of
the similarity to h = 5 and ν = 1, respectively (see Eq.(7)).

3.3.2 Results

We applied the k-means clustering algorithm to 27000 unlabeled samples in the 4-dimensional
or 10-dimensional PCA subspace and extracted 200 clusters. We chose 200 samples that
are closest to the 200 cluster centroids and labeled them; then we trained a regressor using
the weighted manifold-regularization method described in Section 2.2 with the 200 labeled
samples and 5000 unlabeled samples randomly chosen from the pool of 26800 (= 27000− 200)
unlabeled samples. We compared the above method with random sampling strategy. Figure 3
summarizes WMSE obtained by each method; in the comparison, we also included supervised
regression where unlabeled samples were not used (i.e., μ = 0).
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Fig. 4. WMSE for each age-group.

Figure 3 shows that the proposed active learning method gave smaller WMSE than the
random sampling strategy; the use of unlabeled samples also improved the performance.
Thus the proposed active learning method combined with manifold-based semi-supervised
learning is shown to be effective for improving the age prediction performance.
In order to more closely understand the effect of age weighting, we investigated the prediction
error for each age bracket. Figure 4 shows age-bracket-wise WMSE when the age-weighted
learning method or the non-weighted learning method is used. The figure shows that the
error in young age groups (less than 20 years old) is significantly reduced by the use of
the age weights, which was shown to be highly important in practical human evaluation
(see Section 2.2). On the other hand, the prediction error for middle/older age groups is
slightly increased, but a small increase of the error in these age brackets was shown to be less

significant in our questionnaire survey. Therefore, the experimental result indicates that our
approach qualitatively improves the age prediction accuracy.

4. Coping with lighting condition change

In this section, we consider another semi-supervised learning setup where training and test
samples follow different distributions. Such a situation often happens in real-world age

prediction tasks, and we describe a systematic method to cope with such distribution change.

4.1 Lighting condition change as covariate shift

When designing age estimation systems, the environment of recording training face images is
often different from the test environment in terms of lighting conditions. Typically, training
data are recorded indoors such as a studio with appropriate illumination. On the other
hand, in a real-world environment, lighting conditions have considerable varieties, e.g., strong

332 Advanced Biometric Technologies

www.intechopen.com



Perceived Age Estimation from Face Images 9

sunlight might be cast from a side of the face or there is no enough light. In such situations,
age estimation accuracy is significantly degraded.
Let ptr(x) be the probability density function of training face features and pte(x) be the
probability density function of test face features. When these two densities are different, it
would be natural to emphasize the influence of training samples (xtr

i , ytr
i ) which have high

similarity to data in the test environment. Such adjustment can be systematically carried out
as follows (Shimodaira, 2000; Sugiyama & Kawanabe, 2011; Sugiyama et al., 2007; 2008):

min
α

[
1

l

l

∑
i=1

wimp(x
tr
i )

(ytr
i − f (xtr

i ;α))2

wage(ytr
i )

2
+ λ‖α‖2

]
, (9)

i.e., the goodness-of-fit term in Eq.(3) is weighted according to the importance function
(Fishman, 1996):

wimp(x) =
pte(x)

ptr(x)
.

The solution of Eq.(9) can be obtained analytically by

α̂ = (K⊤WK + lλIl)
−1K⊤Wy, (10)

where K is the kernel matrix whose (i, i′)-th element is defined by

Ki,i′ = K(xtr
i ,xtr

i′ ),

W is the l-dimensional diagonal matrix with (i, i)-th diagonal element defined by

Wi,i =
wimp(x

tr
i )

wage(ytr
i )

2
,

Il is the l-dimensional identity matrix, and

y = (ytr
1 , . . . , ytr

l )
⊤.

When the number of training data l is large, we may reduce the number of kernels in Eq.(1) so
that the inverse matrix in Eq.(10) can be computed with limited memory; or we may compute
the solution numerically by a stochastic gradient-decent method (Amari, 1967).

4.2 Importance-Weighted Cross-Validation (IWCV)

In supervised learning, the choice of models (for example, the basis functions and
the regularization parameter) is crucial for obtaining better prediction performance.

Cross-validation (CV) would be one of the most popular techniques for model selection (Stone,
1974). CV has been shown to give an almost unbiased estimate of the generalization error with
finite samples (Schölkopf & Smola, 2002), but such almost unbiasedness is no longer fulfilled
under covariate shift.
To cope with this problem, a variant of CV called importance-weighted CV (IWCV) has been
proposed (Sugiyama et al., 2007). Let us randomly divide the training set
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Z = {(xtr
i , ytr

i )}
l
i=1

into M disjoint non-empty subsets {Zm}M
m=1 of (approximately) the same size. Let fZm

(x) be

a function learned from Z\Zm (i.e., without Zm). Then the M-fold IWCV (IWCV) estimate of
the generalization error is given by

1

M

M

∑
m=1

1

|Zm|
∑

(x,y)∈Zm

wimp(x)

wage(y)2
( fZm

(x)− y)2,

where |Zm| denotes the number of samples in the subset Zm.

It was proved that IWCV gives an almost unbiased estimate of the generalization error even
under covariate shift (Sugiyama et al., 2007).

4.3 Kullback-Leibler Importance Estimation Procedure (KLIEP)

In order to compute the solution (10) or performing IWCV, we need to know the values of the
importance weights

wimp(x
tr
i ) =

pte(xtr
i )

ptr(xtr
i )

,

which include two probability densities ptr(x) and pte(x).

In addition to the training samples {(xtr
i , ytr

i )}
l
i=1, suppose we are given unlabeled test

samples {xte
j }

t
j=1 which are drawn independently from the density pte(x). Then, performing

density estimation of ptr(x) and pte(x) gives an approximation of wimp(x). However, since
density estimation is a hard problem, the two-stage approach of first estimating ptr(x) and
pte(x) and then taking their ratio may not be reliable.
Here we describe a method called Kullback-Leibler Importance Estimation Procedure (KLIEP)

(Sugiyama et al., 2008), which allows us to directly estimate the importance function wimp(x)
without going through density estimation of ptr(x) and pte(x).
Let us model wimp(x) using the following model:

ŵimp(x) =
b

∑
k=1

βk exp

(
−
‖x− ck‖

2

2γ2

)
, (11)

where β = (β1, . . . , βb)
⊤ is a parameter, and {ck}

b
k=1 is a subset of test input samples

{xte
j }

t
j=1ĄD Using the model ŵimp(x), we can estimate the test input density pte(x) by

p̂te(x) = ŵimp(x)ptr(x). (12)

We determine the parameter β in the model (12) so that the Kullback-Leibler divergence from
pte to p̂te is minimized:
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KL(pte‖ p̂te) =
∫

pte(x) log
pte(x)

p̂te(x)
dx

=
∫

pte(x) log
pte(x)

ptr(x)
dx−

∫
pte(x) log ŵimp(x)dx.

Since the first term is a constant with respect to the parameter β, we ignore it and define the
second term as

KL′ =
∫

pte(x) log ŵimp(x)dx.

We would like to determine the parameter β so that KL′ is maximized. Let us impose ŵimp(x)
to be non-negative and normalized. Then we obtain the following convex optimization
problem:

max
β

⎡
⎣

t

∑
j=1

log

(
b

∑
k=1

βk exp

(
−
‖xte

j − ck‖
2

2γ2

))⎤
⎦

s.t.

⎧
⎪⎨
⎪⎩

βk ≥ 0 for k = 1, . . . , b,

1

l

l

∑
i=1

(
b

∑
k=1

βk exp

(
−
‖xtr

i − ck‖
2

2γ2

))
= 1.

This is a convex optimization problem and the global solution—which tends to be sparse
(Boyd & Vandenberghe, 2004)—can be obtained, e.g., by simply performing gradient ascent
and feasibility satisfaction iteratively. A pseudo code of KLIEP is described in Table 1.

Input: Kernel width γ, training inputs {xtr
i }

l
i=1, and test inputs {xte

j }
t
j=1

Output: ŵ(x)

Randomly choose {ck}
b
k=1 from {xte

j }
t
j=1;

Bj,k ← exp

(
−
‖xte

j − ck‖
2

(2γ2)

)

bk ←
1

l

l

∑
i=1

exp

(
−
‖xtr

i − ck‖
2

(2γ2)

)
;

Initialize β (> 0) and ε (0 < ε ≪ 1);
Repeat until convergence

β ← εB⊤(1./Bβ);
β ← β + (1 − b⊤β)b/(b⊤b);
β ← max(0,β);
β ← β/(b⊤β);

end

Table 1. Pseudo code of KLIEP. ‘./’ indicates the element-wise division. Inequalities and the
‘max’ operation for vectors are applied in an element-wise manner.

The tuning parameter γ in KLIEP can be optimized based on cross-validation (CV) as follows
(Sugiyama et al., 2008). First, divide the test samples X te = {xte

j }
t
j=1 into M disjoint subsets
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Input: Kernel width candidates {γ}, training inputs {xtr
i }

l
i=1, and test inputs {xte

j }
t
j=1

Output: ŵ(x)

Split X te = {xte
j }

t
j=1 into M disjoint subsets {X te

m }M
m=1;

for each model γ
for each split m = 1, . . . , M

ŵX te
m
(x) ←− KLIEP(γ, {xtr

i }
l
i=1,X te\X te

m );

K̂L
′
m(γ) ←−

1

|X te
m |

∑
x∈X te

m

log ŵX te
m
(x);

end

K̂L
′
(γ) ←−

1

M

M

∑
m=1

K̂L
′
m(γ);

end

γ̂ ←− argmax
γ

K̂L
′
(γ);

ŵ(x) ←− KLIEP(γ̂, {xtr
i }

l
i=1,X te);

Table 2. Pseudo code of CV-based model selection for KLIEP.

{X te
m }M

m=1 of (approximately) the same size. Then obtain an importance estimate ŵX te
m
(x) from

X te\X te
m (i.e., without X te

m ), and approximate KL′ using X te
m as

K̂L
′
r :=

1

|X te
m |

∑
x∈X te

m

log ŵX te
m
(x).

This procedure is repeated for m = 1, . . . , M, and the average K̂L
′

is used as an estimate of
KL′:

K̂L
′

:=
1

m

M

∑
m=1

K̂L
′
m. (13)

For model selection, we compute K̂L′ for all model candidates (the Gaussian kernel width

γ in the current setting), and choose the one that minimizes K̂L′. A pseudo code of the CV
procedure is summarized in Figure 2.
One of the potential limitations of CV in general is that it is not reliable in small sample cases
since data splitting by CV further reduces the sample size. On the other hand, in our CV
procedure, the data splitting is performed only over the test input samples X te = {xte

j }
t
j=1, not

over the training samples. Therefore, even when the number of training samples is small, our
CV procedure does not suffer from the small sample problem as long as a large number of test
input samples are available.

4.4 Empirical evaluation

Here, we experimentally evaluate the performance of the proposed method using in-house
face-age datasets.
We use the face images recorded under 17 different lighting conditions: for instance, average
illuminance from above is approximately 1000 lux and 500 lux from the front in the standard
lighting condition, 250 lux from above and 125 lux from the front in the dark setting, and
190 lux from left and 750 lux from right in another setting (see Figure 5). Note that these
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Fig. 5. Examples of face images under different lighting conditions (left: standard lighting,
middle: dark, right: strong light from a side)

17 lighting conditions are diverse enough to cover real-world lighting conditions. Images
were recorded as movies with camera at depression angle 15 degrees. The number of subjects
is approximately 500 (250 for each gender). We used a face detector for localizing the two
eye-centers, and then rescaled the image to 64 × 64 pixels. The number of face images in each
environment is about 2500 (5 face images × 500 subjects).
As pre-processing, a neural network feature extractor (Tivive & Bouzerdoumi, 2006a;b) was
used to extract 100-dimensional features from 64 × 64 face images. We constructed the

male/female age prediction models only using male/female data, assuming that gender
classification had been correctly carried out.
We split the 250 subjects into the training set (200 subjects) and the test set (50 subjects). The
training set was used for training the kernel regression model (1), and the test set was used
for evaluating its generalization performance. For the test samples {(xte

j , yte
j )}

t
j=1 taken from

the test set in the environment with strong light from a side, age-weighted mean square error
(WMSE)

WMSE =
1

t

t

∑
j=1

(yte
j − f (xte

j ; α̂))2

wage(yte
j )

2

was calculated as a performance measure. The training and test sets were shuffled 5 times in
such a way that each subject was selected as a test sample once. The final performance was
evaluated based on the average WMSE over the 5 trials.
We compared the performance of the proposed method with the two baseline methods:

Baseline method 1: Training samples were taken only from the standard lighting condition
and age-weighted regularized least-squares (3) was used for training.

Baseline method 2: Training samples were taken from all 17 different lighting conditions and
age-weighted regularized least-squares (3) was used for training.

The importance weights were not used in these baseline methods. The Gaussian width σ

and the regularization parameter λ were determined based on 4-fold CV over WMSE, i.e., the
training set was further divided into a training part (150 subjects) and a validation part (50
subjects).
In the proposed method, training samples were taken from all 17 different lighting conditions
(which is the same as the baseline method 2). The importance weights were estimated by

KLIEP using the training samples and additional unlabeled test samples; the hyper-parameter
γ in KLIEP was determined based on 2-fold CV (Sugiyama et al., 2008). We then computed
the average importance score over different samples for each lighting condition and used the
average importance score for training the regression model. The Gaussian width σ and the
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Male Female

Baseline method 1 2.83 6.51
Baseline method 2 2.64 4.40
Proposed method 2.54 3.90

Table 3. The test performance measured by WMSE.

regularization parameter λ in the regression model were determined based on 4-fold IWCV
(Sugiyama et al., 2007).
Table 3 summarizes the experimental results, showing that, for both male and female data,
the baseline method 2 is better than the baseline method 1 and the proposed method is better
than the baseline method 2. This illustrates the effectiveness of the proposed method. Note
that WMSE for female subjects is substantially larger than that for male subjects. The reason

for this would be that female subjects tend to have more diversity such as short/long hair and
with/without makeup, which makes prediction harder (Ueki et al., 2008).

5. Conclusion

We introduced three novel ideas for perceived age estimation from face images: taking
into account the human age perception for improving the prediction accuracy (Section 2),
clustering-based active learning for reducing the sampling cost (Section 3), and alleviating the

influence of lighting condition change (Section 4).
We have incorporated the characteristics of human age perception as weights—error in
younger age brackets is treated as more serious than that in older age groups. On the other
hand, our framework can accommodate arbitrary weights, which opens up new interesting
research possibilities. Higher weights lead to better prediction in the corresponding age
brackets, so we can improve the prediction accuracy of arbitrary age groups (but the price
we have to pay for this is a performance decrease in other age brackets). This property could
be useful, for example, in cigarettes and alcohol retail, where accuracy around 20 years old
needs to be enhanced but accuracy in other age brackets is not so important. Another possible
usage of our weighted regression framework is to combine learned functions obtained from
several different age weights, which we would like to pursue in our future work.
Lighting condition change is one of the critical causes of performance degradation in age
prediction from face images. In this chapter, we proposed to employ a machine learning
technique called covariate shift adaptation for alleviating the influence of lighting condition
change. We demonstrated the effectiveness of our proposed method through real-world

perceived age prediction experiments.
In the experiments in Section 4.4, test samples were collected from a particular lighting
condition, and samples from the same lighting condition were also included in the training
set. Although we believe this setup to be practical, it would be interesting to evaluate
the performance of the proposed method when no overlap in the lighting conditions exists
between training and test data. Following the theoretical study by Cortes et al. (2010) would
be a promising direction for further addressing this issue.
In principle, the covariate shift framework allows us to incorporate not only lighting condition
change but also various types of environment change such as face pose variation and camera
setting change. In our future work, we will investigate whether the proposed approach is still
useful in such challenging scenarios.
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Recently, novel approaches to importance estimation for high-dimensional problems
have been explored (Kanamori et al., 2009; Sugiyama, Kawanabe & Chui, 2009;
Sugiyama, Yamada, von Bünau, Suzuki, Kanamori & Kawanabe, 2011; Yamada et al., 2010).
In our future work, we would like to incorporating these new ideas into our framework of
perceived age estimation, and see how the prediction performance can be further improved.
In the context of covariate shift adaptation, the importance weights played a central
role for systematically adjusting the difference of distributions in the training
and test phases. Beyond covariate shift adaptation, it has been shown recently
that the ratio of probability densities can be used for solving various machine
learning tasks (Sugiyama, Kanamori, Suzuki, Hido, Sese, Takeuchi & Wang, 2009;
Sugiyama, Suzuki & Kanamori, 2012). This novel machine learning framework
includes multi-task learning (Bickel et al., 2008; Simm et al., 2011), privacy-preserving
data mining (Elkan, 2010), outlier detection (Hido et al., 2011), conditional density
estimation (Sugiyama et al., 2010), and probabilistic classification (Sugiyama, 2010).
Furthermore, mutual information—which plays a central role in information theory

(Cover & Thomas, 2006)—can be estimated via density ratio estimation (Suzuki et al., 2008;
Suzuki, Sugiyama & Tanaka, 2009). Since mutual information is a measure of statistical
independence between random variables, density ratio estimation can be used also for
variable selection (Suzuki, Sugiyama, Kanamori & Sese, 2009), dimensionality reduction
(Suzuki & Sugiyama, 2010), independent component analysis (Suzuki & Sugiyama, 2011),
and causal inference (Yamada & Sugiyama, 2010). In our future work, we will apply those
novel machine learning tools in perceived age prediction.
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