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Abstract

The large volume principle proposed by
Vladimir Vapnik, which advocates that hy-
potheses lying in an equivalence class with a
larger volume are more preferable, is a useful
alternative to the large margin principle. In
this paper, we introduce a clustering model
based on the large volume principle called
maximum volume clustering (MVC), and
propose two algorithms to solve it approxi-
mately: a soft-label and a hard-label MVC al-
gorithms based on sequential quadratic pro-
gramming and semi-definite programming,
respectively. Our MVC model includes spec-
tral clustering and maximum margin cluster-
ing as special cases, and is substantially more
general. We also establish the finite sample
stability and an error bound for soft-label
MVC method. Experiments show that the
proposed MVC approach compares favorably
with state-of-the-art clustering algorithms.

1 Introduction

Clustering has been an important topic in machine
learning and data mining communities. Over past
decades, a large number of clustering algorithms have
been developed, including k-means clustering (Harti-
gan & Wong, 1979), spectral clustering (Shi & Malik,
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2000; Meila & Shi, 2001; Ng et al., 2001), and maxi-
mum margin clustering (Xu et al., 2004; Xu & Schu-
urmans, 2005). They have been successfully applied
to diverse real-world exploratory data-analysis tasks.

To the best of our knowledge, the Maximum Mar-
gin Clustering (MMC) (Xu et al., 2004)—which max-
imizes the margin between two opposite clusters—is
the first clustering algorithm that is directly connected
to statistical learning theory (Vapnik, 1998). For this
reason, it has been extensively investigated recently,
e.g., Generalized MMC (Valizadegan & Jin, 2006) and
various approximation algorithms for speedup (Zhang
et al., 2007; Zhao et al., 2008a; Zhao et al., 2008b; Li
et al., 2009).

However, the large margin principle (LMP) is not
the only way to go. There is a large volume princi-
ple (LVP) which was introduced by Vapnik (1982) for
hyperplanes and extended by El-Yaniv et al. (2008)
for soft response vectors. Roughly speaking, machine
learning algorithms based on LVP should prefer hy-
potheses in some large-volume equivalence classes. See
Figure 1 as an example. Here C1, C2 and C3 represent
data clouds, and we want to choose a better separat-
ing hyperplane from h1 and h2. Though LMP prefers
h1 due to its large margin, we should choose h2 when
considering LVP, since its equivalence class (a set of
hyperplanes which equivalently separate samples) has
a larger volume than h1’s.

In this paper, we propose a novel model for cluster-
ing called Maximum Volume Clustering (MVC), which
serves as a prototype partitioning the data into two
clusters based on LVP. Given the samples Xn, we con-
struct an Xn-dependent hypothesis space H. If there
is a measure on H, namely the power (Vapnik, 1998),
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Figure 1: Large margin vs. large volume separation of
samples into two clusters.

then we can talk about the likelihood or confidence
of each equivalence class. Similarly to the margin in
MMC, the notion of volume (El-Yaniv et al., 2008) can
also be regarded as an estimation of the power. There-
fore, the larger the volume is, the more confident we
are of the data partition. Thus we consider the parti-
tion lying in the equivalence class with the maximum
volume as the best partition.

Similarly to other clustering approaches, the opti-
mization problem involved in our MVC is NP-hard,
so we introduce two approximation schemes: a soft-
label MVC based on sequential quadratic program-
ming (SQP) (Boggs & Tolle, 1995) that can be solved
in O(n3) time (the same as a standard eigenvalue prob-
lem), and a hard-label MVC based on semi-definite
programming (SDP) (De Bie & Cristianini, 2003) that
can be solved by any standard SDP solver in O(n6.5)
time (the same as the original MMC). Moreover, we
show that these two approximations can be reduced to
spectral clustering and MMC in special cases. Hence
the proposed MVC model may be regarded as a nat-
ural extension of existing spectral and large margin
approaches. We also establish the finite sample sta-
bility and an error bound for soft-label MVC method.
Experiments on benchmarks show that the proposed
MVC approach is promising.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly introduce a large volume approxima-
tion for clustering to be used in MVC. In Section 3,
we present the MVC model, algorithms and theoreti-
cal analyses. A comparison with related works is made
in Section 4. Experimental results are shown in Sec-
tion 5, and finally we conclude in Section 6.

2 A Large Volume Approximation

Given a set of samples Xn = {x1, . . . , xn}, where
xi ∈ X (most often but not necessarily, X ⊂ Rd for
some positive integer d), we will construct a hypoth-
esis space H that depends on Xn, such that for any

hypothesis h ∈ H ⊂ Rn, [h]i (the i-th component of
h) stands for a soft label or a confidence-rated label
of xi (El-Yaniv et al., 2008). We will then select an
h ∈ H following LVP, and the two resulting clusters
will be {xi | [h]i > 0} and {xi | [h]i < 0}.

As El-Yaniv et al. (2008), assume we have an n × n
positive definite matrix Q that contains pairwise in-
formation about Xn. Consider the hypothesis space
HQ = {h | h>Qh ≤ 1}, which is geometrically an
origin-centered ellipsoid E(HQ) in Rn. The set of sign
vectors {sgn(h) | h ∈ HQ} contains all 2n possible
dichotomies of Xn. In other words, HQ is now par-
titioned into a finite number of equivalence classes
H1, . . . ,H2n , such that for fixed k ∈ {1, . . . , 2n}, all
hypotheses in Hk will generate the same dichotomy of
Xn. The power of an equivalence class Hk (Vapnik,
1998) is defined as a probability mass

P(Hk) =

∫
Hk

dP (h), k = 1, . . . , 2n,

where P (h) is the underlying distribution of h over
HQ. The hypotheses in Hk with a large power P(Hk)
are preferred according to statistical learning the-
ory (Vapnik, 1998).

When no specific domain knowledge is available (i.e.,
P (h) is unknown), it would be natural to assume the
uniform distribution for h over HQ. Consequently,
P(Hk) is proportional to Hk’s geometric volume

V(Hk) =

∫
Hk

dh, k = 1, . . . , 2n.

Therefore, the larger V(Hk) is, the more confident we
are of the partition sgn(h) where h is chosen from
Hk. Note that each quadrant in Rn intersects with
one equivalence class, and V(Hk) is also given by the
geometric volume of the k-th quadrant of E(HQ).

However, it is too hard to compute V(Hk) exactly for
all k ∈ {1, . . . , 2n}, so we employ an efficient approx-
imation scheme introduced by El-Yaniv et al. (2008).
Let λ1 ≤ · · · ≤ λn be the eigenvalues of Q, and
v1, . . . ,vn be the associated normalized eigenvectors.
The direction and length of the i-th principal axis of
E(HQ) are vi and 1/

√
λi respectively. Then a small

angle from h ∈ Hk to vi with a small/large index i
(i.e., a long/short principal axis) implies that V(Hk)
is large/small. Based on this observation, we define

V (h) =

n∑
i=1

λi

(
h>vi

)2
‖h‖22

=
h>Qh

‖h‖22
, (1)

where (h>vi)/‖h‖2 is the cosine of the angle between
h and vi. We then expect V (h) to be small when h
lies in a large-volume equivalence class, and conversely
to be large in a small-volume equivalence class.
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3 Maximum Volume Clustering

In this section, we will define our MVC model, derive
practical algorithms and give theoretical analyses.

3.1 Basic Formulation

Motivated by MMC (Xu et al., 2004), we first formu-
late the clustering problems from the regularization
viewpoint. If we have labels Yn = {y1, . . . , yn} at hand
where yi ∈ {−1,+1}, we can find a base algorithm B
to compute

ϑ(Xn, Yn) = minh∈H∆(Xn, Yn,h) + γW (Xn, Yn,h),

where ∆ is the overall loss, W is a regularizer, γ is a
regularization parameter, and the hypothesis space H
is dependent upon Xn and Yn. The value ϑ(Xn, Yn) is
a measure of classification quality.

When the labels are absent, a clustering algorithm
C tries to minimize ϑ(Xn,y) over all possible assign-
ments y ∈ {−1,+1}n for given Xn, that is, to solve

y′ = arg miny∈{−1,+1}n ϑ(Xn,y).

Generally speaking, the value ϑ(Xn,y
′) can be viewed

as a measure of clustering quality. The smaller the
value ϑ(Xn,y

′) is, the more satisfied we are with the
resulting data partition sgn(y′).

In MVC, we hope to utilize (1) as our regularizer. For-
mally, given the matrix Q, by instantiating ∆ to the
linear loss function −2h>y, we define the Maximum
Volume Clustering model as

min
y∈{−1,+1}n

min
h∈HQ

−2h>y + γ · h
>Qh

‖h‖22
, (2)

where HQ = {h | h>Qh ≤ 1} is the hypothesis space,
and γ > 0 is a regularization parameter. Optimization
(2) is computationally intractable, because not only
of the non-convexity of V (h) but also of the integer
feasible region of y ∈ {−1,+1}n. Next we will discuss
two approximation schemes of (2) in detail.

3.2 Soft-Label Approximation

Now we try to optimize h alone by eliminating y. Af-
ter changing the order of miny and minh in (2), we see
that y should be sgn(h), since the second term is in-
dependent of y, and the first term is minimized when
y = sgn(h) for fixed h. Therefore, (2) becomes

min
h∈HQ

−2‖h‖1 + γ · h
>Qh

‖h‖22
. (3)

Clearly h>Qh/‖h‖22 equals h>Qh under the condition
‖h‖2 = 1, and then (3) can be expressed as

min
h∈Rn

−2‖h‖1 + γh>Qh s.t. ‖h‖2 = 1. (4)

This is the primal problem of Soft-Label Maximum Vol-
ume Clustering (SL-MVC).

In order to solve (4), we resort to sequential quadratic
programming (SQP) (Boggs & Tolle, 1995). Let1

f(h) =− 2h>sgn(h) + γh>Qh,

f1(h) =h>h− 1, f2(h) = h>1,

L(h, η) =− 2h>sgn(h) + γh>Qh− η
(
h>h− 1

)
− µ

(
h>1− b

)
+ ν

(
h>1 + b

)
,

where we include a class balance constraint |h>1| ≤ b
with a class balance parameter b > 0, η ∈ R, µ ≥ 0,
and ν ≥ 0 are Lagrangian multipliers for ‖h‖2 = 1 and
|h>1| ≤ b. Then, according to the problem

min
p∈Rn

1

2
p>∇2L(h, η)p + p>∇f(h)

s.t. p>∇f1(h) + f1(h) = 0,
∣∣p>∇f2(h) + f2(h)

∣∣ ≤ b,
at the t-th iteration, the subproblem at the current
solution (ht, ηt) is a quadratic programming

min
pt∈Rn

p>t (γQ− ηtI)pt + 2p>t
(
γQht − sgn(ht)

)
s.t. 2p>tht + h>tht = 1,

∣∣p>t1 + h>t1
∣∣ ≤ b, (5)

and the new η is given by

ηt+1 =
(
γQht+1 − ηtpt − sgn(ht)

)>
ht/

(
h>tht

)
. (6)

The SL-MVC algorithm based on SQP is summa-
rized in Algorithm 1. We use an initial solution
h0 = sgn(v2 − 1

n1>v21)/‖ sgn(v2 − 1
n1>v21)‖2 and

η0 = −0.001 in our experiments, where v2 is the eigen-
vector corresponding to the second smallest eigenvalue
of Q. The asymptotic time-complexity of each sub-
problem is O(n3), and SQP converges in O(1) itera-
tions. Likewise it takes O(n3) time to compute the
initial solution h0. Thus the overall computational
complexity of Algorithm 1 is O(n3).

Additionally we have,

Theorem 1. Spectral clustering could be derived from
SL-MVC when the number of clusters is 2.

Proof. Recall the relaxed RatioCut that formulates
spectral clustering from the graph cut point of view
when there are two clusters (von Luxburg, 2007),

min
f∈Rn

f>Lf s.t. f⊥1, ‖f‖2 =
√
n, (7)

where L is the unnormalized graph Laplacian. Obvi-
ously (7) can be derived from (4) by settingQ = L, γ =
∞ and a strict class balance constraint h>1 = 0.

1Note that the term −h>y or −‖h‖1 combined with
minh has an effect to push h away from the coordinate
axes of Rn. Thus hi = 0 hardly happens in practice and
we assume that ‖h‖1 is always differentiable.
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Algorithm 1 SL-MVC (SQP ver.)

Input: stop criterion ε,
positive definite matrix Q,
regularization parameter γ,
class balance parameter b

Output: soft response vector ht+1

Initialize h0 and η0
Let t = −1
repeat
t = t+ 1
Optimize (5) to obtain pt
Update ht+1 = ht + pt
Update ηt+1 through (6)

until ‖ht+1 − ht‖22 + ‖ηt+1 − ηt‖22 ≤ ε

3.3 Hard-Label Approximation

Similarly to the soft-label case, we can optimize y
alone. Let h = α ◦ y, where yi = sgn(hi), αi = |hi|
and ◦ denotes the element-wise product. After the in-
troduction of a parameter C that may work against
outliers, the primal problem of Hard-Label Maximum
Volume Clustering (HL-MVC) is rewritten as

min
y∈{−1,+1}n

min
α
− 2α>1 + γα>(Q ◦ yy>)α

s.t. 0 ≤ α ≤ C1, α>α = 1.
(8)

By employing the techniques in De Bie and Cristianini
(2003), let M = yy> and then (8) is relaxed to

min
M∈Rn×n

max
α,η

2α>1− γα>(Q ◦M)α + ηα>α− η

s.t. 0 ≤ α ≤ C1, M � 0, diag(M) = 1,
(9)

where � indicates the positive semi-definiteness of a
matrix. The relaxation mainly comes from replacing
the non-convex constraint rank(M) = 1 with a convex
alternative M � 0. Actually, (9) is a semi-definite
programming (SDP) provided (γQ ◦M − ηI) � 0. Let
ν ≥ 0 and µ ≥ 0 be Lagrangian multipliers for α ≥
0 and α ≤ C1. Due to the convexity of (9) when
(γQ ◦M − ηI) � 0 holds, (9) is equivalent to

min
M,µ,ν

max
α,η

2α>(1− µ + ν)− γα>(Q ◦M − ηI)α
+2Cµ>1− η

s.t. µ ≥ 0, ν ≥ 0

M ∈ Rn×n, M � 0, diag(M) = 1.

Consider the variable α alone. The optimal α should
be α = (Q ◦M − ηI)−1(1− µ + ν), and we can form
the above problem as

min
M,µ,ν,η

(1− µ + ν)>(Q ◦M − ηI)−1(1− µ + ν)
+2Cµ>1− η

s.t. µ ≥ 0, ν ≥ 0

M ∈ Rn×n, M � 0, diag(M) = 1,

under an additional condition that 1−µ+ν is orthog-
onal to the null space of Q ◦M − ηI. Eventually, we
arrive at a formulation in standard SDP form:

min
M,µ,ν,η,t

t

s.t. µ ≥ 0, ν ≥ 0

M ∈ Rn×n, M � 0, diag(M) = 1(
γQ ◦M − ηI (1− µ + ν)
(1− µ + ν)> t+ η − 2Cµ>1

)
� 0.

(10)

The computational complexity of (10) is O(n6.5) by a
standard SDP solver. It could be reduced to O(n4.5)
with the subspace tricks (De Bie & Cristianini, 2003;
De Bie & Cristianini, 2006) which use essentially the
spectral properties of Q to control the trade off be-
tween the computational cost and the accuracy.

When we get the optimal M , the optimal y can be
recovered from M by techniques such as randomized
rounding (Raghavan & Thompson, 1985). In our im-
plementation, we first extract the eigenvector v̄ associ-
ated with the largest eigenvalue of M , and the optimal
y is then recovered as y = sgn(v̄ − 1

n1>v̄1).

Additionally we have,

Theorem 2. Maximum margin clustering could be de-
rived from HL-MVC.

Proof. Let Q = K, γ = 1 and fix η = 0, then the dual
problem of HL-MVC coincides with the SDP dual of
MMC exactly (without class balance constraints).

3.4 Finite Sample Stability

In this subsection, we investigate the finite sample sta-
bility of SL-MVC method. Stability of the resulting
clusters is especially important for those solved by ran-
domized algorithms (e.g., SL-MVC and k-means clus-
tering) rather than by transforming themselves to con-
vex dual problems (e.g., HL-MVC, and MMC in Xu
et al. (2004) and Valizadegan and Jin (2006)). In the
following, we presume that we are able to find local
minima of (4) accurately. Under this presumption, we
prove that the instability of SL-MVC is solely resulted
from the symmetry of samples, that is, we cannot de-
duce unstable clusters from any asymmetric samples.
The proofs are omitted here due to limited space.

To begin with, given a constant η we define (remember
the assumption that ‖h‖1 is differentiable)

G(h) = γh>Qh− η‖h‖22 − 2‖h‖1,

g(h) =
1

2
∇G(h) = γQh− ηh− sgn(h).

Definition 1. The Hamming clustering distance for
two soft response vectors in Rn is defined as

dH(h1,h2) = 1
2 min(‖y1 + y2‖1, ‖y1 − y2‖1),
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where y1 = sgn(h1) and y2 = sgn(h2).

Definition 2. We say that Xn is an axisymmetric
set of samples w.r.t. Q, if there exists a bijection φ :
{1, . . . , n} 7→ {1, . . . , n} such that (a) ∃i, φ(i) 6= i, (b)
∀i, φ−1(i) = φ(i) and (c) Qi,φ(k) = Qφ(i),k for all 1 ≤
i, k ≤ n.

In other words, φ divides Xn into subsets of single
element (i.e., {xi} if φ(i) = i) or paired elements (i.e.,
{xi, xj} if φ(i) = j, φ(j) = i), and for each xi and
xj in the latter case, they cannot be distinguished by
all other samples as a whole based on the information
of Q, so they can exchange with each other without
changing Q. There might be more than one eligible φ.
In fact, the axisymmetry of Xn w.r.t. Q is equivalent
to the geometric axisymmetry of Xn in X ⊂ Rd if
Q is constructed from the Euclidean distance defined
on Rd. For example, X4 = {(0, 0), (1, 0), (1, 1), (0, 1)},
which is axisymmetric in R2, is an axisymmetric set of
samples in the sense of Gaussian similarity.

It is, however, not true that a symmetric Xn must re-
sult in unstable best partition. It occurs only when
the best partition is not unique. For example, X ′4 =
{(0, 0), (2, 0), (2, 1), (0, 1)} has the unique best parti-
tion (1,−1,−1, 1), but intuitively X4 has two best par-
titions (1,−1,−1, 1) and (1, 1,−1,−1). Formally,

Theorem 3 (Twin Minimum Theorem). Assume
that n > 2, Xn is an axisymmetric set of samples
w.r.t. Q, and I = {{i, j} | xi, xj cannot be distin-
guished by Xn \ {xi, xj}}. For every minimum h∗

of (4), if ∀i, [h∗]i 6= 0 and ∃{i, j} ∈ I, [sgn(h∗)]i 6=
[sgn(h∗)]j, then h∗ has a twin minimum h? satisfying
G(h?) = G(h∗) and dH(h∗,h?) ≥ 1. The only excep-
tion is that there exists I ′ ⊆ I, such that I ′ consists of
disjoint index pairs, all indices in I ′ cover {1, . . . , n},
and ∀{i, j} ∈ I ′, [sgn(h∗)]i 6= [sgn(h∗)]j.

In order to explain the implication of above theorem,
consider X ′4 again. Minima corresponding to y =
(1,−1,−1, 1) have no twin minimum, since ∀{i, j} ∈
I = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, we
have [y]i = [y]j or [y]i 6= [y]j , [y]i′ 6= [y]j′ where
{i′, j′} = {1, . . . , 4}\{i, j}, which says that if we switch
entries of h∗ according to φ, it is still dH(h∗,h?) = 0.
Otherwise, we get dH(h∗,h?) ≥ 1.

However, Theorem 3 gives only a sufficient condition.
The minima corresponding to y and (1, 1,−1,−1) are
twins when considering X4, which is also an unstable
input for spectral clustering and MMC. The difference
between X4 and X ′4 is explained below.

Definition 3. We say that Xn is an anisotropic set of
samples w.r.t. Q, if Q has n distinct eigenvalues.

The name “anisotropic” comes from a geometric in-
terpretation of the ellipsoid E(HQ). When Q has n

distinct eigenvalues, principal axes of E(HQ) have dif-
ferent length and E(HQ) is irrotational about any prin-
cipal axis. The concepts of anisotropy and axisym-
metry are not complementary. Indeed some Xn is
only axisymmetric or anisotropic, but some Xn is both
axisymmetric and anisotropic, e.g., X ′4 in the sense
of Gaussian similarity, and some Xn can be neither
axisymmetric nor anisotropic w.r.t. Q. Nevertheless,
when considering certain families of Q like Gaussian
kernel matrices, we have this relationship between ax-
isymmetry and anisotropy, if a set Xn is not axisym-
metric then Xn must be anisotropic w.r.t. this Q.

Theorem 4. If Xn is not an axisymmetric set of
samples w.r.t. Q, and there exists κ > 0 such that
∀i, Qi,i = κ, then Xn is an anisotropic set of samples
w.r.t. Q.

Theorem 5 (Equivalent Minima Theorem). All
minima of (4) are equivalent w.r.t. dH provided Xn is
an anisotropic set of samples w.r.t. Q.

Though Algorithm 1 is stable for fixed h0 and η0 since
that algorithm is derandomized by the initial solution,
we have a stronger result immediately from Theorem 5.

Corollary 6. If Xn is an anisotropic set of samples
w.r.t. Q, then the optimization problem (4) will always
lead to the same partition of Xn.

To sum up, the finite sample stability of SL-MVC is
theoretically as strong as MMC with the convex SDP
formula. Things will become complicated if we con-
sider numerical issues such as ‖h‖2 ≈ 1 and g(h) ≈ 0
when Algorithm 1 stops. As a consequence, there
are algorithmically very special anisotropic sets with
more than one best partition. For instance, X ′5 =
X ′4∪{(1, 0.5)}, which is an unstable input for all afore-
mentioned clustering algorithms without an assump-
tion that sgn(0) = 1 or sgn(0) = −1.

3.5 Data-Dependent Error Bound

Moreover, we give a data-dependent error bound of
Algorithm 1 using transductive Rademacher complex-
ity (El-Yaniv & Pechyony, 2007). It is argued that,
no matter how hard it is to evaluate clustering in an
objective and domain-independent way, when our goal
is clear and a proper similarity measure is chosen, it
makes sense to evaluate clustering on certain classifica-
tion datasets, if the underlying assumption that points
with the same class labels form clusters is true (Guyon
et al., 2009).

In practical clustering tasks, we often find some ex-
perts to label a small portion of samples Xn′ according
to their knowledge, run a pool of candidate clustering
algorithms, see their agreement with the labels and
eliminate results of those low agreement algorithms.
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This may be viewed as propagating the knowledge of
experts from Xn′ to Xn. Here, we present a data-
dependent error bound to guarantee the quality of this
propagation.

Lemma 7. Let H̃Q be the set of all possible h returned
by Algorithm 1 for a given Q, η∗ be the maximal η
when Algorithm 1 stops, {λ̂i}ni=1 be the eigenvalues of

Q̂ = (γQ−η∗I)−1, and µ = suph∈H̃Q
sgn(h)>Q̂ sgn(h).

Then, for the transductive Rademacher complexity
R(H̃Q), the following upper bound holds for any in-
teger n′ between 0 and n,

R(H̃Q) ≤√
2

n′(n− n′)
min

√n,
(
n

n∑
i=1

λ̂2i

) 1
2

,

(
µ

n∑
i=1

λ̂i

) 1
2

 .

Use Lemma 7 in conjunction with Theorem 2 of (El-
Yaniv & Pechyony, 2007) and obtain

Theorem 8. Assume that we know the ground truth
partition on Xn (denoted by y∗), and L is selected
uniformly over {L | L ⊂ {1, . . . , n}, |L| = n′}. Let ` be

the 0/1 loss function, H̃Q be the set of all possible h
returned by Algorithm 1 for a given Q, Y = {sgn(h) |
h ∈ H̃Q}, η∗ be the maximal η when Algorithm 1

stops, {λ̂i}ni=1 be the eigenvalues of Q̂ = (γQ−η∗I)−1,

µ = supy∈Y y>Q̂y, and c0 =
√

32
3 ln(4e). For any

y ∈ Y, with probability of at least 1− δ over the choice
of L, we have

dH(y,y∗) ≤ n

n′
min

{∑
i∈L

`([y]i, [y
∗]i),

∑
i∈L

`([−y]i, [y
∗]i)

}

+
c0n√
n′

+

√
2n(n− n′)

n′
ln

1

δ

+

√
2(n− n′)

n′
min

√n,
(
n

n∑
i=1

λ̂2i

) 1
2

,

(
µ

n∑
i=1

λ̂i

) 1
2

 .

(11)

There are four terms in (11). The first term is the
amplified empirical error on the subset of samples
Xn′ = {xi | i ∈ L}. More specifically, we want to
choose a proper similarity measure via the given labels
to make the empirical error small on Xn′ . The second
term depends only on n and n′, that is, the size of the
whole set and the labeled subset. The next is a term
which depends further on the significance level δ as
in common error bounds. The last term is the upper
bound of (n− n′)R(H̃Q), which carries out implicitly
the complexity control of the hypothesis space, that is,
when R(H̃Q) is small, we are confident that dH(y,y∗)
will be small if the error on Xn′ is small.

Remark 1. Our setting is equivalent to neither semi-
supervised clustering nor transductive classification.
We do not reveal any labels to the algorithm, but we do
reveal a portion of randomly selected labels to an eval-
uator which then returns an evaluation of the quality
of any possible partition generated by the algorithm.
We can use transductive Rademacher complexity for
our algorithm since it can be viewed as a transductive
algorithm that ignores all revealed labels.

4 Related Works

Among the existing methods, maximum margin clus-
tering algorithms (MMC) are closest to maximum vol-
ume clustering (MVC). Although MMC and HL-MVC
share similar dual problems, their geneses and underly-
ing criteria are quite different. The primal problems of
various MMC use a regularizer ‖w‖22 originated from
the margin, while MVC uses V (h) originated from the
volume. Moreover, the basis of MMC is hyperplanes
for induction, whereas the basis of MVC is soft re-
sponse vectors for transduction.

After the proposition of MMC (Xu et al., 2004), Gen-
eralized MMC (GMMC) (Valizadegan & Jin, 2006) has
relaxed the restriction that MMC requires the center
of samples passing through the origin. There are two
fast iterative MMC algorithms based on support vec-
tor regression (Zhang et al., 2007) and cutting plane
techniques (Zhao et al., 2008a), but both have troubles
of local optima. Unlike Zhang et al. (2007) and Zhao
et al. (2008a), HL-MVC involves convex optimization,
and SL-MVC is proved to perform as a convex op-
timization under mild conditions, if we only concern
the final partition y rather than the hypothesis h. In
a word, the stability of MVC is by no means inferior to
non-convex MMC variations. In our experiments, two
MVC algorithms run even more stably than GMMC
given different candidate parameters, since the latter
tries to invert a kernel matrix. What is more, we have
a data-dependent error bound, and to the best of our
knowledge MMC algorithms have no such result.

Another related work is spectral clustering (SC) (Shi
& Malik, 2000; Meila & Shi, 2001; Ng et al., 2001).
Many SC algorithms have two steps, first a spectral
embedding step and then a k-means step. Note that
SL-MVC is able to integrate unnormalized SC into a
single optimization and the highly non-convex k-means
step is unnecessary. Next, the motivation of f⊥1 in SC
is different from h>1 = 0 in SL-MVC. When L is con-
structed from a fully connected similarity graph, f⊥1
means that the feasible region of (7) is included in the
space spanned by all eigenvectors of L except the triv-
ial eigenvector 1. The last and most vital difference
between SC and MVC is that MVC has a linear loss
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Figure 2: Experimental results on MNIST for small n

term which pushes hypotheses away from the coordi-
nate axes and always leads to non-sparse solutions.

The Approximate Volume Regularization (AVR) (El-
Yaniv et al., 2008) is also strongly connected to MVC.
However, the implementations are quite different. In
their transductive learning setting, they use KKT con-
ditions to optimize AVR directly, since their y is a con-
stant and only h needs to be optimized. In our work,
the MVC model involves a combinatorial optimiza-
tion problem similarly to many clustering and semi-
supervised learning models, especially MMC. This dif-
ficulty caused by the integer feasible region is intrinsi-
cally owing to the clustering problem and has no busi-
ness with the large volume approximation V (h). In
order to solve the MVC model, we proposed two MVC
algorithms based on SQP and SDP.

5 Experiments

We included six algorithms in experiments: k-
means (KM) (Hartigan & Wong, 1979), soft-label and
hard-label maximum volume clustering (SL-MVC and
HL-MVC), normalized spectral clustering (SC) (Ng
et al., 2001), maximum margin clustering (MMC) (Xu
et al., 2004) and generalized MMC (GMMC) (Val-
izadegan & Jin, 2006). The CVX package (Grant &
Boyd, 2010) was used to solve (5) in SL-MVC and the
SDPs involved in HL-MVC, MMC and GMMC.

Three benchmarks were used here: MNIST and USPS

handwritten digits and 20Newsgroups text datasets
that have 784, 256 and 26214 features, respectively.

First we conducted experiments on MNIST for small
sample size n (n ≤ 100). The results are reported
in Figure 2, where the error is measured by 1

ndH. In
order to make a fair comparison, we simply took the
normalized graph Laplacian L as Q in SL-MVC, and
the matrix L in both SL-MVC and SC was constructed
by k-Nearest Neighbor (k-NN) using cosine similarity
and k was the best integer from 3 to 8. Other pa-
rameters of SL-MVC were ε = 10−6, γ = 0.01 and
b = 10−7. On the other hand, Gaussian kernels were
used in HL-MVC, MMC and GMMC because cosine
similarity did not work, and the square of the kernel
width σ2 was the best value in {1, 10, 102, 103}. In HL-
MVC, we fixed C = 104 while γ = 0.01 for 1vs.4 and
1vs.7, and γ = 100 for 3vs.5 and 5vs.8. The param-
eter C of MMC was chosen from {1, 104}. We fixed
Ce = 104 in GMMC, and the parameter Cδ was cho-
sen from {1, 103, 106}. In all experiments, we repeated
KM and SC five times and reported the best results,
while we ran the other four algorithms only once. It
could be observed from Figure 2 that two MVC algo-
rithms were comparable with other algorithms.

Next we compared the performances of SL-MVC, SC
and GMMC on three benchmarks for large sample size
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Figure 3: Experimental results on MNIST, USPS and 20Newsgroups for large n

n (100 ≤ n ≤ 1000) as reported in Figure 3. We ex-
cluded HL-MVC and MMC since they were too slow.
The performance of KM was so poor that we excluded
it too. We did not test GMMC for some large n if it
was unbearably slower than SC and SL-MVC. All pa-
rameters here were almost the same as those used in
the experiments above, except on 20Newsgroups the
parameter k of k-NN was the best one between 5 and
12 in construction of L for SL-MVC and SC, and we
changed b = 10−7 to b = 1 in SL-MVC to get a looser
class balance constraint. The experimental results in
Figure 3 illustrate the usefulness of SL-MVC. It of-
ten beat GMMC significantly, and almost always had
higher or equal accuracy than SC which used the same
similarity. In summary, SL-MVC could be a promising
alternative to existing spectral and maximum margin
clustering algorithms.

6 Conclusions

We proposed a maximum volume clustering model
to partition the data into two clusters based on the
large volume principle. We elucidated properties of
our model and its two approximations (solved by SQP
and SDP respectively) from theoretical points of view

in detail, and further demonstrated the generality of
MVC that it actually includes spectral clustering and
maximum margin clustering as special cases. Experi-
ments on benchmarks showed that the proposed MVC
approach is very successful in image and text cluster-
ing problems.

A key observation in our experiments was that com-
pared with SC and MVC, GMMC worked well when
n was small, but performed poorly when n was large.
One conjecture is that the volume could capture more
structural information of data than the margin for
large n and thus better approximate the power of
equivalence classes. Another conjecture is that the
SDP relaxations of MMC models become looser for
large n due to the weak duality, i.e., they are less con-
sistent algorithms when they use SDP to relax the
original NP-hard optimizations. In the future work,
we will more formally investigate these conjectures.
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7 APPENDIX—SUPPLEMENTARY
MATERIAL

7.1 Proof of Theorem 3

Proof. Without loss of generality we assume that
{1, 2} ∈ I and h∗ = (α,−β, h3, . . . , hn)> where αβ >
0.

There must be a bijection φ which satisfies φ(1) = 2,
φ(2) = 1 and the three requirements of φ in Defini-
tion 2. Consider h? = (−β, α, hφ(3), . . . , hφ(n))>. Ob-
viously ‖h?‖1=‖h∗‖1 and ‖h?‖2=‖h∗‖2. Moreover,
∀i,

[g(h?)]i

= γ
∑n

l=1
Qi,lhφ(l) − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qi,φ−1(k)hk − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qi,φ(k)hk − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qφ(i),khk − ηhφ(i) − sgn(hφ(i))

= [g(h∗)]φ(i).

Hence, g(h?) = 0 due to the KKT condition g(h∗) =
0, which means that h? is also a minimum. Similarly
we can derive h?>Qh? = h∗>Qh∗ and thereby we arrive
at G(h?) = G(h∗).

Notice that dH(h∗,h?) ≥ 1, with the only excep-
tion dH(h∗,h?) = 0 when sgn(h?) = − sgn(h∗), i.e.,
∀i, φ(i) 6= i and I ′ = {{i, φ(i)}|i = 1, . . . , n}. This
completes the proof.

7.2 Proof of Theorem 4

Proof. When n = 2 it is trivial that Xn is anisotropic.

Suppose that n > 2 and E(HQ) has two principal axes
vj and vk with the same length 1/

√
λj = 1/

√
λk.

Then there is at least one principal axis vl, l 6= j, k
about which E(HQ) is rotational along the circle
spanned by vj and vk.

From ∀i, Qi,i = κ we know that E(HQ) intersects the i-
th coordinate axis at ±ei/

√
κ with length 1/

√
κ, where

ei is the i-th unit vector of Rn. Now E(HQ) has n
principal axes with at most n− 1 different length but
another system of n orthogonal axes with length 1/

√
κ,

so vl must be in the form of

vl =
v̄l
‖v̄l‖2

, v̄l =

n∑
i=1

δiei 6= 0, δi ∈ {−1, 0, 1}.

In other words, vl lies on the central direction of cer-
tain quadrant of a subspace of Rn determined by vj
and vk. But this is impossible since Xn is not axisym-
metric w.r.t. Q.

Hence all principal axes of E(HQ) have different length,
which is exactly what we were to prove.

7.3 Proof of Theorem 5

Proof. The KKT condition g(h) = 0 implies

h = Q̂y, (12)

where y = sgn(h), Q̂ = (γQ− ηI)−1, and the constant
η < γλ1, λ1 is the smallest eigenvalue of Q. Substitute
(12) into ‖h‖2 = 1, and note that Q̂>= Q̂,

(Q̂y)>(Q̂y) = 1 =⇒ y>Q̂2y = 1.

All eigenvalues of Q are different and positive, so are
all eigenvalues of Q̂. Consequently, Q̂2 has a unique
spectral decomposition. Let Q̂2 =

∑n
i=1 µiuiu

>
i , then

y>Q̂2y =
∑n
i=1 µi‖u>iy‖22.

We assert that ∀y1,y2 ∈ {−1,+1}n, the only pos-
sibility of y>1Q̂

2y1 = y>2Q̂
2y2 is either y1 = y2 or

y1 = −y2. Otherwise, there exist two nonempty
disjoint indices J and K, such that ∀j ∈ J , k ∈
K, [y1]j = −[y1]k = −[y2]j = [y2]k. Moreover, ∀i,∑
j∈J [ui]j [y1]j +

∑
k∈K[ui]k[y1]k =

∑
j∈J [ui]j [y2]j +∑

k∈K[ui]k[y2]k since the spectral decomposition of Q̂2

is unique. Hence,
∑
j∈J [ui]j =

∑
k∈K[ui]k for all

i = 1, . . . , n. This means that the row rank of the
matrix U = (u1| . . . |un) is n − 1, which contradicts
the linear independence of {u1, . . . ,un}.

Therefore, all minima of (4) are equivalent w.r.t. dH.

7.4 Proof of Lemma 7

Proof. For any h ∈ H̃Q, ∃α ∈ Rn such that h = Uα,
where U consists of n orthonormal eigenvectors of Q,
and ‖α‖2 = 1 since ‖h‖2 = 1 and U>U = I. This
h = Uα is a UL decomposition (El-Yaniv & Pechyony,
2007) since U has only information about unlabeled
samples. Each column of U has unit length, and thus
‖U‖2Fro = n. The first part of the bound comes from
inequality (20) in El-Yaniv and Pechyony (2007).

Another UL decomposition is shown in (12). The
equation (12) holds for η∗ since it holds for any con-
stant η smaller than γ times the smallest eigenvalue of
Q. It is also a kernel UL decomposition since the ma-
trix Q̂ is symmetric positive definite. Then, the other
part of the bound is derived from inequality (20) and
inequality (23) in El-Yaniv and Pechyony (2007) with
µ1 =

√
n and µ2 =

√
µ, respectively.
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