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Abstract

The purpose of sufficient dimension reduction (SDR) is to find a low-dimensional expression
of input features that is sufficient for predicting output values. In this paper, we propose
a novel distribution-free SDR method called sufficient component analysis (SCA), which
is computationally more efficient than existing methods. In our method, a solution is
computed by iteratively performing dependence estimation and maximization: Dependence
estimation is analytically carried out by recently-proposed least-squares mutual information
(LSMI), and dependence maximization is also analytically carried out by utilizing the
Epanechnikov kernel. Through large-scale experiments on real-world image classification
and audio tagging problems, the proposed method is shown to compare favorably with
existing dimension reduction approaches.
Keywords: Sufficient dimension reduction, squared-loss mutual information, Epanech-
nikov kernel, image classification, audio tagging.

1. Introduction

The goal of sufficient dimension reduction (SDR) is to learn a transformation matrix W
from input feature x to its low-dimensional representation z (= Wx) which has ‘sufficient’
information for predicting output value y. Mathematically, SDR can be formulated as the
problem of finding z such that x and y are conditionally independent given z (Cook, 1998;
Fukumizu et al., 2009).

Earlier SDR methods developed in statistics community, such as sliced inverse regression
(Li, 1991), principal Hessian direction (Li, 1992), and sliced average variance estimation
(Cook, 2000), rely on the elliptic assumption (e.g., Gaussian) of the data, which may not
be fulfilled in practice.

To overcome the limitations of these approaches, kernel dimension reduction (KDR)
was proposed (Fukumizu et al., 2009). KDR employs a kernel-based dependence measure,
which does not require the elliptic assumption (i.e., distribution-free), and the solution W
is computed by a gradient method. Although KDR is a highly flexible SDR method, its
critical weakness is the kernel function choice—the performance of KDR depends on the
choice of kernel functions and the regularization parameter, but there is no systematic model
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selection method available1. Furthermore, KDR scales poorly to massive datasets since the
gradient-based optimization is computationally demanding. Another important limitation
of KDR in practice is that there is no good way to set an initial solution—many random
restarts may be needed for finding a good local optimum, which makes the entire procedure
even slower and the performance of dimension reduction unreliable.

To overcome the limitations of KDR, a novel SDR method called least-squares di-
mension reduction (LSDR) was proposed recent (Suzuki and Sugiyama, 2010). LSDR
adopts a squared-loss variant of mutual information (SMI) as a dependency measure,
which is efficiently estimated by a method called least-squares mutual information (LSMI)
(Suzuki et al., 2009). A notable advantage of LSDR over KDR is that kernel functions and
its tuning parameters such as the kernel width and the regularization parameter can be nat-
urally optimized based on cross-validation, which is independent of succeeding predictors.
However, LSDR still relies on a computationally expensive gradient method and there is no
good initialization scheme.

In this paper, we propose a novel SDR method called sufficient component analysis
(SCA), which can overcome the computational inefficiency of LSDR. In SCA, the solution
W in each iteration is obtained analytically by just solving an eigenvalue problem, which
highly contributes to improving the computational efficiency. Moreover, based on the above
analytic-form solution, we develop a method to design a useful initial value for optimization,
which further reduces the computational cost and helps to obtain a good solution.

Through large-scale experiments using the PASCAL Visual Object Classes (VOC) 2010
dataset (Everingham et al., 2010) and the Freesound dataset (The Freesound Project, 2011),
we demonstrate the usefulness of the proposed method.

2. Sufficient Dimension Reduction with Squared-Loss Mutual
Information

In this section, we formulate the problem of sufficient dimension reduction (SDR) based on
squared-loss mutual information (SMI).

2.1. Problem Formulation

Let X (⊂ Rd) be the domain of input feature x and Y be the domain of output data2 y.
Suppose we are given n independent and identically distributed (i.i.d.) paired samples,

Dn = {(xi, yi) | xi ∈ X , yi ∈ Y, i = 1, . . . , n},

drawn from a joint distribution with density pxy(x,y).

1. In principle, it is possible to choose the Gaussian width and the regularization parameter by cross-
validation over a succeeding predictor. However, this results in a deeply nested cross-validation procedure
and therefore this is computationally very expensive. Furthermore, features extracted based on cross-
validation are no longer independent of predictors. Thus, a merit of sufficient dimension reduction (i.e.,
the obtained features are independent of the choice of predictors and thus reliable) is lost.

2. Y could be either continuous (i.e., regression) or categorical (i.e., classification). Multi-dimensional out-
puts (e.g., multi-task regression and multi-label classification) and structured outputs (such as sequences,
trees, and graphs) can also be handled in the proposed framework.
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The goal of SDR is to find a low-dimensional representation z (∈ Rm, m ≤ d) of input
x that is sufficient to describe output y. More precisely, we find z such that

y⊥⊥x | z. (1)

This means that, given projected feature z, feature x is conditionally independent of output
y.

In this paper, we focus on linear dimension reduction scenarios:

z = Wx,

where W (∈ Rm×d) is a transformation matrix. W is assumed to belong to the Stiefel
manifold Sd

m(R):
Sd

m(R) := {W ∈ Rm×d | WW> = Im},
where > denotes the transpose and Im is the m-dimensional identity matrix. Below, we
assume that the reduced dimension m is known.

2.2. Dependence Estimation-Maximization Framework

It was showed that the optimal transformation matrix W ∗ that leads to Eq.(1) can be
characterized as follows (Suzuki and Sugiyama, 2010):

W ∗ = argmax
W∈Rm×d

SMI(Z, Y ) s.t. WW> = Im, (2)

where SMI(Z, Y ) is the squared-loss mutual information (SMI) defined by

SMI(Z, Y ) :=
1
2
Epz,py

[(
pzy(z, y)

py(y)pz(z)
− 1

)2
]

.

In the above, Epz,py denotes the expectation over the marginals pz(z) and py(y). Note
that SMI is the Pearson divergence (Pearson, 1900) from pzy(z,y) to pz(z)py(y), whereas
ordinary mutual information is the Kullback-Leibler divergence (Kullback and Leibler, 1951)
from pzy(z, y) to pz(z)py(y). The Pearson divergence and the Kullback-Leibler divergence
both belong to the class of f-divergences (Ali and Silvey, 1966; Csiszár, 1967), and thus
they share similar theoretical properties. For example, SMI is non-negative and takes zero
if and only if Z and Y are statistically independent, as ordinary mutual information.

Based on Eq.(2), we develop the following iterative algorithm for learning W :

(i) Initialization: Initialize the transformation matrix W (see Section 3.3).

(ii) Dependence estimation: For current W , an SMI estimator ŜMI is obtained (see
Section 3.1).

(iii) Dependence maximization: Given an SMI estimator ŜMI, its maximizer with re-
spect to W is obtained (see Section 3.2).

(iv) Convergence check: The above (ii) and (iii) are repeated until W fulfills some con-
vergence criterion3.

3. In experiments, we used the criterion that the improvement of dSMI is less than 10−6.
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3. Proposed Method: Sufficient Component Analysis

In this section, we describe our proposed method called the sufficient component analysis
(SCA).

3.1. Dependence Estimation

In SCA, we utilize a non-parametric SMI estimator called least-squares mutual information
(LSMI) (Suzuki et al., 2009), which was shown to possess a desirable convergence property
(Suzuki and Sugiyama, 2010). Here, we briefly review LSMI.

3.1.1. Basic Idea

The key idea of LSMI is to directly estimate the density ratio (Sugiyama et al., 2012),

w(z, y) =
pzy(z, y)

pz(z)py(y)
,

without going through density estimation of pzy(z, y), pz(z), and py(y). Here, the density
ratio function w(z, y) is directly modeled as

wα(z,y) =
n∑

`=1

α`K(z, z`)L(y, y`), (3)

where z` = Wx`, and K(z,z′) and L(y, y′) are kernel functions for z and y, respectively.
Then, the parameter α = (α1, . . . , αn)> is learned so that the following squared error is

minimized:

J0(α) :=
1
2
Epz,py

[
(wα(z,y)− w(z, y))2

]
.

After a few lines of calculation, we can see that J0 is expressed as

J0(α) = J(α) + SMI(Z, Y ) +
1
2
,

where

J(α) :=
1
2
α>Hα− h>α,

H`,`′ := Epz,py [K(z, z`)L(y,y`)K(z, z`′)L(y,y`′)] ,
h` := Epzy [K(z, z`)L(y,y`)] .

Since SMI(Z, Y ) is constant with respect to α, minimizing J0 is equivalent to minimizing
J .
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3.1.2. Computing the Solution

Approximating the expectations in H and h included in J by empirical averages, we arrive
at the following optimization problem:

min
α

[
1
2
α>Ĥα− ĥ

>
α +

λ

2
α>Rα

]
,

where a regularization term λα>Rα/2 is included for avoiding overfitting, λ (≥ 0) is a
regularization parameter, R (∈ Rn×n) is a positive semi-definite regularization matrix, and

Ĥ`,`′ :=
1
n2

n∑

i,j=1

K(zi, z`)L(yj , y`)K(zi,z`′)L(yj , y`′),

ĥ` :=
1
n

n∑

i=1

K(zi,z`)L(yi, y`).

Differentiating the above objective function with respect to α and equating it to zero, we
can obtain the optimal solution α̂ analytically as

α̂ = (Ĥ + λR)−1ĥ. (4)

Then, based on the fact that SMI(Z, Y ) is expressed as

SMI(Z, Y ) =
1
2
Epzy [w(z, y)]− 1

2
,

the following SMI estimator can be obtained:

ŜMI =
1
2
ĥ
>
α̂− 1

2
. (5)

3.1.3. Model Selection

Hyper-parameters included in the kernel functions and the regularization parameter can
be optimized by cross-validation with respect to J (Suzuki et al., 2009), which is described
below.

First, samples Z = {(zi,yi)}ni=1 are divided into K disjoint subsets {Zk}Kk=1 of (approx-
imately) the same size. Then, an estimator α̂Zk

is obtained using Z\Zk (i.e.,. all samples
without Zk), and the approximation error for hold-out samples Zk is computed as

J
(K-CV)
Zk

:=
1
2
α̂>Zk

ĤZk
α̂Zk

− ĥ
>
Zk

α̂Zk
,

where, for |Zk| being the number of samples in subset Zk,

[ĤZk
]`,`′ :=

1
|Zk|2

∑

z∈Zk

∑

y∈Zk

K(z,z`)L(y, y`)K(z, z`′)L(y, y`′),

[ĥZk
]` :=

1
|Zk|

∑

(z,y)∈Zk

K(z, z`)L(y,y`).
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This procedure is repeated for k = 1, . . . , K, and its average J (K-CV) is outputted as

J (K-CV) :=
1
K

K∑

k=1

J
(K-CV)
Zk

.

Finally, we compute J (K-CV) for all model candidates, and choose the model that minimizes
J (K-CV).

3.2. Dependence Maximization

Given an SMI estimator ŜMI (5), we next show how ŜMI can be efficiently maximized with
respect to W :

max
W∈Rm×d

ŜMI s.t. WW> = Im.

We propose to use a truncated negative quadratic function called the Epanechnikov kernel
(Epanechnikov, 1969) as a kernel for z:

K(z, z`) = max
(

0, 1− ‖z − z`‖2
2σ2

z

)
.

Let I(c) be the indicator function, i.e., I(c) = 1 if c is true and zero otherwise. Then,
for the above kernel function, ŜMI can be expressed as

ŜMI =
1
2
tr

(
WDW>

)
− 1

2
,

where tr(·) is the trace of a matrix and

D =
1
n

n∑

i=1

n∑

`=1

α̂`(W )I
(‖Wxi −Wx`‖2

2σ2
z

< 1
)

× L(yi, y`)
[

1
m

Id − 1
2σ2

z

(xi − x`)(xi − x`)>
]

.

Here, by α̂`(W ), we explicitly indicated the fact that α̂` depends on W .
Let D′ be D with W replaced by W ′, where W ′ is a transformation matrix obtained

in the previous iteration. Thus, D′ no longer depends on W . Here we replace D in ŜMI
by D′, which gives the following simplified SMI estimate:

1
2
tr

(
WD′W>

)
− 1

2
. (6)

A maximizer of Eq.(6) can be analytically obtained by (w1| · · · |wm)>, where {wi}mi=1 are
the m principal components of D′.
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3.3. Initialization

In the dependence estimation-maximization framework described in Section 2.2, initializa-
tion of the transformation matrix W is important. Here we propose to initialize it based
on dependence maximization without dimensionality reduction.

More specifically, we determine the initial transformation matrix as (w(0)
1 | · · · |w(0)

m )>,
where {w(0)

i }mi=1 are the m principal components of D(0):

D(0) =
1
n

n∑

i=1

n∑

`=1

α̂
(0)
` I

(‖xi − x`‖2
2σ2

x

< 1
)

L(yi,y`)

×
[

1
m

Id − 1
2σ2

x

(xi − x`)(xi − x`)>
]

,

α̂(0) = (Ĥ
(0)

+ λR)−1ĥ
(0)

,

Ĥ
(0)
`,`′ =

1
n2

n∑

i,j=1

K ′(xi, x`)L(yi, y`)K
′(xj , x`′)L(yj , y`′),

ĥ
(0)
` =

1
n

n∑

i=1

K ′(xi, x`)L(yi,y`),

K ′(x, x`) = max
(

0, 1− ‖x− x`‖2
2σ2

x

)
.

σx is the kernel width and is chosen by cross-validation (see Section 3.1.3).

4. Relation to Existing Methods

Here, we review existing SDR methods and discuss the relation to the proposed SCA
method.

4.1. Kernel Dimension Reduction

Kernel dimension reduction (KDR) (Fukumizu et al., 2009) tries to directly maximize the
conditional independence of x and y given z based on a kernel-based independence measure.

The KDR learning criterion is given by

max
W∈Rm×d

tr
[
L̃(K̃ + nεIn)−1

]
s.t. WW> = Im, (7)

where L̃ = ΓLΓ, Γ = I − 1
n1n1>n , Li,j = L(yi, yj), K̃ = ΓKΓ, Ki,j = K(zi, zj), and ε is

a regularization parameter.
Solving the above optimization problem is cumbersome since the objective function

is non-convex. In the original KDR paper (Fukumizu et al., 2009), a gradient method is
employed for finding a local optimal solution. However, the gradient-based optimization is
computationally demanding due to its slow convergence and it requires many restarts for
finding a good local optima. Thus, KDR scales poorly to massive datasets.

Another critical weakness of KDR is the kernel function choice. The performance of
KDR depends on the choice of kernel functions and the regularization parameter, but there

7



Yamada Niu Takagi Sugiyama

is no systematic model selection method for KDR available. Using the Gaussian kernel with
its width set to the median distance between samples is a standard heuristic in practice,
but this does not always work well.

Furthermore, KDR lacks a good way to set an initial solution in the gradient procedure.
Then, in practice, we need to run the algorithm many times with random initial points
for finding a good solution. However, this makes the entire procedure even slower and the
performance of dimension reduction unreliable.

The proposed SCA method can successfully overcome the above weaknesses of KDR—
SCA is equipped with cross-validation for model selection (Section 3.1.3), its solution can be
computed analytically (see Section 3.2), and a systematic initialization scheme is available
(see Section 3.3).

4.2. Least-Squares Dimensionality Reduction

Least-squares dimension reduction (LSDR) is a recently proposed SDR method that can
overcome the limitations of KDR (Suzuki and Sugiyama, 2010). That is, LSDR is equipped
with a natural model selection procedure based on cross-validation.

The proposed SCA can actually be regarded as a computationally efficient alternative
to LSDR. Indeed, LSDR can also be interpreted as a dependence estimation-maximization
algorithm (see Section 2.2): the dependence estimation procedure is essentially the same as
the proposed SCA, i.e., LSMI is used. However, the dependence maximization procedure is
different from SCA—LSDR uses a natural gradient method (Amari, 1998) over the Stiefel
manifold (Nishimori and Akaho, 2005).

In LSDR, the following SMI estimator is used:

S̃MI = α̂>ĥ− 1
2
α̂>Ĥα̂− 1

2
,

where α̂, ĥ, and Ĥ are defined in Section 3.1. Then the gradient of S̃MI is given by

∂S̃MI
∂W`,`′

=
∂ĥ

>

∂W`,`′
(2α̂− β̂)− α̂>

∂Ĥ

∂W`,`′
(
3
2
α̂− β̂) + λα̂>

∂R

∂W`,`′
(β̂ − α̂),

where β̂ = (Ĥ + λR)−1Ĥα̂. The natural gradient update of W , which takes into account
the structure of the Stiefel manifold (Amari, 1998), is given by

W ←W exp

(
η

(
W>∂S̃MI

∂W
− ∂S̃MI

∂W

>
W

))
,

where ‘exp’ for a matrix denotes the matrix exponential. η ≥ 0 is a step size, which may be
optimized by a line-search method such as Armijo’s rule (Patriksson, 1999).

Since cross-validation in terms of the density-ratio approximation error is available for
model selection of LSMI (see Section 3.1.3), LSDR is more favorable than KDR. However, its
optimization still relies on a gradient-based method and thus it is computationally expensive.

Furthermore, there seems no good initialization scheme of the transformation matrix W .
In the original paper (Suzuki and Sugiyama, 2010), initial values were chosen randomly and
the gradient method was run many times for finding a better solution.
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The proposed SCA method can successfully overcome the above weaknesses of LSDR, by
providing an analytic-form solution (see Section 3.2) and a systematic initialization scheme
(see Section 3.3).

5. Experiments

In this section, we experimentally investigate the performance of the proposed and existing
SDR methods using artificial and real-world datasets.

5.1. Artificial Datasets

We compare the performance and computation time of the proposed SCA, LSDR4

(Suzuki and Sugiyama, 2010), KDR5 (Fukumizu et al., 2009), sliced inverse regression
(SIR)6 (Li, 1991), and sliced average variance estimation (SAVE)6 (Cook, 2000).

We use the following four datasets (see Figure 1):

(a) Data1:
Y = X2 + 0.5E,

where (X1, . . . , X4)> ∼ U([−1 1]4) and E ∼ N(0, 1). Here, U(S) denotes the uni-
form distribution on S, and N(µ,Σ) is the Gaussian distribution with mean µ and
covariance Σ.

(b) Data2:
Y = (X3)2 + 0.1E,

where (X1, . . . , X10)> ∼ N(010, I10) and E ∼ N(0, 1).

(c) Data3:

Y =
(X1)2 + X2

0.5 + (X2 + 1.5)2
+ (1 + X2)2 + 0.1E,

where (X1, . . . , X4)> ∼ N(04, I4) and E ∼ N(0, 1).

(d) Data4:

Y |X2 ∼
{

N(0, 0.2) if X2 ≤ |1/6|
0.5N(1, 0.2) + 0.5N(−1, 0.2) otherwise

where (X1, . . . , X5)> ∼ U([−0.5 0.5]5) and E ∼ N(0, 1).

In SCA, we use the Gaussian kernel for y:

L(y, y`) = exp
(
−(y − y`)2

2σ2
y

)
.

4. We used the program code available from
‘http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/LSDR/’.

5. We used the program code provided by one of the authors of (Fukumizu et al., 2009), which ‘anneals’
the Gaussian kernel width over gradient iterations.

6. We used the program code available from
‘http://mirrors.dotsrc.org/cran/web/packages/dr/index.html’.
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Figure 1: Artificial datasets.

The identity matrix is used as regularization matrix R, and kernel widths σx, σy, and σz

as well as the regularization parameter λ are chosen based on 5-fold cross-validation from

σx ∈ {0.25mx, 0.5mx, 0.75mx,mx},
σy ∈ {0.25my, 0.5my, 0.75my,my},
σz ∈ {0.25mz, 0.5mz, 0.75mz,mz},
λ ∈ {10−3, 10−2},

where

mx = median({‖xi − xj‖}ni,j=1),

my = median({|yi − yj |}ni,j=1),

mz = median({‖zi − zj‖}ni,j=1).

The performance of each method is measured by

1√
2m
‖Ŵ>

Ŵ −W ∗>W ∗‖Frobenius,
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Table 1: Mean of Frobenius-norm error (with standard deviations in parentheses) and mean
CPU time over 100 trials. Computation time is normalized so that LSDR is one.
LSDR was repeated 5 times with random initialization and the transformation
matrix with the minimum CV score was chosen as the final solution. ‘SCA(0)’
indicates the performance of the initial transformation matrix obtained by the
method described in Section 3.3. The best method achieving the smallest mean
Frobenius-norm error and comparable methods according to the t-test at the sig-
nificance level 1% are specified by bold face.

Datasets d m SCA(0) SCA LSDR KDR SIR SAVE
Data1 4 1 .089(.042) .048(.031) .056(.021) .048(.019) .257(.168) .339(.218)
Data2 10 1 .078(.019) .007(.002) .039 (.023) .024 (.007) .431(.281) .348(.206)
Data3 4 2 .065(.035) .018(.010) .090 (.069) .029(.119) .362(.182) .343(.213)
Data4 5 1 .118(.046) .042(.030) .151 (.296) .118 (.238) .421(.268) .356(.197)
Average time 0.03 0.49 1.0 0.96 <0.01 <0.01

where ‖ · ‖Frobenius denotes the Frobenius norm, Ŵ is an estimated transformation matrix,
and W ∗ is the optimal transformation matrix. Note that the above error measure takes its
value in [0, 1].

The performance of each method is summarized in Table 1, which depicts the mean and
standard deviation of the Frobenius-norm error over 100 trials when the number of samples
is n = 1000. As can be observed, the proposed SCA overall performs well. ‘SCA(0)’ in the
table indicates the performance of the initial transformation matrix obtained by the method
described in Section 3.3. The result shows that SCA(0) already gives a reasonably good
transformation matrix with a tiny computational cost. Note that KDR and LSDR have
high standard deviation for Data3 and Data4, meaning that KDR and LSDR sometimes
perform poorly.

5.2. IDA Benchmark Datasets

Next, we compare the performance of SDR methods using the IDA benchmark datasets
(Rätsch et al., 2001), which consist of binary classification tasks (i.e., the output y takes
either +1 or −1). We apply SCA, LSDR, and KDR to obtaining projections onto low-
dimension subspaces with dimension m = bd/4c or m = bd/2c. Then we train kernel logistic
regression models (Hastie et al., 2001) on the projected training samples. The kernel width
and the regularization parameter in kernel logistic regression are chosen based on 5-fold
cross-validation in terms of the misclassification error. In SCA, we use the linear kernel for
y, i.e., L(y, y`) = yy`.

Table 2 summarizes the mean misclassification rates (and their standard deviation in
parentheses) over 20 trials. The results show that SCA overall compares favorably with
LSDR and KDR in terms of the misclassification rate, and moreover the computational
cost of SCA is much smaller than those of LSDR and KDR.
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Table 2: Mean misclassification rates (and their standard deviation in parentheses) over 20
trials for the IDA benchmark datasets. Computation time is normalized so that
LSDR is one. The best method achieving the smallest mean misclassification rate
and comparable methods according to the t-test at the significance level 1% are
specified by bold face.

Datasets m SCA LSDR KDR
brestcancer 2 .293 (.041) .283 (.060) .281 (.049)

4 .275 (.040) .277 (.039) .281 (.025)
diabetes 2 .258 (.023) .246 (.014) .244 (.019)

4 .249 (.022) .257 (.023) .259 (.020)
flaresolar 2 .347 (.033) .345 (.019) .352 (.018)

4 .346 (.023) .348 (.024) .345 (.027)
german 5 .239 (.020) .271 (.024) .251 (.019)

10 .235 (.018) .250 (.023) .256 (.027)
heart 3 .192 (.034) .236 (.035) .219 (.025)

6 .189 (.029) .227 (.036) .210 (.035)
ringnorm 5 .151 (.007) .137 (.008) .136 (.009)

10 .091 (.010) .075 (.008) .075 (.007)
thyroid 1 .044 (.027) .039 (.025) .035 (.023)

2 .041 (.020) .049 (.022) .038 (.018)
twonorm 5 .028 (.005) .032 (.004) .037 (.005)

10 .028 (.003) .036 (.007) .033 (.005)
waveform 5 .133 (.010) .120 (.011) .117 (.009)

10 .135 (.011) .112 (.008) .112 (.006)
Average time – 0.03 — 1.0 — 0.78 —

5.3. Multi-label Classification for Real-world Datasets

Finally, we evaluate the performance of the proposed method in real-world multi-label
classification problems.

5.3.1. Setup

Below, we compare SCA, multi-label dimensionality reduction via dependence maximiza-
tion (MDDM)7 (Zhang and Zhou, 2010), canonical correlation analysis (CCA)8 (Hotelling,
1936), and principal component analysis (PCA)9 (Bishop, 2006). We use a real-world im-
age classification dataset called the PASCAL visual object classes (VOC) 2010 dataset
(Everingham et al., 2010) and a real-world automatic audio-tagging dataset called the

7. We used the program code available from
‘http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/annex/MDDM.htm’.

8. We used the MATLAB implementation;
see ‘http://www.mathworks.com/help/toolbox/stats/canoncorr.html’.

9. We used the MATLAB implementation;
see ‘http://www.mathworks.com/help/toolbox/stats/princomp.html’.
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Freesound dataset (The Freesound Project, 2011). Since the computational costs of KDR
and LSDR were unbearably large, we decided not to include them in the comparison.

We employ the misclassification rate by the one-nearest-neighbor classifier as a perfor-
mance measure:

err =
1
nc

n∑

i=1

c∑

k=1

I(ŷi,k 6= yi,k),

where c is the number of classes, ŷ and y are the estimated and true labels, and I(·) is the in-
dicator function. For SCA and MDDM, we use the following kernel function (Sarwar et al.,
2001) for y:

L(y, y′) =
(y − y)>(y′ − y)
‖y − y‖‖y′ − y′‖ ,

where y is the sample mean: y = 1
n

∑n
i=1 yi.

5.3.2. PASCAL VOC 2010 Dataset

The VOC 2010 dataset consists of 20 binary classification tasks of identifying the existence
of a person, aeroplane, etc. in each image. The total number of images in the dataset is
11319, and we used 1000 randomly chosen images for training and the rest for testing.

In this experiment, we first extracted visual features from each image using the speed
up robust features (SURF) algorithm (Bay et al., 2008), and obtained 500 visual words
as the cluster centers in the SURF space. Then, we computed a 500-dimensional bag-of-
feature vector by counting the number of visual words in each image. We randomly sampled
training and test data 100 times, and computed the means and standard deviations of the
misclassification error.

The results are plotted in Figure 2(a), showing that SCA outperforms the existing
methods, and SCA is the only method that outperforms ‘ORI’ (no dimension reduction)—
SCA achieves almost the same error rate as ‘ORI’ with only a 10-dimensional subspace. Note
that, MDDM, CCA, and PCA capture only linear dependency, whereas the proposed SCA
can identify general non-linear dependency. This would be the reason why SCA performed
well in this experiment. To the best of our knowledge, SCA is the only method that can
capture non-linear dependency and scale to large-sized problems.

5.3.3. Freesound Dataset

The Freesound dataset (The Freesound Project, 2011) consists of various audio files an-
notated with word tags such as ‘people’, ‘noisy’, and ‘restaurant’. We used 230 tags in
this experiment. The total number of audio files in the dataset is 5905, and we used 1000
randomly chosen audio files for training and the rest for testing.

We first extracted mel-frequency cepstrum coefficients (MFCC) (Rabiner and Juang,
1993) from each audio file, and obtained 1024 audio features as the cluster centers in the
MFCC space. Then, we computed a 1024-dimensional bag-of-feature vector by counting the
number of audio features in each audio file. We randomly chose training and test samples
100 times, and computed the means and standard deviations of the misclassification error.
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Figure 2: Results on image classification with VOC 2010 dataset and audio classification
with Freesound datasets. Misclassification rates when the one-nearest-neighbor
classifier is used as a classifier are reported. The best dimension reduction method
achieving the smallest mean error and comparable methods according to the t-
test at the significance level 1% are specified by ‘◦’. CCA can be applied to
dimension reduction up to c dimensions, where c is the number of classes (c = 20
in VOC 2010 and c = 230 in Freesound). ‘ORI’ denotes the original data without
dimension reduction.

The results plotted in Figure 2(b) show that, similarly to the image classification task,
the proposed SCA outperforms the existing methods, and SCA is the only method that
outperforms ‘ORI’.

6. Conclusion

In this paper, we proposed a novel sufficient dimension reduction (SDR) method called
sufficient component analysis (SCA), which is computationally more efficient than existing
SDR methods. In SCA, a transformation matrix was estimated by iteratively performing
dependence estimation and maximization, both of which are analytically carried out. More-
over, we developed a systematic method to design an initial transformation matrix, which
highly contributes to further reducing the computational cost and helps to obtain a good
solution. We applied the proposed SCA to real-world image classification and audio tagging
tasks, and experimentally showed that the proposed method is promising.
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