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Abstract 

Inferring the relationship among proteins is a central issue of computational biology and 
a diversity of biological assays are utilized to predict the relationship. However, as 
experiments are usually expensive to perform, automatic data selection is employed to 
reduce the data collection cost. Although data useful for link prediction are different in 
each local sub-network, existing methods cannot select different data for different 
processes.  
 
This paper presents a new algorithm for inferring biological networks from multiple 
types of assays. The proposed algorithm is based on transfer learning and can exploit 
local information effectively. Each assay is automatically weighted through learning 
and the weights can be adaptively different in each local part.  
 
Our algorithm was favorably examined on two kinds of biological networks: a 
metabolic network and a protein interaction network. A statistical test confirmed that 
the weight that our algorithm assigned to each assay was meaningful.   
 
Keywords: Supervised network inference, Support vector machine, Local model, 
Transfer learning. Multiple kernel learning.  
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Background 

A thorough understanding of cellular processes is the central goal of molecular biology. 
For this purpose, it is required to understand not only individual functions but also 
relationships among their components. Nowadays, a huge amount of data on molecular 
relationships can be generated through high throughput assays and analyzed as 
molecular networks. Although each of the assays contains useful information, molecular 
networks reconstructed from a single assay often have too much noise. To cope with 
this problem, several groups have tried to integrate data obtained from multiple types of 
assays for reliable network reconstruction (Pavlidis et al., 2002; Kato et al., 2005; 
Yamanishi et al., 2005).  
 
How can we integrate data from multiple types of assays? A primitive method is to 
average data from the multiple types of assays and reconstruct a network from the 
averaged data (Yamanishi et al., 2005; Vert & Yamanishi, 2005). This method in a 
sense treats all types of assays equivalently, even if they may not be equivalent; that is, 
the assays may differ from each other in quality and resolution. To take 
non-equivalence among multiple types of assays into account in data integration, 
several groups have proposed methods to optimize the weight assigned to each type of 
assay (Kato et al., 2005; Lanckriet et al., 2004).  
 
Although the existing methods allow each type of assay to be weighted, the weights are 
global in the entire network. Namely, every edge is predicted using weights common to 
the whole data. Since the mechanisms underlying cellular processes are complicated 
and heterogeneous, a type of assay may help shed light on some local cellular processes 
even if a low weight is assigned to the type of assay. Consequently, due to the 
heterogeneity of the relationship between assays and cellular mechanisms, the global 
weighting is too coarse, and finer modeling is desired.  
 
Bleakley et al. (2007) have proposed a method that uses local models to cope with the 
heterogeneity issue. Their method builds a local model for each node (they call it a 
target node) and trains it with only its local (i.e., neighboring) information, resulting in 
scoring functions that are not corrupted by the irrelevant effects of distant parts of its 
molecular network. One shortcoming of their method is that the amount of local 
information is often limited, because most of the nodes have a few edges due to the fact 
that the node connectivity in molecular networks follows a power law 
distribution (Caldarelli, 2007). Insufficient information for training adversely affects the 
generalization ability of the method and restricts our ability to automatically acquire the 
genuine weights of the assays.  
 
We present herein a novel algorithm for edge prediction. Our algorithm is based on 
Bleakley et al.’s approach, but our algorithm is extended to enjoy two remarkable 
features. First, in order to address the loss of generalization ability due to the scarcity of 
local information, we apply transfer learning to building local models. Transfer learning 
is an approach to machine learning that learns a task together with other related tasks 
simultaneously. This often leads to a better model for the target task, because it allows 
the learner to share appropriate information across the tasks. The use of this approach is 



motivated by the observation that node A is likely to be linked with node B when they 
share common neighbors in molecular networks (Chua et al., 2006; Samanta & Liang, 
2003; Okada et al., 2005). According to this observation, the task of building the local 
model of a target node is likely to be related to that of its neighboring nodes. Transfer 
learning builds the local model of a target node with the help of its neighboring nodes. 
Furthermore, transfer learning optimizes weights assigned to the types of assays when 
building local models, offering selected assays to each local part of a molecular network. 
In this study, we reconstruct molecular networks using this method and validate the 
efficiency of our method.  
 
The rest of this section summarizes abbreviations which are used frequently in this 
paper. SVM is the abbreviation of the support vector machine (Schölkopf & Smola, 
2002). RBF is the radial basis function (Schölkopf & Smola, 2002). BBVK, TPPK, and 
MLPK are the BBV kernel (Bleakley et al., 2007), the tensor product pairwise kernel 
(Ben-Hur & Noble, 2005), and the metric learning pairwise kernel (Vert et al., 2007), as 
detailed in the section of Methods. PIF is the protein interaction profile defined in the 
section of Discussion. GO is the gene ontology. We will show the full name again at the 
first occurrence except this paragraph.  

Results 

A number of large-scale biological networks have become available through 
high-throughput experiments, even though they are rough and incomplete. In order to 
refine them, more detailed surveys/studies need to be carried out. Even if some edges 
are already known for a given node, it is necessary to verify whether the node has other 
edges or not in the biological network. For such cases, we consider a network 
reconstruction task that involves building a scoring function to predict the existence of 
edges of a specified node (which is the one called target node in the previous section) 
with input nodes, in addition to its known edges. Let us cite an example. The adjacency 
matrix of the undirected graph in Figure 1(a) is shown in the bottom of Figure 1(b). 
Basically, a feature vector is given to each node as in the top of (b). We consider the 
case where a part of the adjacency matrix is missing, such as shown in Figure 1(c). We 
pose a binary classification problem which is to predict whether an input node is linked 
with the target node using the given feature vectors. This is same as what BBV 
algorithm attempts to do (See the section of Methods). For example, we assume that the 
target node is node 1. The first row of (b) implies that the training set includes only 
node 3, and the other nodes 2, 4, 5, 6, 7, and 8 are unknown samples in the classification 
task that we denote by 1T . We also consider another classification task whose target 
node is node 3, and denote the task by 3T . With the help of the fact that the node 3 is 
already known to be a neighbor of node 1, we regard 3T  as a related task of 1T , and 
our algorithm performs transfer learning of 1T  with 3T  to obtain a better solution of 

1T .  
 
Our method is tested on two kinds of biological networks in Saccharomyces cerevisiae. 
One is the metabolic network in which enzymes involved in successive metabolic 
reactions are linked. This network, which contains 769 nodes (mainly enzymes) and 



3,702 undirected edges (functional links), is identical to the one used by Yamanishi et al. 
(2005). The other is the protein interaction network of von Mering et al. (2002). Each 
edge in the network indicates the physical interaction of two proteins and is rated with a 
confidence level: high, middle or low. We use only high confidence edges as in 

 
 

Figure 1: This paper deals with an undirected graph. Figure (a) shows an 
example of the undirected graph. In this example, each node has a 
4-dimensional feature vector, 1 8, ,…x x , as shown in the top row of (b). The 
gray levels indicate the value of each element. The bottom of (b) is its 
adjacency matrix. Task 1T predicts the existence of edges in pairs (1, 2), (1, 
4), (1, 5), (1, 6), (1, 7), and (1, 8). BBV algorithm (see the section Methods) 
cannot work well due to the extremely small training set 1, {3}+ =V , 

1,− = ∅V . We regard 3T  as the related task to perform transfer learning, 
where node 3 is the known neighbor of node 1. 



previous studies (Kato et al., 2005; Bleakley et al., 2007), because they are supported by 
multiple experiments. By removing proteins without any edges, we obtain a network of 
984 proteins and 2,438 edges. Actually, the two networks are quite different: they share 
only 188 proteins and 41 edges. 
 
In order to predict the edges, we use a diverse collection of protein data, and convert 
them into kernel matrices. Three of the kernel matrices are from sequence similarities. 
Sequence similarities are computed using three biological sequence alignment tools: 
BLAST (Altschul et al., 1990), ALN (Gotoh, 1982), and Pfam (Finn et al., 2008). The 
matrix formed with similarity scores is not guaranteed to be positive semi-definite, 
although the kernel matrices must be positive semi-definite for most of kernel methods 
(Schölkopf & Smola, 2002). To generate positive semi-definite kernel matrices, feature 
vectors are made from scores of each protein against all the proteins and the inner 
product among the feature vectors is taken. The scores for Pfam are the expected values 
derived from probabilistic models. The next dataset for network inference contains 
microarray gene expressions. Gene expressions are measured under various 
experimental conditions. A feature vector consists of the gene expressions. We use an 
RBF kernel function to generate a kernel matrix from the feature vectors. The resultant 
kernel matrices are available from the following website:  
 

http://noble.gs.washington.edu/proj/sdp-svm/. 
 
Following the website, we denote the five kernel matrices by ‘blast,’ ‘expr,’ ‘fft,’ 
‘pfam_hmm,’ and ‘sw,’ respectively. Each kernel can be used for the protein interaction 
network and the metabolic network.  
 
We use three pairwise kernels that are computed from node kernels: BBVK (Bleakley et 
al.,2007), TPPK (Ben-Hur & Noble, 2005), and MLPK (Vert et al., 2007). Then, we 
combine transfer learning with each of the three pairwise kernels. We determine the 
hyper-parameters of the algorithms by cross-validation over the training set, and take 
300 nodes with the highest degree-of-nodes as the target gene to pose 300 tasks. Then, 
we randomly select 50% of proteins for the training set of each task.  
 
Figure 2 compares the averaged AUC (Area under the curve) of ROC (Receiver 
Operating Characteristic) to predict metabolic gene network and protein interactions. 
The plotted AUC value is the average over 300 tasks. Transfer learning improves the 
prediction performance substantially for all the cases compared to conventional learning 
(BBV algorithm), and the differences are more than 0.1. AUCs among the three 
pairwise kernels do not differ very much.  
 
To demonstrate the effect of data integration, we apply the learning algorithms to each 
data source and evaluate the ROC scores. The averages are also plotted in Figure 2. We 
observe improvements due to data integration especially in the results of conventional 
learning. For the metabolic network, transfer learning performance is improved by data 
integration. However, almost the same ROC scores are obtained for the protein 
interaction network. That may be because every data source we used is sufficiently 
informative to predict protein interactions well. For further investigation, we find the 



algorithm that achieves the best performance among the six combinations for each task. 
Figure 3 shows how many times each algorithm achieves the best prediction 
performance. For both networks, transfer learning yields the best AUC much more 
frequently than non-transfer learning. The differences among pairwise kernels are not so 
large. 
 
Our problem setting is different from that of the global models used by Ben-Hur & 
Noble (2005) and Vert et al. (2007). Global models attempt to infer the 
existence/absence of unknown dges in the whole network, whereas our algorithm 
predicts edges that link a specified target node to the other nodes. Despite differences in 
problem setting, it is still possible to use global models in our setting. In the training 
stage, global models use all the known edges as positive samples, and they randomly 
pick an equal number of absent edges as negative samples. From our experiences in 
problem setting, we find that improvements can be achieved by slightly modifying the 
way to pick negative samples, namely, to choose all the absent edges of the target node 
and to pick the other absent edges randomly so that the number of negative training 
samples is equal to the number of positive ones. One disadvantage is that their 

 
 

Figure 2: Averaged AUC of ROC. ‘Transfer Learning, Integrated’ indicates 
our algorithm that integrates multiple data sources and predicts the links of 
networks with transfer learning. ‘Conventional Learning, Integrated’ is the 
case without transfer learning, i.e. BBV algorithm. ‘Transfer Learning, 
Individual’means the transfer learning from an individual data source, and 
the average is plotted. ‘Conventional Learning, Individual’ is the averaged 
ROC score of conventional learning from each data source. ‘Learning from 
the Entire Network, Integrated’ is the approach to pick training samples 
from the entire network. Namely, that is the global model. 



approaches need much more computational time for training compared to our method, 
because the number of training samples is much larger. Due to the heavy computation, 
we abandon the cross-validation within the training set to determine the value of the 
regularization parameter of SVM for comparison of global models with ours in terms of 
prediction performance. Instead, we try several values of the regularization parameter 
and report the best performance. Although the way of evaluation is advantageous to 
their approaches, their approaches could not obtain performance superior to our transfer 
learning (See Figure 2). 
  

Discussion 

In building a local model for each node through our algorithm, the weight of each type 
of assay data is optimized. To find the extent to which each assay data is effective in the 
entire local model building process, we count the number of resulting local models that 
have high weight of each data. Because the results do not remarkably vary among any 
of the kernels (MLPK, TPPK or BBVK) and/or any of cutoff thresholds of weight (0.5, 
0.6, 0.7 or 0.8) (Tables 2–7 in Supplemental Information http://www.net-machine.net/ 
~kato/pdf/t-kato-ijkdb2009a-suppl.pdf), hereafter we describe the results of using 
BBVK and 0.8 as the cutoff threshold.  
 
Regarding the local models for the protein interaction network, expression data and 
Pfam data are highly weighted compared to other data (Table 1 and Figure 4). Although 

. 
 

Figure 3: The number of times each algorithm achieves the best prediction 
performance among the six methods. In the problem we tackle, we can 
assign each node to a prediction task. For each task, we perform the six 
methods: ‘TL, BBVK’, ‘CL, BBVK’, ‘TL, TPPK’, ‘CL, TPPK’, ‘TL, 
MLPK’, and ‘CL, MLPK’ where TL and CL are the abbreviations for 
transfer learning and conventional learning, respectively. BBVK, TPPK, and 
MLPK are the types of pairwise kernels. For most of the tasks, transfer 
learning achieves a best prediction performance. 



the multiple selection as shown in this case – some local models prefer the expression 
data while others prefer the Pfam data – may indicate that the protein interaction 
network is a superimposition of various interactions induced by distinct mechanisms, it 
may be simply derived from biologically meaningless artifacts, e.g., experimental 
properties, including sampling bias, protocol, and experimental principle. Therefore, we 
next describe the pattern of local models with polarized preference for those assay data.  
 
In the case of weighting highly the expression data in the local model of node u, it is 
expected that not only u links with a node or nodes (i.e., neighbors of u) whose protein 
interaction profile (PIF) is similar to that of u but also the PIF of the neighbor(s) is 
highly correlated with its/their expression profile. To verify this, we count the gene 
ontology (GO) terms of proteins whose local models have high weight of the expression 
data. As a result, GO terms, ‘ribosome biogenesis’ (GO: 0042254) and ‘RNA metabolic 
process’ (GO: 0016070) of the GO biological process terms, are significantly 
over-represented (p-values are 2.3E-19 and 1.2E-06, respectively), indicating that the 
proteins are involved in ribosome function. In addition to the fact that ribosome-related 
proteins are densely connected in the protein interaction network, as described 
previously (Han et al., 2004), they are highly correlated with the expression profile 
(Jansen et al., 2002).. Those findings well explain the assignment of a high weight to 
gene expression data for those local models through the transfer learning framework.  
 
Similarly, we analyze proteins whose local models have high weights of Pfam data, and 
find that the GO term, ‘protein catabolic process’ (GO: 0030163), is significantly 
over-represented (p-value: 3.3E-10). As most of them (12/15) indeed comprise 
proteasome complexes well known as protein catabolizers (i.e., they are subunits of 
proteasome complexes), they are likely to be densely connected in the protein 
interaction network according to the basic idea that protein complexes are detected as 
densely connected subnetworks. In addition, since most of the proteasome subunits 
share common domains (alpha/beta subunit domains), their Pfam profiles are likely to 
be similar to each other. Those observations justify the weight generated through data 
selection in our algorithm.  

Table 1: Number of local models that have a high weight of each assay data. 
blast: sequence similarity data calculated by BLAST, expr: expression data, 
fft: hydropathy profile, pfam hmm: Pfam data. sw: sequence similarity data 
calculated by ALN. Local models that have high weight ( 0.8≥ ) in the case 
of using BBVK were counted. 
 

 Metabolic 
Network 

Protein 
Interactions 

blast  8  5   
expr  0  40   
fft  0  0   

pfam_hmm 149  15   
sw  0  0   

 



 
On the other hand, data indicating sequence similarity, particularly Pfam data, are 
highly weighted in the entire local model building process for the metabolic network 
(Table 1). Here we conduct pathway category analysis, instead of GO analysis, of 
proteins whose local models assign high weights to Pfam data. As a result, we find that 
categories indicating signal transduction, ‘cell cycle - yeast,’ ‘MAPK signaling pathway 
- yeast,’ and ‘phosphatidylinositol signaling system,’ are significantly over-represented 
(p-values are 7.0E-03, 9.6E-03, and 1.1E-02, respectively). Following the basic idea 
that signaling/interaction targets are usually recognized by domains, the preference for 
Pfam data at least in these pathways seems to be biologically reasonable.  

 
 

Figure 4: Weights of multiple types of assays for each target gene as 
determined by transfer learning with BBVK.  



Conclusions 

In this paper, we discussed the effect of transfer learning in network inference. Our 
algorithm utilizes the small-world property of related learning tasks and we 
experimentally showed that the proposed algorithm substantially improves prediction 
accuracy. We also illustrated that multiple kernel learning works well and yields 
biologically plausible data selection.  
 
Our algorithm uses only partial (i.e., local) information of assay data when building 
each local model. As described in the previous section, the optimized weight reflects 
biologically meaningful properties, at least in part, of protein interaction and metabolic 
networks. In future studies, we will further investigate biological interpretation of 
networks. The current data are noisy so they may not be believed absolutely, but we 
have to resort to using the current data to evaluate the prediction performance. We will 
investigate the performance again when the more reliable data become available.  

Methods 

This section presents our algorithm that infers a biological network from multiple 
assays. The description shown in this section uses the following notations. Vectors are 
denoted by boldface lower-case letters and matrices, by boldface upper-case letters. 
Elements of vectors and matrices are not printed in boldface. The transposition of 
matrix A  is denoted by AF . The n n×  identity matrix is denoted by nI . The 
n-dimensional column vector all of whose elements are one is denoted by n1 . We use 

 to denote the set of real numbers, n  to denote the set of n-dimensional real 
column vectors, and m n×  to denote the set of m n×  real matrices. The set of real 
nonnegative numbers is denoted by + , and the set of n-dimensional real nonnegative 
vectors is denoted by n

+ . We use nS  to denote the set of n n×  symmetric matrices, 
n
+S  to denote the set of n n×  symmetric positive semi-definite matrices.  is the set 

of natural numbers. n  is a subset of , and is defined by { | }n i i n≡ ∈ ≤ . 
Symbols ≤  and ≥  are used to denote not only the standard inequalities between 
scalars, but also the componentwise inequalities between vectors. 
  

BBV algorithm. 

Our algorithm is based on the approach using local models proposed by Bleakley et al. 
(2007). We refer to their approach as BBV, taking the first letters of the three authors’ 
names. BBV builds a classifier for a given node with index nu∈  where n is the 
number of nodes. Node u is what we have referred to as the target node. The purpose of 
the classifier is to predict the existence or the absence of links with the given target 
node u. BBV assumes that a feature vector is given to every node. The feature vectors 
are used for SVM learning. Additionally, we are given two exclusive subsets of 
nodes ,u +V  and ,u −V ; that is, , ,u u+ −∩V V   is the null set. Every node in ,u +V  is linked 



with the target node u, and every node in ,u −V  is not linked with u. Members in ,u +V  
are termed neighbors in graph theory. We call the subset , ,u u u+ −≡ ∪V V V  the training set. 
The set of the other nodes n u5V  is called the test set. In summary, the BBV 
algorithm predicts the existence or the absence of the link between the target node and 
the node in the test set by using feature vectors. Note that we cannot use any class labels 
of the test set for SVM learning. In the case of Figure 1(c), the training set of 1T  
is 1 {3}=V . The set of positives 1,+V  in the training set consists only of node 3, and the 
set of negatives ,u −V  is empty. Therefore, we can not train SVM because SVM learning 
requires at least one sample for each class.  
 
The BBV algorithm consists of the learning stage and the prediction stage. In the 
learning stage, the classifier learns the classification rule of the class labels from the 
feature vectors in the training set uV . In the prediction stage, the classifier predicts the 
labels for the nodes in the test set n u5V , which corresponds to predicting the 
existence or absence of links to the target node. 

Outline of our algorithm. 

We introduce the idea of transfer learning into the BBV algorithm. Transfer learning is 
a framework to improve performance of a task using related learning tasks. This idea is 
useful in the current context since we can find the task relations in the network 
inference problem, as mentioned in Background. We will formulate the transfer learning 
approach. Let us denote the local model of a target node u by uV . We assume that the 
learning task uT  is related to the tasks associated with the neighbors of u, say 

,,v uv +∀ ∈T V . Thus, we propose to employ the transfer learning of uT  with the help of 

,,v uv +∀ ∈T V . 

Support vector machine. 

BBV employs the support vector machine (SVM) as a classifier. Basically, SVM finds a 
hyper-plane that distinguishes positive training examples from negative ones in a 
feature space. For that purpose, SVM formulates a scalar-valued linear score function. 
The parameters of the score function consist of the normal vector of the hyper-plane and 
the bias term that shifts the hyper-plane. If the norm of the normal vector is minimized 
subject to the constraints that the minimum score among positive examples is 1+  and 
the maximum score among negative ones is 1− , the margin between the positive set 
and the negative set is maximized. However, a hyper-plane satisfying those constraints 
does not always exist. To cope with this problem, the so-called soft margin SVM 
relaxes the constraints so that some examples can lie in the margin, but are given 
penalties according to the Hinge loss. Hereafter, we refer to the soft margin SVM as 
simply SVM.  

Transfer learning with feature vectors. 

To describe our algorithm, we begin with the learning algorithm of BBV using 



numerical formulas, and introduce the transfer learning framework to the algorithm. 
Given d-dimensional feature vectors d

v ∈x  for all nodes , ,1v n= … , the BBV 
learning algorithm for a task uT  is expressed as  

 

2
,

,

, ,

, ,

min ,

wrt
subj t

1
2

, : ,
: 1
: 1

o ,
,

u

u u v
v

d
u u u v

u u v u v

u u v u v

C

v
v b
v b

α ξ

ξ
ξ
ξ

∈

+

+

−

+

∈ ∀ ∈ ∈
∀ ∈ + ≥ + −
∀ ∈ + ≤ − −

∑w

w
w

x
w x

V

F

F

V
V
V

 

where Cα  is a constant to be determined in advance. In the context of multi-task 
learning, Evgeniou et al. (2005)  suggested to append to the objective function a term 
that forces vw  of every related task to be close to uw . We borrow this idea and 
formulate our transfer learning algorithm as follows:  
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where Cρ  is a constant, trading off the strength of transferring for regularization and 
loss. 

Learning with kernels. 

We now extend our learning algorithm to a kernel method. What are kernel methods? 
Kernel methods work on kernel matrices instead of feature vectors. Kernel matrices are 
alternative representation to feature vectors, and are positive semidefinite similarity 
matrices. The simplest kernel matrix consists of the inner product between feature 
vectors. Kernel methods are designed so that when the inner product between feature 
vectors is used to generate a kernel matrix, the score function learned from the kernel 
matrix yields exactly the same function as the one obtained directly from the feature 
vectors.  
 
The BBV algorithm is readily kernelized because it directly uses SVM, which is a 
typical kernel method. However, since we incorporate transfer learning in our algorithm, 
kernelization of our algorithm may not be straightforward. In order to feed a kernel 
matrix to our algorithm, we need to re-formulate the original learning algorithm (1). We 
will present the kernelized version of our learning algorithm and show that the 
kernelized learning problem can be reduced to an optimization problem that can be 
solved efficiently using conventional techniques. Finally, we will further extend the 
algorithm so that it works on multiple kernel matrices.  

Transfer learning from a single kernel matrix. 

We now present the kernelized version of our algorithm. Let us denote the original 



kernel matrix among n nodes by nodeK . Our kernelized learning algorithm requires the 
submatrices of the original kernel matrix; for , { }ua b u∀ ∀ ∈ ∪V , we denote by node

( , )a bK  
the submatrix in which the rows and columns correspond to aV  and bV , respectively. 
Each element of the submatrix node

( , )a bK  is given by  
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for , ,1 ai = … . Let the positive training set of task uT  be , 1{ , , }u Mv v+ = …V  where 

,uM += V . Using the Lagrangian multiplier technique (Boyd & Vandenberghe, 2004), 
we can derive the kernel version of our algorithm as a minimization problem with the 
following objective function:  
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The derivation is in the supplemental document. The variable for this optimization 
problem is  

 
1
, , , ,

Mv v u⎡ ⎤≡ …⎣ ⎦α α α α
FF F F  

and the constraints are  
 , , 0,Cα≤ ≤ =0 α 1 y α  

where we concatenate the label vectors as  

1
, , , .

Mv v u⎡ ⎤≡ …⎣ ⎦y y y y
FF F F  



Pairwise kernels. 

As the BBV algorithm deals with feature vectors of nodes directly, the kernelized BBV 
algorithm can handle only kernels among nodes (node kernels). In the context of 
predicting the existence of an edge in a node pair, however, it is natural and would be 
more powerful to use kernels among node pairs (pairwise kernels). In BBV, one of the 
elements in every node pair should always be the target node. Since various node pairs 
need to be dealt with in the context of transfer learning, the use of the pairwise kernels 
is not allowed in BBV. On the other hand, our kernelized algorithm can handle the 
pairwise kernels, which is an advantage over the original BBV algorithm. To our 
knowledge, there are two useful pairwise kernels proposed so far: the tensor product 
pairwise kernel (TPPK) (Ben-Hur & Noble, 2005) and the metric learning pairwise 
kernel (MLPK) (Vert et al., 2007). For , ,1{ , , }

aaaa v v= …V  and , ,1{ , , }
bbbb v v= …V  the 

elements of TPPK and MLPK are defined by  

 

( )
, , , ,

, , ,

tppk node node node node
( , ) , , , ,

2
mlpk node node node node
( , ) , , , ,
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,
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a b

a i b j b j a i

b j a i b j

a b a b v v a v b vij
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i j

K K K K

K K K K

∀ ∈ ∀ ∈

⎡ ⎤ ≡ +⎣ ⎦

⎡ ⎤ ≡ − − +⎣ ⎦K

K  

respectively. TPPK is based on a tensorization of the original feature space, whereas 
MLPK is derived from convex optimization of a distance metric learning problem. In 
order to distinguish the above pairwise kernels from the kernel used by the original 
BBV algorithm, we refer to the original one as the BBV kernel (BBVK), which is 
expressed as  
 bbvk node

( , ) ( , ) .a b a b≡K K  

Hereafter, we use the superscript ‘pw’ to denote a pairwise kernel.  

Connection to SVM. 

An attractive advantage of our algorithm is that through slight modification of the 
original kernel matrices, the kernel version of our algorithm is reduced to an 
optimization problem that shares the same form as the original SVM. Since there are a 
number of studies for efficient SVM training, we can directly exploit these techniques 
or the software for our algorithm. Next, we show this fact. We modify the kernel 
matrices as  

pw
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for , 1{ , , }u Mv v+ = …V . We arrange these matrices as follows: 



1 1 1 1

1

1

( , ) ( , ) ( , )

fea
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.
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M M M M

M
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Note that if we let 
1 Mv v u≡ +…+ + , the size of feaG  is ×  and the length of y  

is . Then, the objective function can be rearranged as  

feadiag1( ) ( ) d (a
2

i )g .J ≡ −α α y y αG 1 αF F  

This optimization algorithm turns out to be a special case of the one appearing in 
Evgeniou et al. (2005). If we regard y  and feaG  as a class label vector and a kernel 
matrix, respectively, in a standard binary classification problem, the objective function 
of our algorithm will exactly coincide with the objective function of SVM. We can 
actually prove that feaG  is positive semi-definite. The constraints of α  are also the 
same as those of SVM. Hence, by a slight modification of kernel matrices as described 
above, standard SVM software can be used to obtain the solution to our transfer 
learning problem.  

Transfer learning from multiple kernel matrices. 

Let us consider the situation where we have multiple information sources. Suppose the 
number of information sources is kernn , and the data from each information source is 
represented by a kernel matrix. Let us denote the kernn  pairwise kernel matrices by 

kern1, , .nK K…  The algorithm we develop in this paper allows us to optimize the 
coefficients in a linear combination of the pairwise kernel matrices. There is a 
sophisticated algorithm called SDP/SVM (Lanckriet et al., 2004), which chooses the 
coefficients so that useful data are emphasized in SVM classification. Here we show 
that some rearrangement allows us to directly use SDP/SVM in the current context. 
Letting kernn∈μ  be the coefficient vector, we can express the linear combination of 
the kernel matrices as  

kern
int

1
.

n
k

k
k

μ
=

= ∑K K  

We modify the integrated kernel matrix int n
+∈Κ S  to obtain int n
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for , 1{ , , }u Mv v+ = …V . Once the optimal values of the coefficients μ  are found, the 
composite kernel matrix is just fed into our learning algorithm. We can also consider the 



modified kernel matrix k n
+∈G S  obtained from each kernel matrix k n

+∈K S  in a 
similar way. It can easily be shown that the matrix intG  associated with the integrated 
kernel matrix intK  is expressed as a linear combination of the modified kernel 
matrices:  

kern
int

1
.

n
k

k
k

μ
=

= ∑G G  

Hence, we can straightforwardly employ { } kern

1

nk

k=
G  as inputs of the SDP/SVM 

algorithm. The learning problem of SDP/SVM results in a quadratically constrained 
quadratic program (QCQP) that becomes intractable as the number of training samples 
increases. Recent studies (Bach et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy 
et al., 2008) have addressed this issue and these new algorithms allow us to tackle 
large-scale problems such as our learning problem.   

Gene ontology and Kegg pathway category analysis 

The GO terms (Gene Ontology Consortium, 2004) assigned to yeast gene products were 
downloaded from the website of the Gene Ontology Consortium 
(http://www.geneontology.org/). After mapping the GO terms into the more general 
parent GO Slim terms (Generic GO Slim; obtained from the same website), we assigned 
the GO Slim terms to each yeast gene product. On the other hand, the Kegg pathway 
category assigned to yeast gene products was downloaded from the website of the Kegg 
pathway database (http://www.genome.jp/kegg/pathway.html). P-values for 
over-represented GO Slim terms/Kegg pathway categories were calculated based on 
hypergeometric distribution by our Perl script.  
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1 Derivation of the Dual Problem

As written in the main text, the primal form of our algorithm is given by

min
1
2
‖wu‖2 + Cα

∑
v1∈Vu∪{u}

∑
v2∈Vv1,+

ξv1,v2

+
1
2

∑
v∈Vv

(‖wv‖2 + Cρ‖wu − wv‖2
)
,

wrt ∀v1 ∈ Vu ∪ {u}, ∀v2 ∈ Vv1,+ :

wv1 ∈ R
d, ξv1,v2 ∈ R,

subj to ∀v ∈ Vu,+ : w�
u xv + b ≥ +1 − ξu,v,

∀v ∈ Vu,− : w�
u xv + b ≤ −1 + ξu,v,

The main text also shows the kernelized algorithm. We now show its derivation from the primal
form to the kernelized version. Letting

W = [wv1 , . . . , wvM , wu] ,

the objective function can be re-expressed as

1
2
vec(W )�

(
Qtask ⊗ Id

)
vec(W ) + Cα

∑
v1∈Vu∪{u}

∑
v2∈Vv1,+

ξv1,v2

1
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where we have defined

Qtask =
(

IM+1 + Cρ

[
IM −1�

M

−1M M

])
.

Evgeniou et al. (2005) show the dual problem

min
1
2
ᾱ� diag(ȳ)

((
Z

(
Qtask

)−1
Z�

)
◦ Knode

)
diag(ȳ)ᾱ − 1�

�u
αu −

M∑
i=1

1�
�vi

αvi .

wrt α ∈ R
�

subj to 0� ≤ α ≤ Cα1�, 〈ȳ, ᾱ〉 = 0

where we let Z ∈ N
M×� be the indicator of a task and a sample such that

Z ≡

⎡
⎢⎢⎢⎢⎢⎣

1�v1
0�v1

· · · 0�v1
0�v1

0�v2
1�v2

· · · 0�v2
0�v2

...
...

. . .
...

...
0�vM

0�vM
· · · 1�vM

0�vM

0�u 0�u · · · 0�u 1�u

⎤
⎥⎥⎥⎥⎥⎦

. (1)

The inverse of the matrix Q is given by
(
Qtask

)−1
=

[
F21M1�

M + (F3 − F2)IM F11M

F11�
M F0

]
(2)

where F0, F1, F2, and F3 are

F0 ≡ 1 + 2Cρ

1 + 2(1 + M)Cρ
,

F1 ≡ 2Cρ

1 + 2(1 + M)Cρ
,

F2 ≡ 1
1 + 2Cρ

+
4C2

ρ

(1 + 2(1 + M)Cρ)(1 + 2Cρ)
,

F3 ≡ 1
1 + 2Cρ

which are same as the definitions in the main text. Hence, if we substitute (2) into the objective
function of the problem (1), we obtain

J(ᾱ) ≡ 1
2
F0α

�
u diag(yu)Knode

(u,u) diag(yu)αu

+
M∑
i=1

F1α
�
u diag(yu)Knode

(u,vi)
diag(yvi)αvi

+
1
2

M∑
i=1

F2α
�
vi

diag(yvi)K
node
(vi,vi)

diag(yvi)αvi

+
M∑
i=1

M∑
j=i+1

F3α
�
vi

diag(yvi)K
node
(vi,vj)

diag(yvj )αvj

− 1�
�u

αu −
M∑
i=1

1�
�vi

αvi .
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Table 2: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using MLPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 9 54 9 0 17
0.7 16 76 34 6 33
0.6 21 86 47 8 44
0.5 25 99 57 11 50

Table 3: The number of local models that have high weight of each assay data for the metabolic
network in the case of using MLPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 3 0 6 0 128
0.7 8 0 15 1 194
0.6 11 0 21 1 207
0.5 11 0 31 2 220

2 Supplemental Data
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Figure 4: The weights of multiple assays for each target gene that are determined by transfer
learning with TPPK.
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Figure 5: The weights of multiple assays for each target gene that are determined by transfer
learning with MLPK.
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Table 4: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using TPPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 30 5 0 15
0.7 1 74 27 1 30
0.6 3 84 44 1 43
0.5 4 94 54 3 57

Table 5: The number of local models that have high weight of each assay data for the metabolic
network in the case of using TPPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 0 8 0 148
0.7 0 0 10 0 209
0.6 0 0 12 0 231
0.5 1 0 18 0 256

Table 6: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using BBVK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 40 5 0 15
0.7 1 83 28 1 28
0.6 1 92 40 1 48
0.5 3 101 54 4 59

Table 7: The number of local models that have high weight of each assay data for the metabolic
network in the case of using BBVK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 0 8 0 149
0.7 0 0 10 0 222
0.6 0 0 11 0 243
0.5 2 0 17 0 257
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