
A Transfer Learning Approach and
Selective Integration of Multiple Types of
Assays for Biological Network Inference

Tsuyoshi Kato1,2,*, Kinya Okada3, Hisashi Kashima4, and Masashi Sugiyama5

1 AIST Computational Biology Research Center,
2-42 Aomi, Koto-ku, Tokyo 135.0064, Japan.
2 Center for Informational Biology, Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112.8610, Japan.
3 KO Institute for Medical Bioinformatics,
Yokohama, Kanagawa 227.0033, Japan.
4 IBM Research, Tokyo Research Laboratory,
1623-14 Shimo-tsuruma, Yamato, Kanagawa, 242-8502 Japan.
5 Tokyo Institute of Technology, Department of Computer Science,
2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 Japan.

*Corresponding author

Abstract

Inferring the relationship among proteins is a central issue of computational biology and
a diversity of biological assays are utilized to predict the relationship. However, as
experiments are usually expensive to perform, automatic data selection is employed to
reduce the data collection cost. Although data useful for link prediction are different in
each local sub-network, existing methods cannot select different data for different
processes.

This paper presents a new algorithm for inferring biological networks from multiple
types of assays. The proposed algorithm is based on transfer learning and can exploit
local information effectively. Each assay is automatically weighted through learning
and the weights can be adaptively different in each local part.

Our algorithm was favorably examined on two kinds of biological networks: a
metabolic network and a protein interaction network. A statistical test confirmed that
the weight that our algorithm assigned to each assay was meaningful.

Keywords: Supervised network inference, Support vector machine, Local model,
Transfer learning. Multiple kernel learning.

International Journal of Knowledge Discovery in Bioinformatics,
vol.1, no.1, pp.66-80, 2010.

Background

A thorough understanding of cellular processes is the central goal of molecular biology.
For this purpose, it is required to understand not only individual functions but also
relationships among their components. Nowadays, a huge amount of data on molecular
relationships can be generated through high throughput assays and analyzed as
molecular networks. Although each of the assays contains useful information, molecular
networks reconstructed from a single assay often have too much noise. To cope with
this problem, several groups have tried to integrate data obtained from multiple types of
assays for reliable network reconstruction (Pavlidis et al., 2002; Kato et al., 2005;
Yamanishi et al., 2005).

How can we integrate data from multiple types of assays? A primitive method is to
average data from the multiple types of assays and reconstruct a network from the
averaged data (Yamanishi et al., 2005; Vert & Yamanishi, 2005). This method in a
sense treats all types of assays equivalently, even if they may not be equivalent; that is,
the assays may differ from each other in quality and resolution. To take
non-equivalence among multiple types of assays into account in data integration,
several groups have proposed methods to optimize the weight assigned to each type of
assay (Kato et al., 2005; Lanckriet et al., 2004).

Although the existing methods allow each type of assay to be weighted, the weights are
global in the entire network. Namely, every edge is predicted using weights common to
the whole data. Since the mechanisms underlying cellular processes are complicated
and heterogeneous, a type of assay may help shed light on some local cellular processes
even if a low weight is assigned to the type of assay. Consequently, due to the
heterogeneity of the relationship between assays and cellular mechanisms, the global
weighting is too coarse, and finer modeling is desired.

Bleakley et al. (2007) have proposed a method that uses local models to cope with the
heterogeneity issue. Their method builds a local model for each node (they call it a
target node) and trains it with only its local (i.e., neighboring) information, resulting in
scoring functions that are not corrupted by the irrelevant effects of distant parts of its
molecular network. One shortcoming of their method is that the amount of local
information is often limited, because most of the nodes have a few edges due to the fact
that the node connectivity in molecular networks follows a power law
distribution (Caldarelli, 2007). Insufficient information for training adversely affects the
generalization ability of the method and restricts our ability to automatically acquire the
genuine weights of the assays.

We present herein a novel algorithm for edge prediction. Our algorithm is based on
Bleakley et al.’s approach, but our algorithm is extended to enjoy two remarkable
features. First, in order to address the loss of generalization ability due to the scarcity of
local information, we apply transfer learning to building local models. Transfer learning
is an approach to machine learning that learns a task together with other related tasks
simultaneously. This often leads to a better model for the target task, because it allows
the learner to share appropriate information across the tasks. The use of this approach is

motivated by the observation that node A is likely to be linked with node B when they
share common neighbors in molecular networks (Chua et al., 2006; Samanta & Liang,
2003; Okada et al., 2005). According to this observation, the task of building the local
model of a target node is likely to be related to that of its neighboring nodes. Transfer
learning builds the local model of a target node with the help of its neighboring nodes.
Furthermore, transfer learning optimizes weights assigned to the types of assays when
building local models, offering selected assays to each local part of a molecular network.
In this study, we reconstruct molecular networks using this method and validate the
efficiency of our method.

The rest of this section summarizes abbreviations which are used frequently in this
paper. SVM is the abbreviation of the support vector machine (Schölkopf & Smola,
2002). RBF is the radial basis function (Schölkopf & Smola, 2002). BBVK, TPPK, and
MLPK are the BBV kernel (Bleakley et al., 2007), the tensor product pairwise kernel
(Ben-Hur & Noble, 2005), and the metric learning pairwise kernel (Vert et al., 2007), as
detailed in the section of Methods. PIF is the protein interaction profile defined in the
section of Discussion. GO is the gene ontology. We will show the full name again at the
first occurrence except this paragraph.

Results

A number of large-scale biological networks have become available through
high-throughput experiments, even though they are rough and incomplete. In order to
refine them, more detailed surveys/studies need to be carried out. Even if some edges
are already known for a given node, it is necessary to verify whether the node has other
edges or not in the biological network. For such cases, we consider a network
reconstruction task that involves building a scoring function to predict the existence of
edges of a specified node (which is the one called target node in the previous section)
with input nodes, in addition to its known edges. Let us cite an example. The adjacency
matrix of the undirected graph in Figure 1(a) is shown in the bottom of Figure 1(b).
Basically, a feature vector is given to each node as in the top of (b). We consider the
case where a part of the adjacency matrix is missing, such as shown in Figure 1(c). We
pose a binary classification problem which is to predict whether an input node is linked
with the target node using the given feature vectors. This is same as what BBV
algorithm attempts to do (See the section of Methods). For example, we assume that the
target node is node 1. The first row of (b) implies that the training set includes only
node 3, and the other nodes 2, 4, 5, 6, 7, and 8 are unknown samples in the classification
task that we denote by 1T . We also consider another classification task whose target
node is node 3, and denote the task by 3T . With the help of the fact that the node 3 is
already known to be a neighbor of node 1, we regard 3T as a related task of 1T , and
our algorithm performs transfer learning of 1T with 3T to obtain a better solution of

1T .

Our method is tested on two kinds of biological networks in Saccharomyces cerevisiae.
One is the metabolic network in which enzymes involved in successive metabolic
reactions are linked. This network, which contains 769 nodes (mainly enzymes) and

3,702 undirected edges (functional links), is identical to the one used by Yamanishi et al.
(2005). The other is the protein interaction network of von Mering et al. (2002). Each
edge in the network indicates the physical interaction of two proteins and is rated with a
confidence level: high, middle or low. We use only high confidence edges as in

Figure 1: This paper deals with an undirected graph. Figure (a) shows an
example of the undirected graph. In this example, each node has a
4-dimensional feature vector, 1 8, ,…x x , as shown in the top row of (b). The
gray levels indicate the value of each element. The bottom of (b) is its
adjacency matrix. Task 1T predicts the existence of edges in pairs (1, 2), (1,
4), (1, 5), (1, 6), (1, 7), and (1, 8). BBV algorithm (see the section Methods)
cannot work well due to the extremely small training set 1, {3}+ =V ,

1,− = ∅V . We regard 3T as the related task to perform transfer learning,
where node 3 is the known neighbor of node 1.

previous studies (Kato et al., 2005; Bleakley et al., 2007), because they are supported by
multiple experiments. By removing proteins without any edges, we obtain a network of
984 proteins and 2,438 edges. Actually, the two networks are quite different: they share
only 188 proteins and 41 edges.

In order to predict the edges, we use a diverse collection of protein data, and convert
them into kernel matrices. Three of the kernel matrices are from sequence similarities.
Sequence similarities are computed using three biological sequence alignment tools:
BLAST (Altschul et al., 1990), ALN (Gotoh, 1982), and Pfam (Finn et al., 2008). The
matrix formed with similarity scores is not guaranteed to be positive semi-definite,
although the kernel matrices must be positive semi-definite for most of kernel methods
(Schölkopf & Smola, 2002). To generate positive semi-definite kernel matrices, feature
vectors are made from scores of each protein against all the proteins and the inner
product among the feature vectors is taken. The scores for Pfam are the expected values
derived from probabilistic models. The next dataset for network inference contains
microarray gene expressions. Gene expressions are measured under various
experimental conditions. A feature vector consists of the gene expressions. We use an
RBF kernel function to generate a kernel matrix from the feature vectors. The resultant
kernel matrices are available from the following website:

http://noble.gs.washington.edu/proj/sdp-svm/.

Following the website, we denote the five kernel matrices by ‘blast,’ ‘expr,’ ‘fft,’
‘pfam_hmm,’ and ‘sw,’ respectively. Each kernel can be used for the protein interaction
network and the metabolic network.

We use three pairwise kernels that are computed from node kernels: BBVK (Bleakley et
al.,2007), TPPK (Ben-Hur & Noble, 2005), and MLPK (Vert et al., 2007). Then, we
combine transfer learning with each of the three pairwise kernels. We determine the
hyper-parameters of the algorithms by cross-validation over the training set, and take
300 nodes with the highest degree-of-nodes as the target gene to pose 300 tasks. Then,
we randomly select 50% of proteins for the training set of each task.

Figure 2 compares the averaged AUC (Area under the curve) of ROC (Receiver
Operating Characteristic) to predict metabolic gene network and protein interactions.
The plotted AUC value is the average over 300 tasks. Transfer learning improves the
prediction performance substantially for all the cases compared to conventional learning
(BBV algorithm), and the differences are more than 0.1. AUCs among the three
pairwise kernels do not differ very much.

To demonstrate the effect of data integration, we apply the learning algorithms to each
data source and evaluate the ROC scores. The averages are also plotted in Figure 2. We
observe improvements due to data integration especially in the results of conventional
learning. For the metabolic network, transfer learning performance is improved by data
integration. However, almost the same ROC scores are obtained for the protein
interaction network. That may be because every data source we used is sufficiently
informative to predict protein interactions well. For further investigation, we find the

algorithm that achieves the best performance among the six combinations for each task.
Figure 3 shows how many times each algorithm achieves the best prediction
performance. For both networks, transfer learning yields the best AUC much more
frequently than non-transfer learning. The differences among pairwise kernels are not so
large.

Our problem setting is different from that of the global models used by Ben-Hur &
Noble (2005) and Vert et al. (2007). Global models attempt to infer the
existence/absence of unknown dges in the whole network, whereas our algorithm
predicts edges that link a specified target node to the other nodes. Despite differences in
problem setting, it is still possible to use global models in our setting. In the training
stage, global models use all the known edges as positive samples, and they randomly
pick an equal number of absent edges as negative samples. From our experiences in
problem setting, we find that improvements can be achieved by slightly modifying the
way to pick negative samples, namely, to choose all the absent edges of the target node
and to pick the other absent edges randomly so that the number of negative training
samples is equal to the number of positive ones. One disadvantage is that their

Figure 2: Averaged AUC of ROC. ‘Transfer Learning, Integrated’ indicates
our algorithm that integrates multiple data sources and predicts the links of
networks with transfer learning. ‘Conventional Learning, Integrated’ is the
case without transfer learning, i.e. BBV algorithm. ‘Transfer Learning,
Individual’means the transfer learning from an individual data source, and
the average is plotted. ‘Conventional Learning, Individual’ is the averaged
ROC score of conventional learning from each data source. ‘Learning from
the Entire Network, Integrated’ is the approach to pick training samples
from the entire network. Namely, that is the global model.

approaches need much more computational time for training compared to our method,
because the number of training samples is much larger. Due to the heavy computation,
we abandon the cross-validation within the training set to determine the value of the
regularization parameter of SVM for comparison of global models with ours in terms of
prediction performance. Instead, we try several values of the regularization parameter
and report the best performance. Although the way of evaluation is advantageous to
their approaches, their approaches could not obtain performance superior to our transfer
learning (See Figure 2).

Discussion

In building a local model for each node through our algorithm, the weight of each type
of assay data is optimized. To find the extent to which each assay data is effective in the
entire local model building process, we count the number of resulting local models that
have high weight of each data. Because the results do not remarkably vary among any
of the kernels (MLPK, TPPK or BBVK) and/or any of cutoff thresholds of weight (0.5,
0.6, 0.7 or 0.8) (Tables 2–7 in Supplemental Information http://www.net-machine.net/
~kato/pdf/t-kato-ijkdb2009a-suppl.pdf), hereafter we describe the results of using
BBVK and 0.8 as the cutoff threshold.

Regarding the local models for the protein interaction network, expression data and
Pfam data are highly weighted compared to other data (Table 1 and Figure 4). Although

.

Figure 3: The number of times each algorithm achieves the best prediction
performance among the six methods. In the problem we tackle, we can
assign each node to a prediction task. For each task, we perform the six
methods: ‘TL, BBVK’, ‘CL, BBVK’, ‘TL, TPPK’, ‘CL, TPPK’, ‘TL,
MLPK’, and ‘CL, MLPK’ where TL and CL are the abbreviations for
transfer learning and conventional learning, respectively. BBVK, TPPK, and
MLPK are the types of pairwise kernels. For most of the tasks, transfer
learning achieves a best prediction performance.

the multiple selection as shown in this case – some local models prefer the expression
data while others prefer the Pfam data – may indicate that the protein interaction
network is a superimposition of various interactions induced by distinct mechanisms, it
may be simply derived from biologically meaningless artifacts, e.g., experimental
properties, including sampling bias, protocol, and experimental principle. Therefore, we
next describe the pattern of local models with polarized preference for those assay data.

In the case of weighting highly the expression data in the local model of node u, it is
expected that not only u links with a node or nodes (i.e., neighbors of u) whose protein
interaction profile (PIF) is similar to that of u but also the PIF of the neighbor(s) is
highly correlated with its/their expression profile. To verify this, we count the gene
ontology (GO) terms of proteins whose local models have high weight of the expression
data. As a result, GO terms, ‘ribosome biogenesis’ (GO: 0042254) and ‘RNA metabolic
process’ (GO: 0016070) of the GO biological process terms, are significantly
over-represented (p-values are 2.3E-19 and 1.2E-06, respectively), indicating that the
proteins are involved in ribosome function. In addition to the fact that ribosome-related
proteins are densely connected in the protein interaction network, as described
previously (Han et al., 2004), they are highly correlated with the expression profile
(Jansen et al., 2002).. Those findings well explain the assignment of a high weight to
gene expression data for those local models through the transfer learning framework.

Similarly, we analyze proteins whose local models have high weights of Pfam data, and
find that the GO term, ‘protein catabolic process’ (GO: 0030163), is significantly
over-represented (p-value: 3.3E-10). As most of them (12/15) indeed comprise
proteasome complexes well known as protein catabolizers (i.e., they are subunits of
proteasome complexes), they are likely to be densely connected in the protein
interaction network according to the basic idea that protein complexes are detected as
densely connected subnetworks. In addition, since most of the proteasome subunits
share common domains (alpha/beta subunit domains), their Pfam profiles are likely to
be similar to each other. Those observations justify the weight generated through data
selection in our algorithm.

Table 1: Number of local models that have a high weight of each assay data.
blast: sequence similarity data calculated by BLAST, expr: expression data,
fft: hydropathy profile, pfam hmm: Pfam data. sw: sequence similarity data
calculated by ALN. Local models that have high weight (0.8≥) in the case
of using BBVK were counted.

 Metabolic
Network

Protein
Interactions

blast 8 5
expr 0 40
fft 0 0

pfam_hmm 149 15
sw 0 0

On the other hand, data indicating sequence similarity, particularly Pfam data, are
highly weighted in the entire local model building process for the metabolic network
(Table 1). Here we conduct pathway category analysis, instead of GO analysis, of
proteins whose local models assign high weights to Pfam data. As a result, we find that
categories indicating signal transduction, ‘cell cycle - yeast,’ ‘MAPK signaling pathway
- yeast,’ and ‘phosphatidylinositol signaling system,’ are significantly over-represented
(p-values are 7.0E-03, 9.6E-03, and 1.1E-02, respectively). Following the basic idea
that signaling/interaction targets are usually recognized by domains, the preference for
Pfam data at least in these pathways seems to be biologically reasonable.

Figure 4: Weights of multiple types of assays for each target gene as
determined by transfer learning with BBVK.

Conclusions

In this paper, we discussed the effect of transfer learning in network inference. Our
algorithm utilizes the small-world property of related learning tasks and we
experimentally showed that the proposed algorithm substantially improves prediction
accuracy. We also illustrated that multiple kernel learning works well and yields
biologically plausible data selection.

Our algorithm uses only partial (i.e., local) information of assay data when building
each local model. As described in the previous section, the optimized weight reflects
biologically meaningful properties, at least in part, of protein interaction and metabolic
networks. In future studies, we will further investigate biological interpretation of
networks. The current data are noisy so they may not be believed absolutely, but we
have to resort to using the current data to evaluate the prediction performance. We will
investigate the performance again when the more reliable data become available.

Methods

This section presents our algorithm that infers a biological network from multiple
assays. The description shown in this section uses the following notations. Vectors are
denoted by boldface lower-case letters and matrices, by boldface upper-case letters.
Elements of vectors and matrices are not printed in boldface. The transposition of
matrix A is denoted by AF . The n n× identity matrix is denoted by nI . The
n-dimensional column vector all of whose elements are one is denoted by n1 . We use

 to denote the set of real numbers, n to denote the set of n-dimensional real
column vectors, and m n× to denote the set of m n× real matrices. The set of real
nonnegative numbers is denoted by + , and the set of n-dimensional real nonnegative
vectors is denoted by n

+ . We use nS to denote the set of n n× symmetric matrices,
n
+S to denote the set of n n× symmetric positive semi-definite matrices. is the set

of natural numbers. n is a subset of , and is defined by { | }n i i n≡ ∈ ≤ .
Symbols ≤ and ≥ are used to denote not only the standard inequalities between
scalars, but also the componentwise inequalities between vectors.

BBV algorithm.

Our algorithm is based on the approach using local models proposed by Bleakley et al.
(2007). We refer to their approach as BBV, taking the first letters of the three authors’
names. BBV builds a classifier for a given node with index nu∈ where n is the
number of nodes. Node u is what we have referred to as the target node. The purpose of
the classifier is to predict the existence or the absence of links with the given target
node u. BBV assumes that a feature vector is given to every node. The feature vectors
are used for SVM learning. Additionally, we are given two exclusive subsets of
nodes ,u +V and ,u −V ; that is, , ,u u+ −∩V V is the null set. Every node in ,u +V is linked

with the target node u, and every node in ,u −V is not linked with u. Members in ,u +V
are termed neighbors in graph theory. We call the subset , ,u u u+ −≡ ∪V V V the training set.
The set of the other nodes n u5V is called the test set. In summary, the BBV
algorithm predicts the existence or the absence of the link between the target node and
the node in the test set by using feature vectors. Note that we cannot use any class labels
of the test set for SVM learning. In the case of Figure 1(c), the training set of 1T
is 1 {3}=V . The set of positives 1,+V in the training set consists only of node 3, and the
set of negatives ,u −V is empty. Therefore, we can not train SVM because SVM learning
requires at least one sample for each class.

The BBV algorithm consists of the learning stage and the prediction stage. In the
learning stage, the classifier learns the classification rule of the class labels from the
feature vectors in the training set uV . In the prediction stage, the classifier predicts the
labels for the nodes in the test set n u5V , which corresponds to predicting the
existence or absence of links to the target node.

Outline of our algorithm.

We introduce the idea of transfer learning into the BBV algorithm. Transfer learning is
a framework to improve performance of a task using related learning tasks. This idea is
useful in the current context since we can find the task relations in the network
inference problem, as mentioned in Background. We will formulate the transfer learning
approach. Let us denote the local model of a target node u by uV . We assume that the
learning task uT is related to the tasks associated with the neighbors of u, say

,,v uv +∀ ∈T V . Thus, we propose to employ the transfer learning of uT with the help of

,,v uv +∀ ∈T V .

Support vector machine.

BBV employs the support vector machine (SVM) as a classifier. Basically, SVM finds a
hyper-plane that distinguishes positive training examples from negative ones in a
feature space. For that purpose, SVM formulates a scalar-valued linear score function.
The parameters of the score function consist of the normal vector of the hyper-plane and
the bias term that shifts the hyper-plane. If the norm of the normal vector is minimized
subject to the constraints that the minimum score among positive examples is 1+ and
the maximum score among negative ones is 1− , the margin between the positive set
and the negative set is maximized. However, a hyper-plane satisfying those constraints
does not always exist. To cope with this problem, the so-called soft margin SVM
relaxes the constraints so that some examples can lie in the margin, but are given
penalties according to the Hinge loss. Hereafter, we refer to the soft margin SVM as
simply SVM.

Transfer learning with feature vectors.

To describe our algorithm, we begin with the learning algorithm of BBV using

numerical formulas, and introduce the transfer learning framework to the algorithm.
Given d-dimensional feature vectors d

v ∈x for all nodes , ,1v n= … , the BBV
learning algorithm for a task uT is expressed as

2
,

,

, ,

, ,

min ,

wrt
subj t

1
2

, : ,
: 1
: 1

o ,
,

u

u u v
v

d
u u u v

u u v u v

u u v u v

C

v
v b
v b

α ξ

ξ
ξ
ξ

∈

+

+

−

+

∈ ∀ ∈ ∈
∀ ∈ + ≥ + −
∀ ∈ + ≤ − −

∑w

w
w

x
w x

V

F

F

V
V
V

where Cα is a constant to be determined in advance. In the context of multi-task
learning, Evgeniou et al. (2005) suggested to append to the objective function a term
that forces vw of every related task to be close to uw . We borrow this idea and
formulate our transfer learning algorithm as follows:

()
1 1 1 2

1 1 2 1 2

1 1 2 1 2

2 2 2
,

1 2 ,

1 2 ,

1 2

,

, ,

min

wrt ,

subj t

1 1
2 2

{ }, : ,

{ }, : 1

{ } : 1

o ,

,,

u

u

vu u v v v u
v

d
u v v v v

u v v v v v

u v v v v v

C w C w w

v u v

v u v b

v u v b

α ρξ

ξ

ξ

ξ
+

∈

−

∈

+

+ + −

∀ ∈ ∪ ∀ ∈ ∈ ∈

∀ ∈ ∪ ∀ ∈ + ≥ + −

∀ ∈ ∪ ∀ ∈ + ≤ −

+

+

∑∑w

x

x

w

w

w

V
V

F

F

V V

V V

V V

 (1)

where Cρ is a constant, trading off the strength of transferring for regularization and
loss.

Learning with kernels.

We now extend our learning algorithm to a kernel method. What are kernel methods?
Kernel methods work on kernel matrices instead of feature vectors. Kernel matrices are
alternative representation to feature vectors, and are positive semidefinite similarity
matrices. The simplest kernel matrix consists of the inner product between feature
vectors. Kernel methods are designed so that when the inner product between feature
vectors is used to generate a kernel matrix, the score function learned from the kernel
matrix yields exactly the same function as the one obtained directly from the feature
vectors.

The BBV algorithm is readily kernelized because it directly uses SVM, which is a
typical kernel method. However, since we incorporate transfer learning in our algorithm,
kernelization of our algorithm may not be straightforward. In order to feed a kernel
matrix to our algorithm, we need to re-formulate the original learning algorithm (1). We
will present the kernelized version of our learning algorithm and show that the
kernelized learning problem can be reduced to an optimization problem that can be
solved efficiently using conventional techniques. Finally, we will further extend the
algorithm so that it works on multiple kernel matrices.

Transfer learning from a single kernel matrix.

We now present the kernelized version of our algorithm. Let us denote the original

kernel matrix among n nodes by nodeK . Our kernelized learning algorithm requires the
submatrices of the original kernel matrix; for , { }ua b u∀ ∀ ∈ ∪V , we denote by node

(,)a bK
the submatrix in which the rows and columns correspond to aV and bV , respectively.
Each element of the submatrix node

(,)a bK is given by

, ,

node node
(,) ,, :

a b a i b ja b v vij
Ki j ⎡ ⎤∀ ∈ ∀ ∈ ⎣ =⎦K

where ,1 ,{ , , }
aa a av v≡ …V and ,1 ,{ , , }

bb b bv v≡ …V . We assume that the elements are
arranged in ascending order, i.e., ,1 , aa av v<< and ,1 , bb bv v<< . For each task aT

with the training set aV , we define the label vector a
a ∈y by

 [] , ,

, ,

1 if ,
1 if ,

a i a
a i

a i a

v
y

v
+

−

+ ∈⎧
≡ ⎨− ∈⎩

V
V

for , ,1 ai = … . Let the positive training set of task uT be , 1{ , , }u Mv v+ = …V where

,uM += V . Using the Lagrangian multiplier technique (Boyd & Vandenberghe, 2004),
we can derive the kernel version of our algorithm as a minimization problem with the
following objective function:

node node
0 (,) 1 (,)

1

node node
2 (,) 3 (,)

1 1 1

1

1() diag() diag() diag() diag()
2

1 diag() diag() diag() diag()
2

i i i

i i i i i i i i i j j j

u v ii

M

u u u u u u u u u v v v
i

M M M

v v v v v v v v v v v v
i i j i

u v
i

J F F

F F

α
=

= = = +

=

≡ +

+ +

− −

∑

∑ ∑∑

α y K y α α y K y α

α y K y α α y K y α

1 α 1 α

F F

F F

F F
M

∑

where

 0

1 2
,

1 2(1)
C

F
M C
ρ

ρ

+
≡

+ +
 1 1 2(1

2
)

C
F

M C
ρ

ρ

≡
+ +

,

2

2

4
(1 2(1))

1
1

,
1 ()2 2

C
F

C M C C
ρ

ρ ρ ρ+ + +
≡ +

+

 3
1 .

1 2
F

Cρ

≡
+

The derivation is in the supplemental document. The variable for this optimization
problem is

1
, , , ,

Mv v u⎡ ⎤≡ …⎣ ⎦α α α α
FF F F

and the constraints are
 , , 0,Cα≤ ≤ =0 α 1 y α

where we concatenate the label vectors as

1
, , , .

Mv v u⎡ ⎤≡ …⎣ ⎦y y y y
FF F F

Pairwise kernels.

As the BBV algorithm deals with feature vectors of nodes directly, the kernelized BBV
algorithm can handle only kernels among nodes (node kernels). In the context of
predicting the existence of an edge in a node pair, however, it is natural and would be
more powerful to use kernels among node pairs (pairwise kernels). In BBV, one of the
elements in every node pair should always be the target node. Since various node pairs
need to be dealt with in the context of transfer learning, the use of the pairwise kernels
is not allowed in BBV. On the other hand, our kernelized algorithm can handle the
pairwise kernels, which is an advantage over the original BBV algorithm. To our
knowledge, there are two useful pairwise kernels proposed so far: the tensor product
pairwise kernel (TPPK) (Ben-Hur & Noble, 2005) and the metric learning pairwise
kernel (MLPK) (Vert et al., 2007). For , ,1{ , , }

aaaa v v= …V and , ,1{ , , }
bbbb v v= …V the

elements of TPPK and MLPK are defined by

()
, , , ,

, , ,

tppk node node node node
(,) , , , ,

2
mlpk node node node node
(,) , , , ,

, :

,

,

a b

a i b j b j a i

b j a i b j

a b a b v v a v b vij

a b a b a v v b b vij

i j

K K K K

K K K K

∀ ∈ ∀ ∈

⎡ ⎤ ≡ +⎣ ⎦

⎡ ⎤ ≡ − − +⎣ ⎦K

K

respectively. TPPK is based on a tensorization of the original feature space, whereas
MLPK is derived from convex optimization of a distance metric learning problem. In
order to distinguish the above pairwise kernels from the kernel used by the original
BBV algorithm, we refer to the original one as the BBV kernel (BBVK), which is
expressed as
 bbvk node

(,) (,) .a b a b≡K K

Hereafter, we use the superscript ‘pw’ to denote a pairwise kernel.

Connection to SVM.

An attractive advantage of our algorithm is that through slight modification of the
original kernel matrices, the kernel version of our algorithm is reduced to an
optimization problem that shares the same form as the original SVM. Since there are a
number of studies for efficient SVM training, we can directly exploit these techniques
or the software for our algorithm. Next, we show this fact. We modify the kernel
matrices as

pw
(,) 2 (,)

pw
(,) 3 (,)

pw
(,) 1 (,)

pw
(,) 1 (,)

pw
(,) 0 (,)

, ,

, { }, ,

, ,

,

,

i i i i

i j i j

i i

j i

M v v v v

M M v v v v

M v u v u

u v u v

u u u u

i F

i j i F

i F

F

F

∀ ∈ ≡

∀ ∈ ∀ ∈ ≡

∀ ∈ ≡

≡

≡

G K

G K

G K

G K

G K

5

for , 1{ , , }u Mv v+ = …V . We arrange these matrices as follows:

1 1 1 1

1

1

(,) (,) (,)

fea
(,) (,) (,)

(,) (,) (,)

.

M

M M M M

M

v v v v v u

v v v v v u

u v u v u u

⎡ ⎤
⎢ ⎥
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G G G

G
G G G

G G G

Note that if we let
1 Mv v u≡ +…+ + , the size of feaG is × and the length of y

is . Then, the objective function can be rearranged as

feadiag1() () d (a
2

i)g .J ≡ −α α y y αG 1 αF F

This optimization algorithm turns out to be a special case of the one appearing in
Evgeniou et al. (2005). If we regard y and feaG as a class label vector and a kernel
matrix, respectively, in a standard binary classification problem, the objective function
of our algorithm will exactly coincide with the objective function of SVM. We can
actually prove that feaG is positive semi-definite. The constraints of α are also the
same as those of SVM. Hence, by a slight modification of kernel matrices as described
above, standard SVM software can be used to obtain the solution to our transfer
learning problem.

Transfer learning from multiple kernel matrices.

Let us consider the situation where we have multiple information sources. Suppose the
number of information sources is kernn , and the data from each information source is
represented by a kernel matrix. Let us denote the kernn pairwise kernel matrices by

kern1, , .nK K… The algorithm we develop in this paper allows us to optimize the
coefficients in a linear combination of the pairwise kernel matrices. There is a
sophisticated algorithm called SDP/SVM (Lanckriet et al., 2004), which chooses the
coefficients so that useful data are emphasized in SVM classification. Here we show
that some rearrangement allows us to directly use SDP/SVM in the current context.
Letting kernn∈μ be the coefficient vector, we can express the linear combination of
the kernel matrices as

kern
int

1
.

n
k

k
k

μ
=

= ∑K K

We modify the integrated kernel matrix int n
+∈Κ S to obtain int n

+∈G S as
int int
(,) 2 (,)

int int
(,) 3 (,)

int int
(,) 1 (,)

int int
(,) 1 (,)

int int
(,) 0 (,)

, ,

, { }, ,

,

,

,

,

i i i i

i j i j

i i

j i

M v v v v

M M v v v v

M v u v u

u v u v

u u u u

i F

i j i F

i F

F

F

∀ ∈ ≡

∀ ∈ ∀ ∈ ≡

∀ ∈ ≡

≡

≡

G K

G K

G K

G K

G K

5

for , 1{ , , }u Mv v+ = …V . Once the optimal values of the coefficients μ are found, the
composite kernel matrix is just fed into our learning algorithm. We can also consider the

modified kernel matrix k n
+∈G S obtained from each kernel matrix k n

+∈K S in a
similar way. It can easily be shown that the matrix intG associated with the integrated
kernel matrix intK is expressed as a linear combination of the modified kernel
matrices:

kern
int

1
.

n
k

k
k

μ
=

= ∑G G

Hence, we can straightforwardly employ { } kern

1

nk

k=
G as inputs of the SDP/SVM

algorithm. The learning problem of SDP/SVM results in a quadratically constrained
quadratic program (QCQP) that becomes intractable as the number of training samples
increases. Recent studies (Bach et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy
et al., 2008) have addressed this issue and these new algorithms allow us to tackle
large-scale problems such as our learning problem.

Gene ontology and Kegg pathway category analysis

The GO terms (Gene Ontology Consortium, 2004) assigned to yeast gene products were
downloaded from the website of the Gene Ontology Consortium
(http://www.geneontology.org/). After mapping the GO terms into the more general
parent GO Slim terms (Generic GO Slim; obtained from the same website), we assigned
the GO Slim terms to each yeast gene product. On the other hand, the Kegg pathway
category assigned to yeast gene products was downloaded from the website of the Kegg
pathway database (http://www.genome.jp/kegg/pathway.html). P-values for
over-represented GO Slim terms/Kegg pathway categories were calculated based on
hypergeometric distribution by our Perl script.

Acknowledgement

We thank W. Noble for making the data public. TK would like to thank Dr Goro Terai
for fruitful discussion.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. J. Mol. Biol., 215 (3), 403-410.

Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I. (2004). Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of the 21st international conference on
machine learning. New York.

Ben-Hur, A., & Noble, W. S. (2005). Kernel methods for predicting protein-protein
interactions. Bioinformatics, 21 (Suppl. 1), i38-i46.

Bleakley, K., Biau, G., & Vert, J.-P. (2007). Supervised reconstruction of biological
networks with local models. Bioinformatics, 23(13), i57-i65.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University

Press.

Caldarelli, G. (2007). Scale-free networks: Complex webs in nature and technology.
Oxford Univ Press.

Chua, H. N., Sung, W. K., & Wong, L. (2006). Exploiting indirect neighbours and
topological weight to predict protein function from protein-protein interactions.
Bioinformatics, 22 (13), 1623-1630.

Gene Ontology Consortium (2004). The gene ontology (GO) database and informatics
resource. Nucleic Acids Research, 32 (Database issue), D258-D261.

Evgeniou, T., Micchelli, C. A., & Pontil, M. (2005). Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6, 615-637.

Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Ceric, G.,
Forslund, K., Eddy, S. R., Sonnhammer, E. L., & Bateman, A. (2008). The Pfam protein
families database. Nucleic Acids Res., 36, D281-D288.

Gotoh, O. (1982). An improved algorithm for matching biological sequences. J. Mol.
Biol., 162 (3), 705-708.

Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy,
D., Walhout, A. J., Cusick, M. E., Roth, F. P., & Vidal, M. (2004). Evidence for
dynamically organized modularity in the yeast protein-protein interaction network.
Nature, 430(6995), 88-93.

Jansen, R., Greenbaum, D., & Gerstein, M. (2002). Relating whole-genome expression
data with protein-protein interactions. Genome Research, 12, 37-46.

Kato, T., Tsuda, K., & Asai, K. (2005). Selective integration of multiple biological data
for supervised network inference. Bioinformatics, 21(10), 2488-2495.

Lanckriet, G. R. G., Bie, T. D., Cristianini, N., Jordan, M., & Noble, W. (2004). A
statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626-2635.

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., & Bork, P.
(2002). Comparative assessment of large-scale data sets of protein-protein interactions.
Nature, 417(6887), 399-403.

Okada, K., Kanaya, S., & Asai, K. (2005). Accurate extraction of functional
associations between proteins based on common interaction partners and common
domains. Bioinformatics, 21 (9), 2043-2048.

Pavlidis, P., Weston, J., Cai, J., & Noble, W. S. (2002). Learning gene functional
classifications from multiple data types. Journal of Computational Biology, 9(2),
401-411.

Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL.
Journal of Machine Learning Research, 9, 2491-2521.

Samanta, M. P., & Liang, S. (2003). Predicting protein functions from redundancies in
largescale protein interaction networks. Proc Natl Acad Sci USA, 100 (22),
12579-12583.

Schölkopf, B. & Smola, A. J. (2002). Learning with kernels. MIT Press, Cambridge
MA.

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple
kernel learning. Journal of Machine Learning Research, 7, 1531-1565.

Vert, J. P., Qiu, J., & Noble, W. S. (2007). A new pairwise kernel for biological
network inference with support vector machines. BMC Bioinformatics, 10 (Suppl 10),
S8.

Vert, J.-P., & Yamanishi, Y. (2005). Supervised graph inference. In L. K. Saul, Y.
Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp.
1433-1440). Cambridge, MA: MIT Press.

Yamanishi, Y., Vert, J.-P., & Kanehisa, M. (2005). Supervised enzyme network
inference from the integration of genomic data and chemical information.
Bioinformatics, 21 (Suppl 1), i468-i477.

Biography

Tsuyoshi Kato received the B.E., M.E., and PhD degree from Tohoku University,
Sendai, Japan, in 1998, 2000, and 2003. From 2003 to 2005, he was with the National
Institute of Advanced Industrial Science Technology (AIST) as a postdoctoral fellow in
the Computational Biology Research Center (CBRC) at Tokyo. From 2005 to 2008, he
was an assistant professor at the Graduate School of Frontier Sciences, University of
Tokyo. Since 2008, he has been an associate professor at the Center for Informational
Biology, Ochanomizu University. Currently, he is also a guest researcher at CBRC. His
current scientific interests include bioinformatics and statistical pattern recognition.

Kinya Okada received the BS degree in Agriculture from the University of Tohoku,
Sendai, Japan in 2003, and the MS degree in Information Science from Nara Institute of
Science and Technology, Nara, Japan in 2004, and the PhD degree in Science from the
University of Tokyo, Kashiwa, Japan in 2008. Currently, he is in KO Institute for
Medical Bioinformatics, Kanagawa, Japan. His research interest is bioinformatics.

Hisashi Kashima received the M.E. and Ph.D. degrees in informatics from Kyoto
University, Kyoto, Japan, in 1999 and 2007, respectively. He has been a Researcher at
the Tokyo Research Laboratory, IBM Research, Tokyo, Japan, since 1999. His research
interests include machine learning and its applications to bioinformatics, autonomic

computing, and business intelligence.

Masashi Sugiyama received the B.E., M.E., and Ph.D. degrees in computer science
from Tokyo Institute of Technology, Tokyo, Japan, in 1997, 1999, and 2001,
respectively. In 2001, he was appointed as a Research Associate at the Tokyo Institute
of Technology, where since 2003, he has been an Associate Professor. His research
interests include machine learning and signal/image processing.

Supplemental Information for A Transfer Learning

Approach and Selective Integration of Multiple Assays for

Biological Network Inference

Tsuyoshi Kato1,2, Kinya Okada3, Hisashi Kashima4 and Masashi Sugiyama5

June 27, 2009

1 AIST Computational Biology Research Center,
2-42 Aomi, Koto-ku, Tokyo 135–0064, Japan.

2 Center for Informational Biology, Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112–8610, Japan.

3 KO Institute for Medical Bioinformatics,
Yokohama, Kanagawa 227–0033, Japan.

4 IBM Research, Tokyo Research Laboratory,
1623-14 Shimo-tsuruma, Yamato, Kanagawa, 242-8502 Japan.

5 Tokyo Institute of Technology, Department of Computer Science,
2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 Japan.

1 Derivation of the Dual Problem

As written in the main text, the primal form of our algorithm is given by

min
1
2
‖wu‖2 + Cα

∑
v1∈Vu∪{u}

∑
v2∈Vv1,+

ξv1,v2

+
1
2

∑
v∈Vv

(‖wv‖2 + Cρ‖wu − wv‖2
)
,

wrt ∀v1 ∈ Vu ∪ {u}, ∀v2 ∈ Vv1,+ :

wv1 ∈ R
d, ξv1,v2 ∈ R,

subj to ∀v ∈ Vu,+ : w�
u xv + b ≥ +1 − ξu,v,

∀v ∈ Vu,− : w�
u xv + b ≤ −1 + ξu,v,

The main text also shows the kernelized algorithm. We now show its derivation from the primal
form to the kernelized version. Letting

W = [wv1 , . . . , wvM , wu] ,

the objective function can be re-expressed as

1
2
vec(W)�

(
Qtask ⊗ Id

)
vec(W) + Cα

∑
v1∈Vu∪{u}

∑
v2∈Vv1,+

ξv1,v2

1

Tsuyoshi Kato 2

where we have defined

Qtask =
(

IM+1 + Cρ

[
IM −1�

M

−1M M

])
.

Evgeniou et al. (2005) show the dual problem

min
1
2
ᾱ� diag(ȳ)

((
Z

(
Qtask

)−1
Z�

)
◦ Knode

)
diag(ȳ)ᾱ − 1�

�u
αu −

M∑
i=1

1�
�vi

αvi .

wrt α ∈ R
�

subj to 0� ≤ α ≤ Cα1�, 〈ȳ, ᾱ〉 = 0

where we let Z ∈ N
M×� be the indicator of a task and a sample such that

Z ≡

⎡
⎢⎢⎢⎢⎢⎣

1�v1
0�v1

· · · 0�v1
0�v1

0�v2
1�v2

· · · 0�v2
0�v2

...
...

. . .
...

...
0�vM

0�vM
· · · 1�vM

0�vM

0�u 0�u · · · 0�u 1�u

⎤
⎥⎥⎥⎥⎥⎦

. (1)

The inverse of the matrix Q is given by
(
Qtask

)−1
=

[
F21M1�

M + (F3 − F2)IM F11M

F11�
M F0

]
(2)

where F0, F1, F2, and F3 are

F0 ≡ 1 + 2Cρ

1 + 2(1 + M)Cρ
,

F1 ≡ 2Cρ

1 + 2(1 + M)Cρ
,

F2 ≡ 1
1 + 2Cρ

+
4C2

ρ

(1 + 2(1 + M)Cρ)(1 + 2Cρ)
,

F3 ≡ 1
1 + 2Cρ

which are same as the definitions in the main text. Hence, if we substitute (2) into the objective
function of the problem (1), we obtain

J(ᾱ) ≡ 1
2
F0α

�
u diag(yu)Knode

(u,u) diag(yu)αu

+
M∑
i=1

F1α
�
u diag(yu)Knode

(u,vi)
diag(yvi)αvi

+
1
2

M∑
i=1

F2α
�
vi

diag(yvi)K
node
(vi,vi)

diag(yvi)αvi

+
M∑
i=1

M∑
j=i+1

F3α
�
vi

diag(yvi)K
node
(vi,vj)

diag(yvj)αvj

− 1�
�u

αu −
M∑
i=1

1�
�vi

αvi .

Tsuyoshi Kato 3

Table 2: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using MLPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 9 54 9 0 17
0.7 16 76 34 6 33
0.6 21 86 47 8 44
0.5 25 99 57 11 50

Table 3: The number of local models that have high weight of each assay data for the metabolic
network in the case of using MLPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 3 0 6 0 128
0.7 8 0 15 1 194
0.6 11 0 21 1 207
0.5 11 0 31 2 220

2 Supplemental Data

Tsuyoshi Kato 4

YER170W
YDR441C

YDR226W
YBR184W
YBR019C
YML035C
YKL029C
YER052C
YDR300C
YDL168W
YBR160W
YOL058W
YNR016C
YNL267W
YLR305C
YJL126W

YBL016W
YBL015W
YOL033W
YNL104C

YGR155W
YGL245W
YPR113W
YPR074C
YPL028W

YMR217W
YMR105C
YLR299W
YLR153C

YLR134W
YLR044C

YKL127W
YGR087C

YGR040W
YGL253W
YFR053C

YDR380W
YDL080C
YBR117C
YAL054C
YMR120C
YLR160C
YLR158C
YLR157C
YLR155C
YLR028C

YDR321W
YAL012W
YPR145W
YNL071W
YMR062C

YJL101C
YGR124W
YNL117W

YIR031C
YHR037W
YFR055W
YDL171C
YPR051W
YPL061W
YPL017C

YOR374W
YNL220W
YJL218W
YFL018C

YER073W
YEL066W
YEL056W
YOR375C
YDR019C
YDL215C

YAL062W
YLR089C
YLR058C
YJL130C

YGL062W
YDR111C
YBR263W
YBR218C
YER178W
YBR221C

YMR250W
YKL067W
YPR035W
YLR027C

YKL106W
YOR347C
YAL038W
YER005W
YFR047C
YOR209C
YLR328W
YMR261C
YML100W
YBR126C
YLR209C

YDR208W
YDR074W
YFR019W
YPL268W

0 0.2 0.4 0.6 0.8 1

Kernel weights

YDR324C
YDL051W
YBR247C
YBL026W
YOR341W
YOR310C
YNL182C
YLR421C
YKL099C

YHR066W
YER127W
YER094C

YDL029W
YPR187W
YPR110C
YOR362C
YOR145C
YOR116C
YJL069C

YGR240C
YDR127W
YPR190C
YOR207C

YOR117W
YJL138C

YGL245W
YFR001W
YDL147W
YCL059C
YBR154C
YPR108W
YOR259C
YKL009W

YJR109C
YFR052W
YDL007W
YCL054W
YDL097C
YOR261C
YFR004W
YFL002C

YER021W
YDR427W
YCR057C

YOR039W
YKR060W
YHR200W
YDR449C
YPR010C

YMR012W
YLR222C
YDR101C
YPL211W
YLR449W
YLL008W

YIL035C
YER126C
YDR087C
YLR409C

YLR175W
YLR002C
YKL104C

YDL031W
YOR061W
YLR129W
YKL172W
YGL111W
YNL189W
YNL002C

YGL019W
YOL041C
YNL110C

YHR197W
YGR162W
YKL145W
YKL014C
YPL126W
YGR145W
YDR394W
YKR081C
YLR197W
YPR016C
YPL043W
YOR206W
YNL061W
YBL004W
YPL093W
YOR272W
YGR090W
YOL077C
YMR049C
YDL014W
YPL012W
YMR290C
YGR103W

YJL109C
YHR052W
YER006W
YNL132W
YDR496C

0 0.2 0.4 0.6 0.8 1

Kernel weights

blast
expr
fft
pfam_hmm
sw

(a) Metabolic network (b) Protein Interactions

Figure 4: The weights of multiple assays for each target gene that are determined by transfer
learning with TPPK.

Tsuyoshi Kato 5

YER170W
YDR441C

YDR226W
YBR184W
YBR019C
YML035C
YKL029C
YER052C
YDR300C
YDL168W
YBR160W
YOL058W
YNR016C
YNL267W
YLR305C
YJL126W

YBL016W
YBL015W
YOL033W
YNL104C

YGR155W
YGL245W
YPR113W
YPR074C
YPL028W

YMR217W
YMR105C
YLR299W
YLR153C

YLR134W
YLR044C

YKL127W
YGR087C

YGR040W
YGL253W
YFR053C

YDR380W
YDL080C
YBR117C
YAL054C
YMR120C
YLR160C
YLR158C
YLR157C
YLR155C
YLR028C

YDR321W
YAL012W
YPR145W
YNL071W
YMR062C

YJL101C
YGR124W
YNL117W

YIR031C
YHR037W
YFR055W
YDL171C
YPR051W
YPL061W
YPL017C

YOR374W
YNL220W
YJL218W
YFL018C

YER073W
YEL066W
YEL056W
YOR375C
YDR019C
YDL215C

YAL062W
YLR089C
YLR058C
YJL130C

YGL062W
YDR111C
YBR263W
YBR218C
YER178W
YBR221C

YMR250W
YKL067W
YPR035W
YLR027C

YKL106W
YOR347C
YAL038W
YER005W
YFR047C
YOR209C
YLR328W
YMR261C
YML100W
YBR126C
YLR209C

YDR208W
YDR074W
YFR019W
YPL268W

0 0.2 0.4 0.6 0.8 1

Kernel weights

YDR324C
YDL051W
YBR247C
YBL026W
YOR341W
YOR310C
YNL182C
YLR421C
YKL099C

YHR066W
YER127W
YER094C

YDL029W
YPR187W
YPR110C
YOR362C
YOR145C
YOR116C
YJL069C

YGR240C
YDR127W
YPR190C
YOR207C

YOR117W
YJL138C

YGL245W
YFR001W
YDL147W
YCL059C
YBR154C
YPR108W
YOR259C
YKL009W

YJR109C
YFR052W
YDL007W
YCL054W
YDL097C
YOR261C
YFR004W
YFL002C

YER021W
YDR427W
YCR057C

YOR039W
YKR060W
YHR200W
YDR449C
YPR010C

YMR012W
YLR222C
YDR101C
YPL211W
YLR449W
YLL008W

YIL035C
YER126C
YDR087C
YLR409C

YLR175W
YLR002C
YKL104C

YDL031W
YOR061W
YLR129W
YKL172W
YGL111W
YNL189W
YNL002C

YGL019W
YOL041C
YNL110C

YHR197W
YGR162W
YKL145W
YKL014C
YPL126W
YGR145W
YDR394W
YKR081C
YLR197W
YPR016C
YPL043W
YOR206W
YNL061W
YBL004W
YPL093W
YOR272W
YGR090W
YOL077C
YMR049C
YDL014W
YPL012W
YMR290C
YGR103W

YJL109C
YHR052W
YER006W
YNL132W
YDR496C

0 0.2 0.4 0.6 0.8 1

Kernel weights

blast
expr
fft
pfam_hmm
sw

(a) Metabolic network (b) Protein Interactions

Figure 5: The weights of multiple assays for each target gene that are determined by transfer
learning with MLPK.

Tsuyoshi Kato 6

Table 4: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using TPPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 30 5 0 15
0.7 1 74 27 1 30
0.6 3 84 44 1 43
0.5 4 94 54 3 57

Table 5: The number of local models that have high weight of each assay data for the metabolic
network in the case of using TPPK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 0 8 0 148
0.7 0 0 10 0 209
0.6 0 0 12 0 231
0.5 1 0 18 0 256

Table 6: The number of local models that have high weight of each assay data for the protein
interaction network in the case of using BBVK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 40 5 0 15
0.7 1 83 28 1 28
0.6 1 92 40 1 48
0.5 3 101 54 4 59

Table 7: The number of local models that have high weight of each assay data for the metabolic
network in the case of using BBVK.

Cutoff fft expr blast sw pfam hmm
1 0 0 0 0 0

0.9 0 0 0 0 0
0.8 0 0 8 0 149
0.7 0 0 10 0 222
0.6 0 0 11 0 243
0.5 2 0 17 0 257

	NetInf-with-figure.pdf
	supplyment.pdf

