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Abstract

Methods for directly estimating the ratio of two probability

density functions without going through density estimation

have been actively explored recently since they can be used

for various data processing tasks such as non-stationarity

adaptation, outlier detection, conditional density estima-

tion, feature selection, and independent component analy-

sis. However, even the state-of-the-art density ratio estima-

tion methods still perform rather poorly in high-dimensional

problems. In this paper, we propose a new density ratio esti-

mation method which incorporates dimensionality reduction

into a density ratio estimation procedure. Our key idea is to

identify a low-dimensional subspace in which the two densi-

ties corresponding to the denominator and the numerator in

the density ratio are significantly different. Then the density

ratio is estimated only within this low-dimensional subspace.

Through numerical examples, we illustrate the effectiveness

of the proposed method.

1 Introduction

Recently, it has been shown [28] that various data
mining and machine learning tasks can be formulated in
terms of the ratio of two probability density functions
pde(x) and pnu(x):

r(x) =
pnu(x)

pde(x)
,

where the subscripts ‘nu’ and ‘de’ denote ‘numerator’
and ‘denominator’, respectively. Possible usage of the
density ratio includes the following tasks.

• Importance sampling in supervised learning:
Samples in one domain (drawn from pde(x)) is uti-
lized for learning in other domains (characterized
by pnu(x)). Such data transfer is carried out by
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weighting the loss function according to the den-
sity ratio:

E
pnu(x)

[loss(x)] =

∫
loss(x)pnu(x)dx

=

∫
loss(x)r(x)pde(x)dx

= E
pde(x)

[loss(x)r(x)].

Thus, the inter-domain bias can be canceled by
density-ratio weighted learning.

Applications of importance sampling include non-
stationarity adaptation [23, 43, 31, 30, 27, 29],
transfer learning [26, 41], and multi-task learning
[2].

• Outlier detection: Let us consider an outlier de-
tection problem of finding outliers in an evaluation
dataset based on another “model” dataset that only
contains inliers [11, 10, 40, 24]. Defining the density
ratio over the two sets of samples, one can see that
the density-ratio values for inliers are close to one,
while those for outliers tend to be significantly de-
viated from one. Thus the density-ratio value could
be used as an index of the degree of outlyingness.

The same technique can also be applied to change-
point detection in time-series [17].

• Conditional probability estimation: Suppose
we are given n i.i.d. paired samples {(xk,yk)}nk=1

drawn from a joint distribution with density
q(x,y). The goal is to estimate the condi-
tional probability q(y|x). When the domain of
x is continuous, conditional density estimation is
not straightforward since a naive empirical ap-
proximation cannot be used [4]. Let us regard
{(xk,yk)}nk=1 as samples corresponding to the nu-
merator of the density ratio and {xk}nk=1 as sam-
ples corresponding to the denominator of the den-
sity ratio, i.e., we consider the density ratio defined
as

r(x,y) =
q(x,y)

q(x)
= q(y|x),



where q(x) is the marginal density of x. Then a
density-ratio estimation method directly gives an
estimator of the conditional density.

The problem is conditional density estimation when
y is continuous [34], while it is probabilistic classi-
fication when y is categorical.

• Estimation of divergence functionals/mutual
information: Suppose we are given n i.i.d. paired
samples {(xk,yk)}nk=1 drawn from a joint distri-
bution with density q(x,y). Let us denote the
marginal densities of x and y by q(x) and q(y),
respectively. Then mutual information I(X,Y ) be-
tween random variables X and Y is defined by

I(X,Y ) =

∫∫
q(x,y) log

q(x,y)

q(x)q(y)
dxdy,

which can be used for measuring independence be-
tween X and Y . Let us regard {(xk,yk)}nk=1 as
samples corresponding to the numerator of the den-
sity ratio and {(xk,yk′)}nk,k′=1 as samples corre-
sponding to the denominator of the density ra-
tio. Then mutual information can be directly es-
timated using a density-ratio estimation method
[20, 19, 32, 33, 38, 13, 39, 14].

Such an independence measure can be used for
various purposes such as variable selection (input-
output dependency) [38, 37], supervised dimen-
sionality reduction (input-output dependency) [36],
and independent component analysis (input-input
dependency) [35].

Because of the wide applicability of density ratios,
the problem of estimating the density ratios is attracting
a great deal of attention recently and various methods
have been explored [22, 6, 12, 3, 19, 32, 33, 13, 14]. A
naive approach is to estimate the two densities in the
ratio (corresponding to the denominator and the nu-
merator) separately using a flexible technique such as
non-parametric kernel density estimation [8] and then
take the ratio of the estimated densities. However, this
naive two-step approach is not reliable in practical sit-
uations since kernel density estimation performs poorly
in high-dimensional problems; furthermore, division by
an estimated density tends to magnify the estimation
error.

To improve the estimation accuracy, various meth-
ods have been developed for directly estimating the
density ratio without going through density estimation.
The moment matching method based on reproducing
kernels [1, 25] called kernel mean matching [12] uses
the kernel trick to efficiently match the mean of two
sets of samples in a reproducing kernel Hilbert space.

However, model selection methods are not available for
kernel mean matching. Thus, several tuning parame-
ters such as the kernel width and the regularization pa-
rameter need to be hand-tuned using some heuristics,
which is highly unreliable in practice. Furthermore, the
computation of kernel mean matching is rather expen-
sive since a quadratic programming problem has to be
solved.

An alternative method based on logistic regression
[22, 6, 3] formulates the density ratio estimation prob-
lem as the problem of separating samples from the two
sets by logistic regression. An advantage of the logistic
regression formulation is that standard cross-validation
(CV) is available for model selection since the problem
one needs to solve is a standard supervised classifica-
tion problem. Thus, all the tuning parameters can be
objectively determined by CV. However, it is still com-
putationally rather demanding due to non-linearity of
the optimization problem.

Maximum likelihood estimation of density ratio
functions is another line of methods that allows us to
avoid density estimation [20, 19, 32, 33]. An advantage
of the maximum likelihood approach is that it is also
equipped with CV and thus model selection is possible
[32, 33]. However, this approach is also computationally
rather expensive due to non-linearity of the optimization
problem.

Recently, a least-squares method of density ratio es-
timation was proposed [13, 14]. This is also equipped
with a build-in CV method, and hence all tuning pa-
rameters can be objectively determined. Furthermore,
its solution can be computed analytically just by solving
a system of linear equations. Thus it is highly advanta-
geous in terms of computation time. The least-squares
method was also shown to be numerically stable [15] un-
der condition number analysis. Thus the least-squares
method is a reliable density ratio estimator.

As described above, various methods have been de-
veloped for directly estimating the density ratios. The
success of these direct density-ratio estimation methods
could be intuitively understood through Vapnik’s prin-
ciple [42]:

“When solving a problem of interest, do not
solve a more general problem as an intermedi-
ate step”.

The support vector machine would be a successful
example of this principle—instead of estimating the
data generation model, it directly models the decision
boundary which is simpler and sufficient for pattern
recognition. In the current context, estimating the two
densities is more general than estimating the density
ratio since knowing the two densities implies knowing
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r(x) =
pnu(x)

pde(x)
pnu(x), pde(x)

Figure 1: Density ratio estimation is substantially easier
than density estimation. The density ratio r(x) can be
computed if two densities pnu(x) and pde(x) are known.
However, even if the density ratio is known, the two
densities cannot be computed in general.

the density ratio, but not vice versa. Thus directly
estimating the density ratio would be more promising
than density ratio estimation via density estimation
(Figure 1). Rigorous theoretical analysis along this line
was carried out in the paper [16].

Although the above density ratio estimators were
shown to compare favorably with naive kernel density
estimation through extensive experiments, density ratio
estimation in high-dimensional problems is still chal-
lenging. In this paper, we propose to incorporate di-
mensionality reduction in a density ratio estimation pro-
cedure. More specifically, our idea is to identify a sub-
space in which the two densities are significantly differ-
ent (called the hetero-distributional subspace); Then we
perform density ratio estimation only in this subspace.
We derive an analytic estimator of a divergence between
the two densities and this estimator is used for searching
the hetero-distributional subspace. Through numerical
examples, we illustrate the usefulness of the proposed
method.

2 Problem Formulation

In this section, we formulate the problem of density ratio
estimation with dimensionality reduction.

2.1 Density Ratio Estimation.

Let D (⊂ Rd) be the data domain and suppose we
are given independent and identically distributed (i.i.d.)
samples {xde

i }
nde
i=1 from a distribution with density

pde(x) and i.i.d. samples {xnu
j }

nnu
j=1 from another distri-

bution with density pnu(x). We assume that the density
pde(x) is strictly positive, i.e.,

pde(x) > 0 for all x ∈ D.

The problem we address in this paper is to estimate the
density ratio

r(x) =
pnu(x)

pde(x)

from samples {xde
i }

nde
i=1 and {xnu

j }
nnu
j=1.

Our basic idea is to first identify a lower-
dimensional hetero-distributional subspace in which the
two densities corresponding to the denominator and the
numerator are significantly different, and then perform
density ratio estimation only in this subspace.

2.2 Hetero-distributional Subspace.

Let u be an m-dimensional vector (1 ≤ m ≤ d) and v
is a (d−m)-dimensional vector defined as[

u
v

]
=

[
U
V

]
x.

U is an m × d matrix and V is a (d −m) × d matrix;
furthermore, without loss of generality, it is possible to
assume that the row vectors of U and V form an or-
thonormal basis, i.e., U and V correspond to “projec-
tion” matrices that are orthogonally complementary to
each other (see Figure 2). Using the decomposition of
x into u and v, we can express the two densities pde(x)
and pnu(x) as

pde(x) = pde(v|u)pde(u),
pnu(x) = pnu(v|u)pnu(u).

Our key theoretical assumption which forms the
basis of our proposed algorithm is that the conditional
densities pde(v|u) and pnu(v|u) agree with each other,
i.e., the two densities pde(x) and pnu(x) are decomposed
as

pde(x) = p(v|u)pde(u),
pnu(x) = p(v|u)pnu(u),

where p(v|u) is the common conditional density. This
assumption implies that the marginal densities of u are
different, but the conditional density of v given u is
common. Then the density ratio is simplified as

r(x) = r(u) =
pnu(u)

pde(u)
.

Thus, the density ratio does not have to be estimated
in the entire d-dimensional space, but only in the m-
dimensional subspace.

Let us consider the set of all subspaces such that
the conditional density p(v|u) is common to pde(x) and
pnu(x). We refer to the intersection of such subspaces
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Figure 2: Hetero-distributional subspace.

as the hetero-distributional subspace. Thus the hetero-
distributional subspace is the ‘smallest’ subspace out-
side which the conditional density p(v|u) is common to
pde(x) and pnu(x).

For the moment, we assume that the true di-
mensionality m of the hetero-distributional subspace is
known. Later, we explain how m can be estimated from
data in practice.

3 Direct Density Ratio Estimation with
Dimensionality Reduction

In this section, we propose a new density ratio estimator
which involves dimensionality reduction.

3.1 Characterizing the Hetero-distributional
Subspace by the Pearson Divergence.

We use the Pearson divergence (PD) as our criterion for
evaluating the discrepancy between two distributions1.
PD from pnu(u) to pde(u) is defined and expressed as

PD[pnu(u), pde(u)] =

∫ (
pnu(u)

pde(u)
− 1

)2

pde(u)du

=

∫
pnu(u)

pde(u)
pnu(u)du− 1.

PD[pnu(u), pde(u)] vanishes if and only if pnu(u) =
pde(u) for all u.

The following lemma characterizes the hetero-
distributional subspace in terms of PD.

1It is also possible to characterize the hetero-distributional
subspace by the Kullback-Leibler divergence [18]. However, as

shown later, PD allows us to obtain an analytic-form estimator
of the divergence which is useful in hetero-distributional subspace
search.

Lemma 1.

PD[pnu(x), pde(x)]− PD[pnu(u), pde(u)]

=

∫ (
pnu(x)

pde(x)
− pnu(u)

pde(u)

)2

pde(x)dx(3.1)

≥ 0.

[Proof:]

0 ≤
∫ (

pnu(x)

pde(x)
− pnu(u)

pde(u)

)2

pde(x)dx

=

∫ (
pnu(x)

pde(x)
− 1− pnu(u)

pde(u)
+ 1

)2

pde(x)dx

=

∫ (
pnu(x)

pde(x)
− 1

)2

pde(x)dx

+

∫ (
pnu(u)

pde(u)
− 1

)2

pde(x)dx

− 2

∫ (
pnu(x)

pde(x)
− 1

)(
pnu(u)

pde(u)
− 1

)
pde(x)dx

= PD[pnu(x), pde(x)] + PD[pnu(u), pde(u)]

− 2

∫
pnu(u)

pde(u)
pnu(x)dx+ 2

∫
pnu(x)dx

+ 2

∫
pnu(u)du− 2

∫
pde(x)dx

= PD[pnu(x), pde(x)] + PD[pnu(u), pde(u)]

− 2

∫
pnu(u)

pde(u)
pnu(u)du+ 2

= PD[pnu(x), pde(x)]− PD[pnu(u), pde(u)].

Eq.(3.1) is non-negative and it vanishes if and
only if pnu(v|u) = pde(v|u) for all u,v. Since
PD[pnu(x), pde(x)] is a constant and does not depend
on U , maximizing PD[pnu(u), pde(u)] with respect to U
leads to pnu(v|u) = pde(v|u) for all u,v (see Figure 3).
That is, the hetero-distributional subspace can be char-
acterized as the maximizer of PD[pnu(u), pde(u)].
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Figure 3: Since PD[pnu(x), pde(x)] is a constant, minimizing
∫ (pnu(x)

pde(x)
− pnu(u)

pde(u)

)2
pde(x)dx is equivalent to

maximizing PD[pnu(u), pde(u)].

3.2 Estimation of PD.

It is not possible to directly find the maximizer of
PD[pnu(u), pde(u)] since pde(u) and pnu(u) are un-
known. According to the Legendre-Fenchel duality [5],
we have

PD[pnu(u), pde(u)] = max
g

J(g),(3.2)

where

J(g) := −
∫
g(u)2pde(u)du+ 2

∫
g(u)pnu(u)du− 1.

(3.3)

Let us employ a parametric model

g(u) =
b∑
ℓ=1

αℓψℓ(u),

where {ψℓ(x)}bℓ=1 are basis functions such that ψℓ(x) ≥
0 for all x (∈ D) and for ℓ = 1, . . . , b. In our
experiments, we use the Gaussian kernel model:

g(u) =

nnu∑
ℓ=1

αℓKσ(u,u
nu
ℓ ),(3.4)

where

Kσ(u,u
′) = exp

(
−∥u− u′∥2

2σ2

)
.

Let us maximize an empirical and regularized variant of
J(g) (see Eq.(3.3)) over the parametric model.

max
{αℓ}b

ℓ=1

−
b∑

ℓ,ℓ′=1

αℓαℓ′Ĥℓ,ℓ′ + 2

b∑
ℓ=1

αℓĥℓ − λ
b∑
ℓ=1

α2
ℓ ,

where λ (≥ 0) is a regularization parameter and

Ĥℓ,ℓ′ =
1

nde

nde∑
i=1

ψℓ(u
de
i )ψℓ′(u

de
i ),

ĥℓ =
1

nnu

nnu∑
j=1

ψℓ(u
nu
j ).

By setting the derivative of the above objective function
to zero and solving it, we can obtain the maximizer
analytically as

α̂ = (α̂1, . . . , α̂b)
⊤ = (Ĥ + λIb)

−1ĥ,

where ⊤ denotes the transpose of a matrix or a vector
and Ib is the b-dimensional identity matrix.

Then an analytic estimator of the Pearson diver-
gence P̂D[pnu(u), pde(u)] is given as

P̂D[pnu(u), pde(u)] =

b∑
ℓ=1

α̂ℓĥℓ − 1.

We note that the tuning parameters in the above
procedure (i.e., the Gaussian width σ and the regu-
larization parameter λ) can be determined by cross-
validation (CV) over the score function J(g) (see
Eq.(3.3)). Using the Sherman-Woodbury-Morrison for-
mula [7], we can actually compute the leave-one-out CV
score analytically, which is computationally very effi-
cient. However, we omit the details.

3.3 Hetero-distributional Subspace Search.

Given the Pearson divergence estimator
P̂D[pnu(u), pde(u)], our next task is to find a maximizer

of P̂D[pnu(u), pde(u)] with respect to U and identify
the hetero-distributional subspace (cf. Lemma 1).

A gradient descent approach would be a standard
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Figure 4: In the hetero-distributional subspace search,
rotation which changes the subspace only matters (the
solid arrow); rotation within the subspace (dotted ar-
row) can be ignored since this does not change the sub-
space. Similarly, rotation within the orthogonal com-
plement of the hetero-distributional subspace can also
be ignored (not depicted in the figure).

choice for optimization.

U ←− U + t
∂P̂D

∂U
,

where t is the step size and

∂P̂D

∂U
= −

b∑
ℓ,ℓ′=1

α̂ℓα̂ℓ′
∂Ĥℓ,ℓ′

∂U
+ 2

b∑
ℓ=1

α̂ℓ
∂ĥℓ
∂U

,

∂Ĥℓ,ℓ′

∂U
=

1

nde

nde∑
i=1

(
∂ψℓ(u

de
i )

∂U
ψℓ′(u

de
i )

+ ψℓ(u
de
i )

∂ψℓ′(u
de
i )

∂U

)
,

∂ĥℓ
∂U

=
1

nnu

nnu∑
j=1

∂ψℓ(u
nu
j )

∂U
.

For the Gaussian kernel model (3.4) which we use in the

experiments, ∂ψℓ(u)
∂U is given by

∂ψℓ(u)

∂U
= − 1

σ2
(u− cℓ)(x− xnu

τ(ℓ))
⊤ψℓ(u).

By the gradient ascent iteration over the m ×
d matrix U , we may find a local maximizer of
P̂D[pnu(u), pde(u)]. On the other hand, the number of
parameters to be optimized in the gradient algorithm
can be actually reduced in the current setup since we
are searching for a subspace—rotation within the sub-
space can be ignored (Figure 4). This idea is explained
below in detail.

The matrix U can be expressed as

U =
[
Im Om×(d−m)

] [U
V

]
,

where Od×d′ is the d × d′ matrix with all zeros. For a
skew-symmetric matrix M (∈ Rd×d), i.e., M⊤ = −M ,
rotation of U can be expressed as

(3.5)
[
Im Om×(d−m)

]
eM

[
U
V

]
,

where eM is the matrix exponential of M ; M = Od×d
corresponds to no rotation. Our idea is not to update
U directly, but through M . The derivative of P̂D with
respect to M at M = Od×d is given by

dP̂D

dM

∣∣∣∣∣
M=Od×d

=

∂P̂D
∂U

∂P̂D
∂V

 [U⊤ V ⊤]
−
[
U
V

] [(
∂P̂D
∂U

)⊤ (
∂P̂D
∂V

)⊤]

=

 Om×m
dP̂D
dU V

−(dP̂D
dU V )⊤ O(d−m)×(d−m)

 ,
where we used the fact that dP̂D

dV = O(d−m)×d. Then
the gradient ascent update rule of M is given by

M ←− tdP̂D
dM

∣∣∣∣∣
M=Od×d

,

where t is a step size. Then U (and also V ) are
updated by Eq.(3.5). See the paper [21] for the details
of geometric structures.

3.4 Estimating the Density Ratio in Hetero-
distributional Subspace.

Finally, we estimate the density ratio in the hetero-
distributional subspace. A notable fact of our algo-
rithm is that the density ratio estimator in the hetero-
distributional subspace has already been obtained dur-
ing the hetero-distributional subspace search; thus we
do not need additional computation. More specifically,
the solution of the variational problem maxg J(g) (see

Eq.(3.2)) is given by pnu(u)
pde(u) [19]. Thus, our final solution

is simply given by

r̂(x) =

b∑
ℓ=1

α̂ℓψℓ(Ûx),

where Û is a projection matrix obtained by the hetero-
distributional subspace search algorithm.

The above result implies that if the dimensionality
is not reduced (i.e., m = d), the proposed method
agrees with the density ratio estimator proposed in the
papers [13, 14]. Thus, the proposed method could be



Input: Two sets of samples {xnu
i }

nnu
i=1 and {xde

j }
nde
j=1 on Rd

Output: Density ratio estimator r̂(x)

For each reduced dimensionality m = 1, . . . , d
Initialize embedding matrix Um (∈ Rm×d);
Repeat until Um converges

Choose Gaussian width σ and regularization parameter λ by CV;
Update U by the gradient method (see Section 3.3);

end

Obtain embedding matrix Ûm and corresponding density ratio estimator r̂m(x);
Compute its CV value as a function of m;

end
Choose the best reduced dimension m̂ based on the CV score;
Set r̂(x) = r̂m̂(x);

Figure 5: Pseudo code of the proposed density-ratio estimation algorithm.

regarded as a natural extension of the existing density
ratio estimator.

The dimensionality of the hetero-distributional sub-
space may be chosen by the CV score used for optimiz-
ing the Gaussian width σ and the regularization param-
eter λ. The entire procedure is summarized in Figure 5.

4 Numerical Examples

In this section, we illustrate the behavior of the pro-
posed method through numerical examples.

4.1 Illustrative Examples.

Let us consider two-dimensional examples (i.e., d = 2)
and suppose that the two distributions pnu(x) and
pde(x) are different only in the one-dimensional sub-
space (i.e., m = 1) spanned by (1, 0)⊤:

x = (x(1), x(2))⊤ = (u, v)⊤,

pnu(x) = p(v|u)pnu(u),
pde(x) = p(v|u)pde(u).

Let nnu = nde = 1000. We use the following two
datasets.

Dataset (a) (Figure 6(a) and Figure 6(b)):

p(v|u) = p(v) = N(v; 0, 12),

pnu(u) = 0.5N(u;−2, 1.52) + 0.5N(u; 2, 1.52),

pde(u) = N(u; 0, 12),

where N(u;µ, σ2) denotes the Gaussian density
with mean µ and variance σ2 with respect to u.

Dataset (b) (Figure 7(a) and Figure 7(b)):

p(v|u) = N(v;u, 12),

pnu(u) = N(u; 0, 12),

pde(u) = 0.5N(u;−2, 1.52) + 0.5N(u; 2, 1.52).

The true and estimated hetero-distributional sub-
spaces are depicted by the dashed and solid lines in
Figure 6(c) and Figure 7(c). These plots show that
the proposed method gives good estimates of the true
hetero-distributional subspace. In Figure 6(e) and Fig-
ure 7(e), density-ratio functions estimated without di-
mensionality reduction by the baseline method proposed
in the papers [13, 14] are depicted. In Figure 6(f) and
Figure 7(f), density-ratio functions estimated with di-
mensionality reduction by the proposed method are de-
picted. Compared with the true density ratio functions
depicted in Figure 6(d) and Figure 7(d), we can ob-
serve that the proposed method captures the redundant
structure of the true density ratio functions appropri-
ately. Consequently, the propose method gives much
better estimates of the density ratio functions than the
baseline method. This illustrates the usefulness of di-
mensionality reduction in density ratio estimation.

4.2 Performance Evaluation using Artificial
Datasets.

Next, we systematically investigate the behavior of the
proposed method for high-dimensional data.

For the two datasets used in the previous exper-
iments, we increase the entire dimensionality as d =
2, 3, . . . , 10 by adding dimensions consisting of stan-
dard normal noise. The dimensionality of the hetero-
distributional subspace is estimated based on CV (see
Section 3.4).
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Figure 6: Numerical results for dataset (a).
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Figure 7: Numerical results for dataset (b).
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Figure 8: Density ratio estimation error (4.6) averaged over 10 runs as a function of the entire data dimensionality
d for the artificial datasets. The best method in terms of the mean error and comparable methods according to
the t-test at the significance level 1% are specified by ‘◦’; otherwise methods are specified by ‘×’.

We evaluate the error of a density ratio estimator
r̂(x) by

Error :=
1

2

∫
(r̂(x)− r(x))2 pde(x)dx.(4.6)

Figure 8 shows the density ratio estimation error aver-
aged over 10 runs as functions of the entire input dimen-
sionality d. The best method in terms of the mean error
and comparable methods according to the t-test [9] at
the significance level 1% are specified by ‘◦’; otherwise
methods are specified by ‘×’. This shows that, while the
error of the baseline method without dimensionality re-
duction increases rapidly as the entire dimensionality d
increases, that of the proposed method is kept moder-
ate. Consequently, the proposed method consistently
outperforms the baseline method.

5 Conclusions

The density ratio is becoming a quantity of interest
in the machine learning and data mining communities
since it can be used for solving various data processing
tasks. In this paper, we tackled a challenging problem of
estimating density ratios in high-dimensional spaces and
gave a new procedure. Our key idea was to estimate the
ratio only in a subspace in which two distributions (cor-
responding to the denominator and numerator of the
density ratio) are significantly different. The proposed
method was shown to be promising in experiments.

Our future work includes the application of the
proposed method to various data processing tasks

such as non-stationarity adaptation, outlier detection,
feature selection, and independent component analy-
sis. Improving the computational efficiency of hetero-
distributional subspace search is another important is-
sue to be further investigated.
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