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Abstract

Density ratio estimation has attracted a great deal of attention in the statistics and machine
learning communities since it can be used for solving various statistical data processing
tasks such as non-stationarity adaptation, two-sample test, outlier detection, independence
test, feature selection/extraction, independent component analysis, causal inference, and
conditional probability estimation. When estimating the density ratio, it is preferable to
avoid estimating densities since density estimation is known to be a hard problem. In this
paper, we give a comprehensive review of density ratio estimation methods based on moment
matching, probabilistic classification, and ratio matching.

1 Introduction

Recently, a new general framework of statistical data processing based on the ratio of probabil-
ity densities has been developed (Sugiyama et al., 2009; Sugiyama et al., 2011). This density
ratio framework includes various statistical data processing tasks such as non-stationarity adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007;
Quiñonero-Candela et al., 2009; Sugiyama et al., 2010d), outlier detection (Hido et al., 2008;
Smola et al., 2009; Hido et al., 2010), change detection in time series (Kawahara & Sugiyama,
2009), conditional density estimation (Sugiyama et al., 2010c), and probabilistic classification
(Sugiyama, 2010).

Furthermore, mutual information—which plays a central role in information theory (Cover
& Thomas, 2006)—can be estimated via density ratio estimation (Suzuki et al., 2008; Suzuki
et al., 2009b). Since mutual information is a measure of statistical independence between random
variables, density ratio estimation can be used also for variable selection (Suzuki et al., 2009a),
dimensionality reduction (Suzuki & Sugiyama, 2010), independent component analysis (Suzuki
& Sugiyama, 2009), and causal inference (Yamada & Sugiyama, 2010). Thus, density ratio
estimation is a promising versatile tool for statistical data processing.

A naive approach to estimating the density ratio is to separately estimate the densities corre-
sponding to the numerator and denominator of the ratio, and then take the ratio of the estimated
densities. However, this naive approach is not reliable in high-dimensional problems since divi-
sion by an estimated quantity can magnify the estimation error. To overcome this drawback,
various approaches to directly estimating the density ratio without going through density esti-
mation have been explored recently, including the moment matching approach (Gretton et al.,
2009), the probabilistic classification approach (Qin, 1998; Cheng & Chu, 2004; Bickel et al.,
2007), and the ratio matching approach (Sugiyama et al., 2008; Kanamori et al., 2009a; Tsuboi
et al., 2009; Yamada & Sugiyama, 2009; Yamada et al., 2010). The purpose of this paper is to
provide a comprehensive review of such direct density-ratio estimation methods.

The problem of density ratio estimation addressed in this paper is formulated as follows. Let
X (⊂ Rd) be the data domain, and suppose we are given independent and identically distributed
(i.i.d.) samples {xnu

i }
nnu
i=1 from a distribution with density p∗nu(x) and i.i.d. samples {xde

j }
nde
j=1

from another distribution with density p∗de(x).

{xnu
i }nnu

i=1
i.i.d.∼ p∗nu(x) and {xde

j }
nde
j=1

i.i.d.∼ p∗de(x).
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p∗de(x) p∗nu(x)x xr(x)
Figure 1: Matching the moments of r(x)p∗de(x) with those of p∗nu(x).

We assume that p∗de(x) is strictly positive over the domain X . The goal is to estimate the density
ratio

r∗(x) :=
p∗nu(x)

p∗de(x)

from samples {xnu
i }

nnu
i=1 and {xde

j }
nde
j=1. ‘nu’ and ‘de’ indicate ‘numerator’ and ‘denominator’,

respectively.

2 Moment Matching Approach

In this section, we describe the moment matching approach to density ratio estimation.

2.1 Preliminaries

Suppose that a one-dimensional random variable x is drawn from a probability distribution with
density p∗(x). Then the k-th order moment of x about the origin is defined by

∫
xkp∗(x)dx.

Note that two distributions are equivalent if and only if all moments (i.e., for k = 1, 2, . . .) agree
with each other.

The moment matching approach to density ratio estimation tries to match the moments of
p∗nu(x) and p∗de(x) via a ‘transformation’ function r(x). More specifically, using the true density
ratio r∗(x), p∗nu(x) can be expressed as

p∗nu(x) = r∗(x)p∗de(x).

Thus, for a density ratio model r(x), matching the moments of p∗nu(x) and r(x)p∗de(x) leads
to the true density ratio r∗(x). A schematic illustration of the moment matching approach is
described in Figure 1.

2.2 Finite-Order Approach

The simplest implementation of moment matching would be to match the first-order moment
(i.e., the mean):

argmin
r

∥∥∥∥∫ xr(x)p∗de(x)dx−
∫
xp∗nu(x)dx

∥∥∥∥2 ,
where ∥ · ∥ denotes the Euclidean norm. Its non-linear variant can be obtained using some
non-linear function ϕ(x) : Rd → R as

argmin
r

(∫
ϕ(x)r(x)p∗de(x)dx−

∫
ϕ(x)p∗nu(x)dx

)2

.

2



This non-linear method can be easily extended to multiple components by using a vector-valued
function ϕ(x) : Rd → Rm as

argmin
r

MM′(r), where MM′(r) :=

∥∥∥∥∫ ϕ(x)r(x)p∗de(x)dx−
∫
ϕ(x)p∗nu(x)dx

∥∥∥∥2 ,
where ‘MM’ stands for ‘moment matching’. Let us ignore the irrelevant constant in MM′(r),
and define the rest as MM(r):

MM(r) :=

∥∥∥∥∫ ϕ(x)r(x)p∗de(x)dx

∥∥∥∥2 − 2

⟨∫
ϕ(x)r(x)p∗de(x)dx,

∫
ϕ(x)p∗nu(x)dx

⟩
,

where ⟨·, ·⟩ denotes the inner product.
In practice, the expectations over p∗nu(x) and p∗de(x) in MM(r) are replaced by sample av-

erages. That is, for an nde-dimensional vector r∗de := (r∗(xde
1 ), . . . , r∗(xde

nde
))⊤ where ⊤ denotes

the transpose, an estimator r̂de of r∗de can be obtained by solving the following optimization
problem.

r̂de := argmin
r∈Rnde

M̂M(r), where M̂M(r) :=
1

n2
de

r⊤Φ⊤
deΦder −

2

ndennu
r⊤Φ⊤

deΦnu1nnu . (1)

1n denotes the n-dimensional vector with all ones. Φnu and Φde are the t × nnu and t × nde

design matrices defined by Φnu := (ϕ(xnu
1 ), . . . ,ϕ(xde

nnu
)) and Φde := (ϕ(xde

1 ), . . . ,ϕ(xde
nde

)),
respectively. Taking the derivative of the objective function (1) with respect to r and setting it
to zero, we have

2

n2
de

Φ⊤
deΦder −

2

ndennu
Φ⊤

deΦnu1nnu = 0t,

where 0t denotes the t-dimensional vector with all zeros. Solving this equation with respect to
r, we can obtain the solution analytically as

r̂de =
nde

nnu
(Φ⊤

deΦde)
−1Φ⊤

deΦnu1nnu .

One may add a normalization constraint 1
nde

1⊤nde
r = 1 to the optimization problem (1).

Then the optimization problem becomes a linearly constrained quadratic program. Thus, a
numerical solver may be needed to compute the solution. Furthermore, a non-negativity con-
straint r ≥ 0nde

and/or an upper bound for a positive constant B (i.e., r ≤ B1nde
) may also

be incorporated in the optimization problem (1), where inequalities for vectors are applied in
the element-wise manner. Even with these modifications, the optimization problem is still a lin-
early constrained quadratic program, so its solution can be numerically computed by standard
optimization software.

The above moment-matching method gives an estimate of the density ratio values at the
denominator sample points {xde

j }
nde
j=1. If one wants to estimate the entire ratio function r∗(x),

the following linear density-ratio model may be used instead (Kanamori et al., 2009b):

r(x) = ψ(x)⊤θ, (2)

where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. We assume
that the basis functions are non-negative: ψ(x) ≥ 0b. Then model outputs at {xde

j }
nde
j=1 are

expressed in terms of the parameter vector θ as

(r(xde
1 ), . . . , r(xde

nde
))⊤ = Ψ⊤

deθ,
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where Ψde is the b×nde design matrix defined by Ψde := (ψ(xde
1 ), . . . ,ψ(xde

nde
)). Then, following

Eq.(1), the parameter θ is learned as follows.

θ̂ := argmin
θ∈Rb

[
1

n2
de

θ⊤ΨdeΦ
⊤
deΦdeΨ

⊤
deθ −

2

ndennu
θ⊤ΨdeΦ

⊤
deΦnu1nnu

]
. (3)

Taking the derivative of the above objective function with respect to θ and setting it to zero,
we have the solution θ̂ analytically as

θ̂ =
nde

nnu
(ΨdeΦ

⊤
deΦdeΨ

⊤
de)

−1ΨdeΦ
⊤
deΦnu1nnu .

One may include a normalization constraint, a non-negativity constraint (given that the basis
function is non-negative), and a regularization constraint to the optimization problem (3):

1

nde
1⊤nde

Ψ⊤
deθ = 1, θ ≥ 0b, and θ ≤ B1b.

Then the optimization problem becomes a linearly constrained quadratic program, whose solu-
tion can be obtained by a standard numerical solver.

The upper-bound parameter B, which works as a regularizer, may be optimized by cross-
validation (CV). That is, the numerator and denominator samples Dnu = {xnu

i }
nnu
i=1 and Dde =

{xde
j }

nde
j=1 are first divided into T disjoint subsets {Dnu

t }Tt=1 and {Dde
t }Tt=1, respectively. Then a

density ratio estimator r̂t(x) is obtained from Dnu\Dnu
t and Dde\Dde

t (i.e., all samples without
Dnu

t and Dde
t ), and its moment matching error is computed for the hold-out samples Dnu

t and
Dde

t :

M̃Mt(r̂) :=

 1

|Dde
t |

∑
xde∈Dde

t

ϕ(xde)r̂t(x
de)

2− 2

|Dde
t ||Dnu

t |

 ∑
xde∈Dde

t

ϕ(xde)r̂t(x
de)

⊤ ∑
xnu∈Dnu

t

ϕ(xnu)

,

where |D| denotes the number of elements in the set D. This procedure is repeated for t =
1, . . . , T , and the average of the above hold-out moment matching error over all t is computed.

M̃M :=
1

T

T∑
t=1

M̃Mt.

Then the upper-bound parameter B that minimizes M̃M is chosen. Availability of CV would be
one of the advantages of the inductive method (i.e., learning the entire density-ratio function).

2.3 Infinite-Order Approach

Matching a finite number of moments does not necessarily result in the true density ratio function
r∗(x), even if infinitely many samples are available. In order to guarantee that the true density
ratio function can always be obtained in the large-sample limit, all moments up to the infinite
order need to be matched.

Kernel mean matching (KMM) allows one to efficiently match all the moments (Gretton
et al., 2009). The basic idea of KMM is common to the above finite-order approach, but a
universal reproducing kernel K(x,x′) (Steinwart, 2001) is used as a non-linear transformation.
The Gaussian kernel

K(x,x′) = exp

(
−∥x− x

′∥2

2σ2

)
(4)
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is an example of universal reproducing kernels. It has been shown that the solution of the
following optimization problem agrees with the true density ratio (Gretton et al., 2009):

min
r∈H

∥∥∥∥∫ K(x, ·)p∗nu(x)dx−
∫

K(x, ·)r(x)p∗de(x)dx
∥∥∥∥2
H
,

where H denotes a universal reproducing kernel Hilbert space and ∥ · ∥H denotes its norm.
An empirical version of the above problem is reduced to

min
r∈Rnde

[
1

n2
de

r⊤Kde,der −
2

ndennu
r⊤Kde,nu1nnu

]
,

where Kde,nu and Kde,de denote the Gram matrices defined by [Kde,nu]i,j = K(xde
i ,xnu

j ) and

[Kde,de]i,i′ = K(xde
i ,xde

i′ ), respectively. In the same way as the finite-order case, the solution
can be obtained analytically as

r̂de =
nde

nnu
K−1

de,deKde,nu1nnu . (5)

If necessary, one may include a non-negativity constraint, a normalization constraint, and an
upper bound in the same way as the finite-order case. Then the solution can be numerically
obtained by solving a linearly constrained quadratic programming problem.

For the linear density-ratio model (2), an inductive variant of KMM is formulated as

min
θ∈Rb

[
1

n2
de

θ⊤ΨdeKde,deΨ
⊤
deθ −

2

ndennu
θ⊤ΨdeKde,nu1nnu

]
.

As shown above, KMM utilizes universal reproducing kernels such as the Gaussian kernel
(4) to efficiently match all the moments. Theoretically, KMM is consistent for any universal
reproducing kernels. However, its practical performance heavily depends on the choice of kernels
such as the Gaussian width σ, and such kernel parameters cannot be simply optimized by cross-
validation even in the induction cases. This is because one is not finding a Gaussian width
value that matches the moments well. Thus, optimizing σ over the moment matching criterion
may not be appropriate as a model selection strategy. A popular heuristic is to use the median
distance between samples as the Gaussian width σ (Schölkopf & Smola, 2002). However, there
seems no strong justification for this heuristic.

2.4 Remarks

Density ratio estimation by moment matching can successfully avoid density estimation.
The finite-order moment matching method (Section 2.2) is simple and computationally ef-

ficient, if the number of matching moments is kept reasonably small. However, the finite-order
approach is not necessarily consistent. On the other hand, the infinite-order moment matching
method (Section 2.3), kernel mean matching (KMM), can efficiently match all the moments by
making use of universal reproducing kernels. Indeed, KMM has an excellent theoretical property
that it is consistent. However, KMM has a limitation in model selection—there is no known
method for determining the kernel parameter (such as the Gaussian kernel width). A popular
heuristic of setting the Gaussian width to the median distance between samples would be useful
in some cases, but this is perhaps not always reasonable.

In this section, moment matching was performed in terms of the squared norm, which led to
an analytic-form solution (if no constraint is imposed). As shown in Kanamori et al. (2009b),
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moment matching can be generalized to various divergences. Such a generalized KMM method
actually has a close connection with the ratio matching approach explained in Section 4. How-
ever, the ratio matching approach is more preferable than the generalized KMM approach be-
cause of the following reasons:

• The ratio matching approach is equipped with a natural CV procedure for model selection
(Sugiyama et al., 2008; Kanamori et al., 2009a). Thus no heuristic is required for choosing
the Gaussian width.

• The ratio matching approach is proved to be numerically more stable than the KMM
approach in terms of condition numbers (Kanamori et al., 2009b).

3 Probabilistic Classification Approach

In this section, we describe a framework of density ratio estimation through probabilistic classi-
fication.

3.1 Preliminaries

The basic idea of the probabilistic classification approach is to learn a probabilistic classifier
which separates samples {xnu

i }
nnu
i=1 drawn from p∗nu(x) and samples {xde

j }
nde
j=1 drawn from p∗de(x)

(Qin, 1998; Cheng & Chu, 2004; Bickel et al., 2007).
Let us assign a label y = +1 to {xnu

i }
nnu
i=1 and y = −1 to {xde

j }
nde
j=1, respectively. Then the

two densities are written as p∗nu(x) = p∗(x|y = +1) and p∗de(x) = p∗(x|y = −1), respectively.
Note that y is regarded as a random variable here. An application of Bayes’ theorem,

p∗(x|y) = p∗(y|x)p∗(x)
p∗(y)

,

yields that the density ratio can be expressed in terms of y as follows:

r∗(x) =
p∗nu(x)

p∗de(x)
=

(
p∗(y = +1|x)p∗(x)

p∗(y = +1)

)(
p∗(y = −1|x)p∗(x)

p∗(y = −1)

)−1

=
p∗(y = −1)
p∗(y = +1)

p∗(y = +1|x)
p∗(y = −1|x)

.

The ratio p∗(y = −1)/p∗(y = +1) may be simply approximated by the ratio of the number of
samples:

p∗(y = −1)
p∗(y = +1)

≈ nde/(nde + nnu)

nnu/(nde + nnu)
=

nde

nnu
.

The ‘class’ posterior probability p∗(y|x) may be approximated by separating {xnu
i }

nnu
i=1 and

{xde
j }

nde
j=1 using a probabilistic classifier. Thus, given an estimator of the class posterior proba-

bility, p̂(y|x), a density ratio estimator r̂(x) can be constructed as

r̂(x) =
nde

nnu

p̂(y = +1|x)
p̂(y = −1|x)

. (6)

A practical advantage of the probabilistic classification approach would be its easy imple-
mentability. Indeed, one can directly use standard classification algorithms for density ratio
estimation. Below, an example of probabilistic classifiers, logistic regression, is described.
For making the explanation simple, we consider a set of paired samples, {(xk, yk)}nk=1, where
(x1, . . . ,xn) := (xnu

1 , . . . ,xnu
nnu

,xde
1 , . . . ,xde

nde
) and (y1, . . . , yn) := (+1, . . . ,+1,−1, . . . ,−1) for

n = nnu + nde.
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3.2 Logistic Regression Classifier

Here a popular classification algorithm called logistic regression (LR) (Hastie et al., 2001) is
explained.

The LR classifier employs a parametric model of the following form for expressing the class-
posterior probability p∗(y|x),

p(y|x;θ) =
(
1 + exp

(
−yψ(x)⊤θ

))−1
,

where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. The param-
eter vector θ is learned so that the penalized log-likelihood is maximized, which is equivalently
expressed as follows:

θ̂ := argmin
θ∈Rm

[
n∑

k=1

log
(
1 + exp

(
−ykψ(xk)

⊤θ
))

+ λθ⊤θ

]
, (7)

where λθ⊤θ is a penalty term included for regularization purposes.
Since the objective function in Eq.(7) is convex, the global optimal solution can be obtained

by a standard non-linear optimization technique such as the gradient descent method or (quasi-)
Newton methods (Hastie et al., 2001; Minka, 2007). An LR model classifies a new input sample
x by choosing the most probable class:

ŷ = argmax
y=±1

p(y|x; θ̂). (8)

Finally, a density ratio estimator r̂LR(x) is given by

r̂LR(x) =
nde

nnu

1 + exp
(
ψ(x)⊤θ̂

)
1 + exp

(
−ψ(x)⊤θ̂

) =
nde

nnu

exp
(
ψ(x)⊤θ̂

){
exp

(
−ψ(x)⊤θ̂

)
+ 1
}

1 + exp
(
−ψ(x)⊤θ̂

)
=

nde

nnu
exp

(
ψ(x)⊤θ̂

)
.

When multi-class LR classifiers are used, density ratios among multiple densities can be
estimated simultaneously. This is useful, e.g., for solving multi-task learning problems (Bickel
et al., 2008).

When the LR model is correctly specified, i.e., there exists θ∗ such that p(y|x;θ∗) = p∗(y|x),
the LR approach is optimal among a class of semi-parametric estimators in the sense that the
asymptotic variance is minimized (Qin, 1998). However, when the model is misspecified (which
would be the case in practice), the ratio-matching approach explained in Section 4 is more
preferable (Kanamori et al., 2010).

3.3 Model Selection by Cross-Validation

An important advantage of the probabilistic classification approach is that model selection (i.e.,
tuning the basis functions and the regularization parameter) is possible by standard CV, since
the learning problem involved in this framework is a standard supervised classification problem.

More specifically, the numerator and denominator samples Dnu = {xnu
i }

nnu
i=1 and Dde =

{xde
j }

nde
j=1 are divided into T disjoint subsets {Dnu

t }Tt=1 and {Dde
t }Tt=1, respectively. Then a

probabilistic classifier p̂t(y|x) is obtained using Dnu\Dnu
t and Dde\Dde

t (i.e., all samples without
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Dnu
t and Dde

t ), and its misclassification error (ME) for the hold-out samples Dnu
t and Dde

t is
computed:

M̃Et :=
1

|Dnu
t |

∑
xnu∈Dnu

t

I(argmax
y=±1

p̂t(y|xnu) = +1) +
1

|Dde
t |

∑
xde∈Dde

t

I(argmax
y=±1

p̂t(y|xde) = −1),

where I(·) is the indicator function: I(c) = 1 if c is true and I(c) = 0 otherwise. This procedure
is repeated for t = 1, . . . , T , and the average misclassification error over all t is computed.

M̃E :=
1

T

T∑
t=1

M̃Et.

Then the model that minimizes M̃E is chosen.

3.4 Remarks

Density ratio estimation by probabilistic classification can successfully avoid density estimation
by casting the problem of density ratio estimation as the problem of learning the ‘class’ posterior
probability. An advantage of the probabilistic classification approach over the moment matching
approach explained in Section 2 is that CV can be used for model selection. Furthermore, existing
software packages of classification algorithms can be directly used for density ratio estimation.

As shown in Qin (1998), the probabilistic classification approach with LR has a suitable
property: if the LR model is correctly specified, the probabilistic classification approach is optimal
among a broad class of semi-parametric estimators. However, this strong theoretical property
is not true when the correct model assumption is not fulfilled. In such cases, the ratio-matching
approach explained in Section 4 is more preferable (Kanamori et al., 2010).

4 Ratio Matching Approach

In this section, we describe the ratio matching approach to density ratio estimation.

4.1 Preliminaries

A basic idea of ratio matching is to directly match a density ratio model r(x) to the true
density ratio r∗(x) under some divergence (Figure 2). At a glance, the ratio matching problem
is equivalent to the regression problem. However, ratio matching is essentially different from
regression since samples of the true ratio are not available. Here, we employ the Bregman (BR)
divergence for measuring the discrepancy between the true density ratio and the density ratio
model (Bregman, 1967).

The BR divergence is an extension of the Euclidean distance to a class of distances that all
share similar properties. Let f be a differentiable and strictly convex function. Then the BR
divergence associated with f from t∗ to t is defined as

BR′
f (t

∗∥t) := f(t∗)− f(t)−∇f(t)(t∗ − t).

Note that f(t) +∇f(t)(t∗− t) is the value of the first-order Taylor expansion of f around point
t evaluated at point t∗. Thus, the BR divergence evaluates the difference between the value of
f at point t∗ and its linear extrapolation from t (Figure 3).
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x

r
∗(x)

Learned ratio model

True ratio function

r(x)

Figure 2: The idea of ratio matching.

t
f̂−f(t)f(t∗) ∇f(t)(t∗ − t)t∗ BR′f (t∗‖t).

Figure 3: Bregman divergence BR′
f (t

∗∥t).

Here the discrepancy from the true density ratio r∗ to a density ratio model r is measured
using the BR divergence as

BR′
f (r

∗∥r) :=
∫

p∗de(x)
(
f(r∗(x))− f(r(x))−∇f(r(x))(r∗(x)− r(x))

)
dx. (9)

A motivation for this choice is that the BR divergence allows one to directly obtain an empirical
approximation for any f . Indeed,

BR′
f (r

∗∥r) = C −
∫

p∗de(x)f(r(x))dx−
∫

p∗de(x)∇f(r(x))r∗(x)dx+

∫
p∗de(x)∇f(r(x))r(x)dx

= C +BRf (r) ,

where C :=
∫
p∗de(x)f(r

∗(x))dx is a constant independent of r, and

BRf (r) :=

∫
p∗de(x)∇f(r(x))r(x)dx−

∫
p∗de(x)f(r(x))dx−

∫
p∗nu(x)∇f(r(x))dx. (10)

Thus, an empirical approximation B̂Rf (r) of BRf (r) is given by

B̂Rf (r) :=
1

nde

nde∑
j=1

∇f(r(xde
j ))r(xde

j )− 1

nde

nde∑
j=1

f(r(xde
j ))− 1

nnu

nnu∑
i=1

∇f(r(xnu
i )). (11)

Below, ratio matching methods under the Kullback-Leibler divergence (Sugiyama et al.,
2008) and the squared distance (Kanamori et al., 2009a) are explained.

4.2 Unnormalized Kullback-Leibler Divergence

In this section, a ratio matching method under the unnormalized Kullback-Leibler (UKL) diver-
gence is explained.

4.2.1 Criterion

When f(t) = t log t− t, the BR divergence is reduced to the UKL divergence:

UKL′(t∗∥t) := t∗ log
t∗

t
− t∗ + t.
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Following Eqs.(10) and (11), let us denote UKL without an irrelevant constant term by UKL (r)

and its empirical approximation by ÛKL (r):

UKL (r) :=

∫
p∗de(x)r(x)dx−

∫
p∗nu(x) log r(x)dx,

ÛKL (r) :=
1

nde

nde∑
j=1

r(xde
j )− 1

nnu

nnu∑
i=1

log r(xnu
i ).

The density ratio model r is learned so that ÛKL(r) is minimized. Here, we further impose
that the ratio model r(x) is non-negative for all x in X and is normalized at {xde

j }
nde
j=1:

1

nde

nde∑
j=1

r(xde
j ) = 1.

Then the optimization criterion is reduced to as follows.

max
r

1

nnu

nnu∑
i=1

log r(xnu
i ) s.t.

1

nde

nde∑
j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x ∈ X .

This is called the KL importance estimation procedure (KLIEP). Note that the same objective
function can be obtained from an empirical approximation of the KL divergence from p∗nu(x) to
r(x)p∗de(x) (Sugiyama et al., 2008).

Below, we describe how the KLIEP formulation can be implemented for linear and kernel
models. Note that the KLIEP idea can be applied to various models such as log-linear models
(Tsuboi et al., 2009), Gaussian mixture models (Yamada & Sugiyama, 2009), and mixtures of
probabilistic principal component analyzers (Yamada et al., 2010).

4.2.2 Linear and Kernel Models

For the linear density-ratio model (2), the KLIEP optimization problem is expressed as follows
(Sugiyama et al., 2008):

max
θ∈Rb

1

nnu

nnu∑
i=1

log(ψ(xnu
i )⊤θ) s.t. ψ

⊤
deθ = 1 and θ ≥ 0b,

where ψde := 1
nde

∑nde
j=1ψ(x

de
j ), and the inequality for vectors is applied in the element-wise

manner. Since the above optimization problem is convex (i.e., the objective function to be
maximized is concave and the feasible set is convex), there exists the unique global optimum
solution. A pseudo code of KLIEP for linear models is described in Figure 4. As can be
confirmed from the pseudo code, the denominator samples {xde

j }
nde
j=1 appear only in terms of

the basis-transformed mean ψde. Thus, KLIEP is computationally very efficient even when the
number nde of denominator samples is very large.

4.2.3 Basis Function Design

The performance of KLIEP depends on the choice of the basis functions ψ(x). As explained
below, the use of the following Gaussian kernel model would be reasonable:

r(x) =

nnu∑
ℓ=1

θℓK(x,xnu
ℓ ), (12)

10



Input: Data samples Dnu = {xnu
i }

nnu
i=1 and Dde = {xde

j }
nde
j=1,

and basis functions ψ(x)
Output: Density ratio estimator r̂(x)

Ψnu ←− (ψ(xnu
1 ), . . . ,ψ(xnu

nnu
))⊤;

ψde ←− 1
nde

∑nde
j=1ψ(x

de
j );

Initialize θ (> 0b) and ε (0 < ε≪ 1);
Repeat until convergence

θ ←− θ + εΨ⊤
nu(1nnu ./Ψnuθ); % Gradient ascent

θ ←− θ + (1−ψ⊤
deθ)ψde/(ψ

⊤
deψde); % Constraint satisfaction

θ ←− max(0b,θ); % Constraint satisfaction

θ ←− θ/(ψ⊤
deθ); % Constraint satisfaction

end
r̂(x)←− ψ(x)⊤θ;

Figure 4: Pseudo code of KLIEP. ‘./’ indicates the element-wise division and ⊤ denotes the
transpose. Inequalities and the ‘max’ operation for vectors are applied in the element-wise
manner.

Input: Data samples Dnu = {xnu
i }

nnu
i=1 and Dde = {xde

j }
nde
j=1,

and a set of basis function candidates {ψm(x)}Mm=1

Output: Density ratio estimator r̂(x)

Split Dnu into T disjoint subsets {Dnu
t }Tt=1;

for each model candidate m = 1, . . . ,M
for each split t = 1, . . . , T

r̂t(x)←− KLIEP(Dnu\Dnu
t , Dde,ψ(x));

ŨKLt(m)←− 1
|Dnu

t |
∑

x∈Dnu
t

log r̂t(x);

end

ŨKL(m)←− 1
T

∑T
t=1 ŨKLt(m);

end

m̂←− argmaxm ŨKL(m);
r̂(x)←− KLIEP(Dnu, Dde,ψm̂(x));

Figure 5: Pseudo code of CV for KLIEP.

where K(x,x′) is the Gaussian kernel (4). The reason why the numerator samples {xnu
i }

nnu
i=1,

not the denominator samples {xde
j }

nde
j=1, are chosen as the Gaussian centers is as follows. By

definition, the density ratio r∗(x) tends to take large values if p∗de(x) is small and p∗nu(x) is
large. Conversely, r∗(x) tends to be small (i.e., close to zero) if p∗de(x) is large and p∗nu(x) is
small. When a non-negative function is approximated by a Gaussian kernel model, many kernels
may be needed in the region where the output of the target function is large. On the other hand,
only a small number of kernels would be enough in the region where the output of the target
function is close to zero (see Figure 6). Following this heuristic, many kernels are allocated
in the region where p∗nu(x) takes large values, which can be achieved by setting the Gaussian
centers at {xnu

i }
nnu
i=1.

Alternatively, we may locate (nnu + nde) Gaussian kernels at both {xnu
i }

nnu
i=1 and {xde

j }
nde
j=1.

However, this seems not to further improve the performance, but slightly increases the computa-

11
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Figure 6: Heuristic of Gaussian kernel allocation.

tional cost. When nnu is very large, just using all the numerator samples {xnu
i }

nnu
i=1 as Gaussian

centers is already computationally rather demanding. To ease this problem, a subset of {xnu
i }

nnu
i=1

may be chosen in practice as Gaussian centers for computational efficiency, i.e.,

r(x) =
b∑

ℓ=1

θℓK(x, cℓ),

where cℓ is a template point randomly chosen from {xnu
i }

nnu
i=1 and b (∈ {1, . . . , nnu}) is a prefixed

number.

4.2.4 Model Selection

Model selection of KLIEP is possible based on a variant of CV. More specifically, the numerator
samples Dnu = {xnu

i }
nnu
i=1 are divided into T disjoint subsets {Dnu

t }Tt=1. Then a KLIEP solution
r̂t(x) is obtained using Dnu\Dnu

t (i.e., all numerator samples without Dnu
t ) and Dde, and its

UKL value for the hold-out samples Dnu
t is computed:

ŨKLt :=
1

|Dnu
t |

∑
xnu∈Dnu

t

log r̂t(x
nu).

This procedure is repeated for t = 1, . . . , T , and the average of the above hold-out UKL values
over all t is computed.

ŨKL :=
1

T

T∑
t=1

ŨKLt.

Then the model that maximizes ŨKL is chosen.
A pseudo code of CV for KLIEP is summarized in Figure 5. A MATLAB R⃝ implementation

of the entire KLIEP algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/KLIEP/

4.3 Squared Distance

Here, ratio matching methods under the squared (SQ) distance are described.

12



4.3.1 Criterion

When f(t) = 1
2(t− 1)2, the BR divergence is reduced to the SQ distance:

SQ′(t∗∥t) := 1

2
(t∗ − t)2.

Following Eqs.(10) and (11), let us denote SQ without an irrelevant constant term by SQ (r)

and its empirical approximation by ŜQ (r):

SQ (r) :=
1

2

∫
p∗de(x)r(x)

2dx−
∫

p∗nu(x)r(x)dx,

ŜQ (r) :=
1

2nde

nde∑
j=1

r(xde
j )2 − 1

nnu

nnu∑
i=1

r(xnu
i ).

Here, we focus on using the linear density-ratio model (2). Since this is the same model as
KLIEP for linear models, the basis design heuristic introduced in Section 4.2.3 may also be used
here. For the linear density-ratio model (2), ŜQ is expressed as

ŜQ (θ) :=
1

2
θ⊤Ĥθ − ĥ

⊤
θ,

where

Ĥ :=
1

nde

nde∑
j=1

ψ(xde
j )ψ(xde

j )⊤ and ĥ :=
1

nnu

nnu∑
i=1

ψ(xnu
i ).

4.3.2 Constrained Formulation

We impose non-negativity constraint θ ≥ 0b when minimizing ŜQ. Then the optimization
problem is expressed as follows.

max
θ∈Rb

1

2
θ⊤Ĥθ − ĥ

⊤
θ + λ1⊤b θ s.t. θ ≥ 0b, (13)

where λ (≥ 0) is the regularization parameter, and the constraint is imposed in order to guar-
antee the non-negativity of the density ratio estimator (given that the basis functions are non-
negative). Together with the non-negativity constraint, the term 1⊤b θ works as the ℓ1-regularizer:

1⊤b θ = ∥θ∥1 :=
b∑

ℓ=1

|θℓ|.

This formulation is called least-squares importance fitting (LSIF) (Kanamori et al., 2009a). The
LSIF optimization problem is a convex quadratic program. Therefore, the unique global optimal
solution can be computed by a standard optimization package.

We can also use the ℓ2-regularizer θ
⊤θ, instead of the ℓ1-regularizer 1

⊤
b θ, without changing

the computational property. However, using the ℓ1-regularizer would be more advantageous
since the solution tends to be sparse (Williams, 1995; Tibshirani, 1996; Chen et al., 1998).
Furthermore, as explained in Section 4.3.3, the use of the ℓ1-regularizer allows one to compute
the entire regularization path efficiently.

Model selection of LSIF (i.e., the choice of the basis functions and the regularization pa-
rameter) is possible by CV based on the SQ distance. More specifically, the numerator and
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θ̂(λ0) = 0b θ̂(λ1) θ̂(λ2)θ̂(λ3)
Figure 7: Regularization path tracking of LSIF. The solution θ̂(λ) is shown to be piecewise-
linear in the parameter space as a function of λ. Starting from λ = ∞, the trajectory of the
solution is traced as λ is decreased to zero. When λ ≥ λ0 for some λ0 ≥ 0, the solution stays
at the origin 0b. When λ gets smaller than λ0, the solution departs from the origin. As λ is
further decreased, for some λ1 such that 0 ≤ λ1 ≤ λ0, the solution goes straight to θ̂(λ1) with
a constant ‘speed’. Then the solution path changes the direction and, for some λ2 such that
0 ≤ λ2 ≤ λ1, the solution is headed straight for θ̂(λ2) with a constant speed as λ is further
decreased. This process is repeated until λ reaches zero.

denominator samples Dnu = {xnu
i }

nnu
i=1 and Dde = {xde

j }
nde
j=1 are divided into T disjoint subsets

{Dnu
t }Tt=1 and {Dde

t }Tt=1, respectively. Then a density ratio estimator r̂t(x) is obtained using
Dnu\Dnu

t and Dde\Dde
t (i.e., all samples without Dnu

t and Dde
t ), and its SQ value for the hold-out

samples Dnu
t and Dde

t is computed:

S̃Qt :=
1

2|Dnu
t |

∑
xnu∈Dnu

t

r(xnu)2 − 1

|Dde
t |

∑
xde∈Dde

t

r(xde).

This procedure is repeated for t = 1, . . . , T , and the average of the above hold-out SQ values is
computed.

S̃Q :=
1

T

T∑
t=1

S̃Qt.

Then the model that minimizes S̃Q is chosen.
For LSIF, an information criterion (Akaike, 1974) is also available for model selection

(Kanamori et al., 2009a).

4.3.3 Entire Regularization Path

The LSIF solution θ̂ is shown to be piecewise-linear with respect to the regularization parameter
λ (see Figure 7). Thus, the regularization path (i.e., solutions for all λ) can be computed
efficiently based on the parametric optimization technique (Best, 1982; Efron et al., 2004; Hastie
et al., 2004).

A basic idea of regularization path tracking is to check the violation of the Karush-Kuhn-
Tacker (KKT) conditions (Boyd & Vandenberghe, 2004)—which are necessary and sufficient
for optimality of convex programs—when the regularization parameter λ is changed. A pseudo
code of the regularization path tracking algorithm for LSIF is described in Figure 8. Thanks to
the regularization path algorithm, LSIF is computationally efficient in model selection scenarios,
where solutions for various λ are computed.

The pseudo code implies that we no longer need a quadratic programming solver for obtaining
the solution of LSIF—just computing matrix inverses is sufficient. Furthermore, the regulariza-
tion path algorithm is computationally more efficient when the solution is sparse, that is, most
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Input: Ĥ and ĥ

Output: entire regularization path θ̂(λ) for λ ≥ 0

τ ←− 0; k ←− argmax i{ĥi | i = 1, . . . , b}; λτ ←− ĥk;

Â ←− {1, . . . , b}\{k}; θ̂(λτ )←− 0b;
While λτ > 0

Ê ←− O|Â|×b
;

For i = 1, . . . , |Â|
Êi,̂ji

←− 1; % Â = {ĵ1, . . . , ĵ|Â| | ĵ1 < · · · < ĵ|Â|}
end

Ĝ←−

(
Ĥ −Ê

⊤

−Ê O|Â|×|Â|

)
; u←− Ĝ

−1

(
ĥ

0|Â|

)
; v ←− Ĝ

−1
(

1b
0|Â|

)
;

If v ≤ 0
b+|Â| % the final interval

λτ+1 ←− 0; θ̂(λτ+1)←− (u1, . . . , ub)
⊤;

else % an intermediate interval

k ←− argmax i{ui/vi | vi > 0, i = 1, . . . , b+ |Â|}; λτ+1 ←− max{0, uk/vk};
θ̂(λτ+1)←− (u1, . . . , ub)

⊤ − λτ+1(v1, . . . , vb)
⊤;

If 1 ≤ k ≤ b

Â ←− Â ∪ {k};
else

Â ←− Â\{ĵk−b};
end

end
τ ←− τ + 1;

end

θ̂(λ)←−

{
0b if λ ≥ λ0
λτ+1−λ
λτ+1−λτ

θ̂(λτ ) +
λ−λτ

λτ+1−λτ
θ̂(λτ+1) if λτ+1 ≤ λ ≤ λτ

Figure 8: Pseudo code for computing the entire regularization path of LSIF. When the computa-

tion of Ĝ
−1

is numerically unstable, we may add small positive diagonals to Ĥ for stabilization
purposes.

of the elements are zero since the number of change points tends to be small for such sparse
solutions. However, the regularization path tracking algorithm was found to be numerically
rather unstable (Kanamori et al., 2009a).

An R implementation of LSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

4.3.4 Unconstrained Formulation

The regularization path tracking algorithm for LSIF was shown to suffer from a numerical prob-
lem, and therefore is not practically reliable. Here, a practical alternative to LSIF is introduced,
which gives an approximate solution to LSIF in a computationally efficient and reliable manner
(Kanamori et al., 2009a).

The approximation idea introduced here is very simple: the non-negativity constraint of the
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parameters in the optimization problem (13) is ignored. This results in the following uncon-
strained optimization problem.

min
β∈Rb

[
1

2
β⊤Ĥβ − ĥ

⊤
β +

λ

2
β⊤β

]
. (14)

In the above, a quadratic regularization term β⊤β/2 was included instead of the linear one
1⊤b θ since the linear penalty term does not work as a regularizer without the non-negativity
constraint. Eq.(14) is an unconstrained convex quadratic program, and the solution can be
analytically computed as

β̃ = (Ĥ + λIb)
−1ĥ,

where Ib is the b-dimensional identity matrix. Since the non-negativity constraint β ≥ 0b was
dropped, some of the learned parameters could be negative. To compensate for this approxima-
tion error, the solution is modified as

β̂ = max(0b, β̃),

where the ‘max’ operation for a pair of vectors is applied in the element-wise manner. This is
the solution of the approximation method called unconstrained LSIF (uLSIF) (Kanamori et al.,
2009a). An advantage of uLSIF is that the solution can be computed just by solving a system
of linear equations. Therefore, its computation is stable when λ is not too small.

Due to the ℓ2-regularizer, the solution tends to be close to 0b to some extent. Thus, the effect
of ignoring the non-negativity constraint may not be so critical See Kanamori et al. (2009a) for
theoretical and experimental error analysis.

4.3.5 Analytic Expression of Leave-One-Out Score

A practically important advantage of uLSIF over LSIF is that the score of leave-one-out CV
(LOOCV) can be computed analytically (Kanamori et al., 2009a)—thanks to this property, the
computational complexity for performing LOOCV is the same order as just computing a single
solution.

In the current setup, two sets of samples, {xnu
i }

nnu
i=1 and {xde

j }
nde
j=1, generally have different

sample size. For simplicity, we assume that nde ≤ nnu and the i-th numerator sample xnu
i

and the i-th denominator sample xde
i are held out at the same time; the numerator samples

{xnu
i }

nnu
i=nde+1 are always used for density ratio estimation. Note that this assumption is only for

the sake of simplicity; the order of numerator samples can be changed without sacrificing the
computational advantages.

Let r̂(i)(x) be a density ratio estimate obtained without the i-th numerator sample xnu
i and

the i-th denominator sample xde
i . Then the LOOCV score is expressed as

LOOCV =
1

nde

nde∑
i=1

[
1

2
(r̂(i)(xde

i ))2 − r̂(i)(xnu
i )

]
.

A trick to efficiently compute the LOOCV score is to use the Sherman-Woodbury-Morrison
formula (Golub & Loan, 1996) for computing matrix inverses: for an invertible square matrix
A and vectors u and v such that v⊤A−1u ̸= −1,

(A+ uv⊤)−1 = A−1 − A
−1uv⊤A−1

1 + v⊤A−1u
.
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Input: {xnu
i }

nnu
i=1 and {xde

j }
nde
j=1

Output: r̂(x)

b←− min(100, nnu); n←− min(nnu, nde);
Randomly choose b centers {cℓ}bℓ=1 from {xnu

i }
nnu
i=1 without replacement;

For each candidate of Gaussian width σ

Ĥℓ,ℓ′ ←−
1

nde

nde∑
j=1

exp

(
−
∥xde

j − cℓ∥2 + ∥xde
j − cℓ′∥2

2σ2

)
for ℓ, ℓ′ = 1, . . . , b;

ĥℓ ←−
1

nnu

nnu∑
i=1

exp

(
−∥x

nu
i − cℓ∥2

2σ2

)
for ℓ = 1, . . . , b;

Xnu
ℓ,i ←− exp

(
−∥x

nu
i − cℓ∥2

2σ2

)
for i = 1, . . . , n and ℓ = 1, . . . , b;

Xde
ℓ,i ←− exp

(
−∥x

de
i − cℓ∥2

2σ2

)
for i = 1, . . . , n and ℓ = 1, . . . , b;

For each candidate of regularization parameter λ

B̂ ←− Ĥ +
λ(nde − 1)

nde
Ib;

B0 ←− B̂
−1
ĥ1⊤n + B̂

−1
Xde diag

(
ĥ
⊤
B̂

−1
Xde

nde1
⊤
n − 1⊤b (X

de ∗ B̂
−1
Xde)

)
;

B1 ←− B̂
−1
Xnu + B̂

−1
Xde diag

(
1⊤b (X

nu ∗ B̂
−1
Xde)

nde1
⊤
n − 1⊤b (X

de ∗ B̂
−1
Xde)

)
;

B2 ←− max

(
Ob×n,

nde − 1

nde(nnu − 1)
(nnuB0 −B1)

)
;

wde ←− (1⊤b (X
de ∗B2))

⊤; wnu ←− (1⊤b (X
nu ∗B2))

⊤;

LOOCV(σ, λ)←−
w⊤

dewde

2n
− 1⊤nwnu

n
;

end
end

(σ̂, λ̂)←− argmin (σ,λ) LOOCV(σ, λ);

H̃ℓ,ℓ′ ←−
1

nde

nde∑
j=1

exp

(
−
∥xde

j − cℓ∥2 + ∥xde
j − cℓ′∥2

2σ̂2

)
for ℓ, ℓ′ = 1, . . . , b;

h̃ℓ ←−
1

nnu

nnu∑
i=1

exp

(
−∥x

nu
i − cℓ∥2

2σ̂2

)
for ℓ = 1, . . . , b;

α̂←− max(0b, (H̃ + λ̂Ib)
−1h̃);

ŵ(x)←−
b∑

ℓ=1

α̂ℓ exp

(
−∥x− cℓ∥

2

2σ̂2

)
;

Figure 9: Pseudo code of uLSIF algorithm with LOOCV. B ∗ B′ denotes the element-wise
multiplication of matrices B and B′ of the same size, that is, the (i, j)-th element is given by
Bi,jB

′
i,j . For n-dimensional vectors b and b′, diag

(
b
b′
)
denotes the n × n diagonal matrix with

i-th diagonal element bi/b
′
i.
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A pseudo code of uLSIF with LOOCV-based model selection is summarized in Figure 9.
Note that the basis design heuristic explained in Section 4.2.3 is used in the pseudo code, but
the analytic form of the LOOCV score is available for any basis functions.

A MATLAB R⃝ implementation of uLSIF is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/uLSIF/

and an R implementation of uLSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/~kanamori/software/LSIF/

4.4 Remarks

Density ratio estimation by ratio matching can successfully avoid density estimation. Further-
more, CV based on the target divergence functional is available for model selection.

We have described the ratio matching methods for the UKL divergence and the SQ distance.
The UKL method (KLIEP) is applicable to a variety of models such as linear/kernel models
(Sugiyama et al., 2008), log-linear models (Tsuboi et al., 2009), mixtures of Gaussians (Yamada
& Sugiyama, 2009), and mixtures of probabilistic principal component analyzers (Yamada et al.,
2010). On the other hand, the SQ methods are computationally more efficient. The constrained
method (LSIF) for the ℓ1-regularizer is equipped with a regularization path tracking algorithm.
Furthermore, its unconstrained variant (uLSIF) allows one to compute the density ratio esti-
mator analytically ; the leave-one-out CV score can also be computed in a closed form. Thus,
the overall computation of uLSIF including model selection is highly efficient (Kanamori et al.,
2009a).

The fact that uLSIF has an analytic-form solution is actually very useful beyond its com-
putational efficiency. When one wants to optimize some criterion defined using a density ratio
estimate (e.g., mutual information, Cover & Thomas, 2006), the analytic-form solution of uLSIF
allows one to compute the derivative of the target criterion analytically. Then one can develop,
e.g., gradient-based algorithms and (quasi-) Newton algorithms for optimization. This property
can be successfully utilized, e.g., in identifying the central subspace in sufficient dimensionality
reduction (Suzuki & Sugiyama, 2010), finding independent components in independent com-
ponent analysis (Suzuki & Sugiyama, 2009), performing dependence minimizing regression in
causal inference (Yamada & Sugiyama, 2010), and identifying the hetero-distributional subspace
in direct density ratio estimation with dimensionality reduction (Sugiyama et al., 2010a).

The ratio matching approach can also be characterized as divergence estimation. Let f be
a convex function such that f(1) = 0. Then the Ali-Silver-Csiszár (ASC) divergence associated
with f from p∗de to p∗nu is defined as follows (Ali & Silvey, 1966; Csiszár, 1967):

ASCf (p
∗
de∥p∗nu) :=

∫
p∗de(x)f

(
p∗nu(x)

p∗de(x)

)
dx.

Let f∗ be the Legendre-Fenchel dual of f (Rockafellar, 1970):

f∗(s) := sup
t∗

[t∗s− f(t∗)] .

The convexity of f implies
f(t∗) ≥ f(t) + (t∗ − t)∇f(t),
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where the equality holds if and only if t∗ = t (see Figure 3 again). Thus, for s = ∇f(t), f∗(s) is
expressed as

f∗(∇f(t)) = sup
t∗

[t∗∇f(t)− f(t∗)]

= t∇f(t)− f(t).

Then, the BR divergence associated with f from r∗ to r without an irrelevant constant (see
Eq.(10)) can be expressed in terms of f∗ as

BRf (r
∗∥r) =

∫
p∗de(x)

(
f∗(∇f(r(x)))−∇f(r(x))r∗(x)

)
dx. (15)

Eq.(15) is minimized with respect to r if and only if r = r∗ (Nguyen et al., 2010):

min
r

BRf (r
∗∥r) =

∫
p∗de(x)f(r

∗(x))dx.

Consequently, the ASC divergence can be approximated as

ASCf (p
∗
de∥p∗nu) = min

r
BRf (r

∗∥r)

≈ min
r

 1

nde

nde∑
j=1

f∗(∇f(r(xde
j )))− 1

nnu

nnu∑
i=1

∇f(r(xnu
i ))

 .

This agrees with the ASC-divergence estimator proposed in Nguyen et al. (2010).

5 Conclusions

In this paper, we provided a comprehensive review of density ratio estimation methods, including
the moment matching approach (Section 2), the probabilistic classification approach (Section 3),
and the ratio matching approach (Section 4). Through extensive experiments, these methods
were shown to outperform the naive approach of taking the ratio of kernel density estimators
(Sugiyama et al., 2008; Gretton et al., 2009; Kanamori et al., 2009a; Hido et al., 2010).

Theoretical analysis of these direct density-ratio estimators has also been carried out. For
example, in Kanamori et al. (2010), the accuracy of (A) the ratio of maximum likelihood density
estimators, (B) probabilistic classification with logistic regression, and (C) ratio matching under
the Kullback-Leibler divergence has been theoretically compared in the parametric setup. The
paper showed that, when the numerator and denominator densities are known to be members
of the exponential family, (A) is better than (B) and (B) is better than (C). On the other hand,
once the model assumption is violated, (C) was shown to be better than (A) and (B). Thus,
in practical situations where no exact model is available, (C) would be the most promising
approach to density ratio estimation.

For non-parametric cases, the convergence rate of the infinite-order moment matching ap-
proach (Gretton et al., 2009), ratio matching under the Kullback-Leibler divergence (Sugiyama
et al., 2008; Nguyen et al., 2010), and ratio matching under the squared distance (Kanamori
et al., 2009b) has been elucidated. However, it seems to be an open research topic to theoreti-
cally prove that these direct density-ratio estimators are really superior to the naive approach
of taking the ratio of non-parametric density estimators.

Finally, the performance of density ratio estimation in high-dimensional problems can be
further improved by dimensionality reduction. More specifically, density ratio estimation is
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carried out only in a subspace in which the numerator and denominator densities are significantly
different. Such approaches have been explored recently (Sugiyama et al., 2010b; Sugiyama et al.,
2010a), and would be a promising direction for further improving the estimation accuracy of
density ratios.
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