
1IEEE Transactions on Knowledge and Data Engineering,
vol.22, no.7, pp.957–968, 2010.

Conic Programming for Multi-Task Learning

Tsuyoshi Kato
Center for Informational Biology, Ochanomizu University

2-1-1, Otsuka, Bunkyo, Tokyo 112-8610, Japan
kato-tsuyoshi@aist.go.jp

Hisashi Kashima
IBM Research, Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan
hkashima@jp.ibm.com

Masashi Sugiyama
Department of Computer Science, Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
sugi@cs.titech.ac.jp

Kiyoshi Asai
Department of Computational Biology, The University of Tokyo

and
Computational Biology Research Center,

National Institute of Advanced Industrial Science and Technology
asai@k.u-tokyo.ac.jp

Abstract

When we have several related tasks, solving them simultaneously has been shown to
be more effective than solving them individually. This approach is called multi-task
learning (MTL). In this paper, we propose a novel MTL algorithm. Our method
controls the relatedness among the tasks locally, so all pairs of related tasks are
guaranteed to have similar solutions. We apply the above idea to support vector
machines and show that the optimization problem can be cast as a second-order
cone program, which is convex and can be solved efficiently. The usefulness of our
approach is demonstrated in ordinal regression, link prediction and collaborative
filtering, each of which can be formulated as a structured multi-task problem.

Keywords

Multi-Task Learning, Second-Order Cone Programming, Ordinal Regression, Link
Prediction, Collaborative Filtering

Conic Programming for Multi-Task Learning 2

1 Introduction

We often encounter several related classification tasks. Since the related tasks tend to
share common factors, solving them together is expected to be more advantageous than
solving them independently. This approach is called multi-task learning (MTL, a.k.a. in-
ductive transfer or learning to learn) and has been theoretically and experimentally proven
to be useful [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Typically, the “relatedness” among tasks is implemented by requiring that the solu-
tions of related tasks be similar. However, the MTL methods developed so far have a
limitation—the related tasks are often required to be close in the sense that the sum of
the distances between solutions over all related tasks is upper-bounded [8]. Such a con-
straint is often referred to as a global constraint [11]. This implies that all the solutions
of related tasks are not necessarily close, but that some can be quite different.

In this paper, we propose a new MTL method that overcomes the above limitation.
We solve the problem by directly upper-bounding each distance between the solutions of
every task pair (which we call local constraints). Furthermore, structured task relation in
the form of a task-relation network could be naturally handled in our approach.

We apply this idea in the framework of support vector machines (SVM) and show that
linear SVMs can be trained via a second-order cone program (SOCP) [12] in the primal.
An SOCP is a convex problem and the global solution can be computed efficiently. We
further show that the kernelized version of the proposed method can be formulated as a
matrix-fractional program (MFP) [12] in the dual, which can also be cast as an SOCP;
thus the optimization problem of the kernelized variant is still convex and the global
solution can be computed efficiently. Through experiments, we show that the proposed
MTL method compares favorably with existing MTL methods.

The MTL idea is also useful in

Multi-class classification: Predicting class labels out of several classes [13],

Ordinal regression: Predicting ordinal class labels such as users’ preferences
(“like”/“neutral”/“dislike”) [14, 8],

Link prediction: Given a partially linked network, predicting the existence
of links between unchecked nodes [15, 16, 17, 18],

Collaborative filtering: Predicting a user’s taste using relevant contents for
the purpose of making recommendations [19].

We experimentally show that the proposed method tends to outperform existing or-
dinal regression, link prediction, and collaborative filtering methods.

This paper is organized as follows. In Section 2, we propose a new multi-task learning
method for linear SVMs. In Section 3, we extend the proposed method to kernelized
SVMs. In Section 4, we discuss the relation between the proposed and existing methods
in standard multi-task, ordinary regression, link prediction, and collaborative filtering sce-
narios. In Section 5, we show the usefulness of the proposed method through experiments.
Finally in Section 6, we make concluding remarks.

Conic Programming for Multi-Task Learning 3

Notation We denote vectors by bold-faced lower-case letters and matrices by bold-faced
upper-case letters. Elements of vectors and matrices are not bold-faced. The transposition
of a matrix A is denoted by A⊤, and the inverse of A is by A−1. The n × n identity
matrix is denoted by In. We use Eij to denote a matrix in which (i, j) element is one and
all the others are zero. The n-dimensional vector all of whose elements are one is denoted
by 1n. We use R and N to denote the set of real and natural numbers, Rn and Nn to
denote the set of n-dimensional real and natural vectors, and Rm×n to denote the set of
m× n real matrices. The set of real nonnegative numbers is denoted by R+. For ∀n ∈ N,
we use Nn to denote the set of natural numbers less than or equal to n. We use Sn to
denote the set of symmetric n × n matrices, Sn

+ to denote the set of symmetric positive
semi-definite n × n matrices, and Sn

++ to denote the set of symmetric strictly positive
definite n× n matrices. The symbols ≤ and ≥ are used to denote not only the standard
inequalities between scalars, but also the componentwise inequalities between vectors.

Problem Setting Let us consider M binary classification tasks that all share the com-
mon input-output space X × {±1} [20]. For the time being, we assume X ⊂ Rd for
simplicity; later in Section 3, we extend Rd to reproducing kernel Hilbert spaces. Assume
we haveM tasks to learn, and i-th task has ni data samples (xt,i, yt,i) ∈ X×{±1} (t =

1, . . . , ni). Let ℓ the total number of samples, i.e. ℓ ≡
∑M

i=1 ni.
The goal is to learn the score function of each classification task:

fi(x;wi, bi) = w⊤
i x+ bi, for i = 1, . . . ,M,

where wi ∈ Rd and bi ∈ R are the model parameters of the i-th task.

2 Local MTL with a Task Network: Linear Version

In this section, we propose a new MTL method.

2.1 Basic Idea

When the relation among tasks is not available, we may just solve M penalized fitting
problems individually:

1

2
∥wi∥2 + Cα

ni∑
t=1

Hinge(fi(xt,i;wi, bi), yt,i), (1)

for i = 1, . . . ,M,

where a positive scalar Cα ∈ R+ is a regularization constant and Hinge(·, ·) is the hinge
loss function:

Hinge(f, y) ≡ max(1− fy, 0).

Conic Programming for Multi-Task Learning 4

Eq.(1) is known as the support vector machine (SVM) [21]. The first term is the inverse of
the margin between two classes. Thus SVM tries to find the hyper-plain which separates
two classes with the maximum margin.

This individual approach tends to perform poorly if the number of training samples in
each task is limited—the performance is expected to be improved if more training samples
are available.

To cope with this problem, here we take another approach that is based on the ex-
pectation that the solutions of related tasks are close to each other. More specifically, we
impose the following constraint on the optimization problem (1):

∀i, ∀j :
1

2
∥wi −wj∥2 ≤ ρ. (2)

Namely, we upper-bound the difference between the solutions of tasks by a non-negative
scalar ρ ∈ R+. We refer to this constraint as a local constraint following Tsuda and
Noble [11]. Note that we do not impose a constraint on the bias parameter bi since the
bias could be significantly different even among related tasks. In the rest of this paper,
we focus on using the single upper bound ρ. But it is straightforward to generalize this by
replacing ρi,j. The constraint (2) allows us to implicitly increase the number of training
samples through the solutions of related tasks.

Following convention [8], we blend Eqs.(1) and (2) as

1

2M

M∑
i=1

∥wi∥2 + Cα

M∑
i=1

ni∑
t=1

Hinge(fi(xt,i;θ), yt,i) + Cρρ,

where Cρ ∈ R+ is a non-negative trade-off parameter. Then our optimization problem is
summarized as follows:

Problem 1

min
1

2M

M∑
i=1

∥wi∥2 + Cα∥ξ∥1 + Cρρ,

wrt w ∈ RMd, b ∈ RM , ξα ∈ Rℓ
+, ρ ∈ R+,

subj. to ∀i, ∀j ∈ NM :
1

2
∥wi −wj∥2 ≤ ρ,

∀i ∈ NM , ∀t ∈ Nni
: yt,i

(
w⊤

i xt,i + bi
)
≥ 1− ξαt,i,

where w ≡
[
w⊤

1 , . . . ,w
⊤
M

]⊤
,

ξα ≡
[
ξα1,1, . . . , ξ

α
n1,1

, ξα1,2, . . . , ξ
α
nM ,M

]⊤
.

Generally, fewer constraints lead to more efficient computation for a convex problem. A
bottleneck of Problem 1 is constraints for all the pairs of wi. Hence the problem requires
enormous computational time. We associate the constraints with a fully connected net-
work of tasks. We will show that the generalization performance does not degenerate even

Conic Programming for Multi-Task Learning 5

if some edges are removed. Let us denote the set of the remaining edges by

E ≡ {ik, jk}Kk=1.

The optimization problem is then expressed as follows:

Problem 2

min
1

2M

M∑
i=1

∥wi∥2 + Cα∥ξ∥1 + Cρρ,

wrt w ∈ RMd, b ∈ RM , ξα ∈ Rℓ
+, ρ ∈ R+,

subj. to ∀k ∈ NK :
1

2
∥wik −wjk∥

2 ≤ ρ,

∀i ∈ NM , ∀t ∈ Nni
: yt,i

(
w⊤

i xt,i + bi
)
≥ 1− ξαt,i,

where w ≡
[
w⊤

1 , . . . ,w
⊤
M

]⊤
,

ξα ≡
[
ξα1,1, . . . , ξ

α
n1,1

, ξα1,2, . . . , ξ
α
nM ,M

]⊤
.

Hereinafter, the network with E is referred to as the task network. We assume that the
task network is given a priori. Learning task networks is a challenging open research issue
and this is beyond the scope of the current paper.

2.2 Primal MTL Learning by SOCP

The SOCP is a class of convex programs for minimizing a linear function over an inter-
section of second-order cones [12]:1

Problem 3

min f⊤z wrt z ∈ Rn,

subj. to ∀i ∈ N : ∥Aiz + bi∥ ≤ c⊤i z + di,

where f ∈ Rn,

∀i ∈ N : Ai ∈ R(ni−1)×n, bi ∈ Rni−1,

ci ∈ Rn, di ∈ R.

Linear programs, quadratic programs, and quadratically-constrained quadratic programs
are special cases of SOCPs. SOCPs, a sub-class of semidefinite programs (SDP) [12], can
be solved more efficiently than most other SDPs. Interior-point algorithms are successful
optimization algorithms for both SDPs and SOCPs. Standard SDP solvers (e.g. [22])
consume O(n2

∑
i n

2
i) time2 for solving Problem 3, but the SOCP-specialized solvers that

directly solve Problem 3 take only O(n2
∑

i ni) computation time [23]. Thus, SOCPs can
indeed be solved more efficiently than SDPs.

We show that Problem 2 can be cast as an SOCP.
1More generally, an SOCP can include linear equality constraints, but they can be eliminated, for

example, by some projection method.
2This corresponds to the computational complexity per iteration.

Conic Programming for Multi-Task Learning 6

Theorem 1 Problem 2 can be reduced to the following SOCP:

Problem 4

min
1

M
tw + Cα1

⊤
ℓ ξ + Cρρ,

wrt tw ∈ R, w ∈ RMd, b ∈ RM , ξα ∈ Rℓ
+, ρ ∈ R+,

subj. to

∥∥∥∥[2w
2tw − 1

]∥∥∥∥ ≤ 2tw + 1,

∀k ∈ NK :

∥∥∥∥[2(wik −wjk)
2ρ− 1

]∥∥∥∥ ≤ 2ρ+ 1,

∀i ∈ NM ∀t ∈ Nni
: yt,i

(
w⊤

i xt,i + bi
)
≥ 1− ξαt,i,

where w ≡
[
w⊤

1 , . . . ,w
⊤
M

]⊤
,

ξα ≡
[
ξα1,1, . . . , ξ

α
n1,1

, ξα1,2, . . . , ξ
α
nM ,M

]⊤
.

This theorem can be proved directly from the following lemma:

Lemma 1 (Hyperbolic constraints) [12] For ∀w ∈ Rd, ∀x, ∀y ∈ R,

∥w∥2 ≤ xy, x ≥ 0, y ≥ 0 ⇐⇒
∥∥∥∥[2w

x− y

]∥∥∥∥ ≤ x+ y.

Problem 4 can be solved with O((Md+ ℓ)2(Kd+ ℓ)) computation time.

3 Local MTL with a Task Network: Kernelization

In the previous section, we showed that a linear version of the proposed MTL method
can be cast as an SOCP. In this section, we show how the kernel trick can be employed
for obtaining a non-linear variant.

3.1 Dual Formulation

Let Kfea be a positive semidefinite matrix with the (s, t)-th element being the inner-
product of feature vectors xs and xt:

K fea
s,t ≡ ⟨xs,xt⟩ .

This is a kernel matrix of feature vectors. We also introduce a kernel among tasks. Using
a new K-dimensional non-negative parameter vector λ ∈ RK

+ , we define the kernel matrix
of tasks by

Knet(λ) ≡
(

1

M
IM + Uλ

)−1

,

Conic Programming for Multi-Task Learning 7

where

Uλ ≡
K∑
k=1

λkUk,

Uk ≡ Eikik +Ejkjk −Eikjk −Ejkik .

E(i,j) ∈ RM×M is the sparse matrix whose (i, j)-th element is one and all the others are
zero. Note that this is the graph Laplacian kernel [24], where the k-th edge is weighted
according to λk. Let Z ∈ NM×ℓ be the indicator of a task and a sample such that

Z⊤ ≡

1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0nM
0nM

· · · 1nM

 .

Then the information about the tasks are expressed by the ℓ× ℓ kernel matrix

Z⊤Knet(λ)Z.

We integrate the two kernel matrices Kfea and Z⊤Knet(λ)Z by

Kint(λ) ≡ Kfea ◦
(
Z⊤Knet(λ)Z

)
,

where ◦ denotes the Hadamard product (a.k.a the element-wise product). This parame-
terized matrix Kint(λ) is guaranteed to be positive semidefinite [25].

Based on the above notations, we have the following theorem.

Theorem 2 The dual formulation of Problem 2 can be expressed using the parameterized
integrated kernel matrix Kint(λ) as follows:

Problem 5

min
1

2
α⊤ diag(y)Kint(λ) diag(y)α− ∥α∥1,

wrt α ∈ Rℓ
+,λ ∈ RK

+ ,

subj. to α ≤ Cα1ℓ, Z diag(y)α = 0M , ∥λ∥1 ≤ Cρ.

For ∀i, ∀t ∈ Nni
, we use αt,i to denote the elements of the dual variable α ∈ Rℓ

+ such that

α =
[
α1,1, . . . , αn1,1, α1,2, . . . , αnM−1,M−1, α1,M , . . . , α1,M

]
.

The proof of the above theorem is summarized in Appendix A. We note that the
solutions α and λ tend to be sparse due to the ℓ1 norm.

Changing the definition of Kfea from the linear kernel to an arbitrary kernel, we can
extend the proposed linear MTL method to non-linear domains. Furthermore, we can

Conic Programming for Multi-Task Learning 8

also deal with non-vectorial structured data by employing a suitable kernel such as the
string kernel or the Fisher kernel [26, 27, 28, 29, 30, 31, 32, 33].

In the test stage, a new sample x in the j-th task is classified by

fj(x) =
M∑
i=1

ni∑
t=1

αt,iyt,ikfea(xt,i,x)knet(i, j) + bj,

where kfea(·, ·) and knet(·, ·) are the kernel functions over features and tasks, respectively.

3.2 Dual MTL Learning by SOCP

Here, we show that the above dual problem can also be reduced to an SOCP. To this end,
we first introduce a matrix-fractional program (MFP) [23]:

Problem 6

min (Fz + g)⊤ P (z)−1 (Fz + g) ,

wrt z ∈ Rp
+,

subj. to P (z) ≡ P0 +

p∑
i=1

ziPi ∈ Sn
++,

where Pi ∈ Sn
+, F ∈ Rn×p, g ∈ Rn.

Let us re-define d as the rank of the feature kernel matrix Kfea. We introduce a
matrix Vfea ∈ Rℓ×d which decomposes the feature kernel matrix as

Kfea = VfeaVfea
⊤.

By defining the ℓ-dimensional vectors fh ∈ Rℓ corresponding to the h-th feature as

Vfea ≡
[
f1, . . . ,fd

]
∈ Rℓ×d,

and the matrices
Fh ≡ Z diag(fh ◦ y), for h = 1, . . . , d,

we have the following lemma.

Lemma 2 The objective function of Problem 5 can be rewritten as

1

2

d∑
h=1

α⊤F⊤
h

(
1

M
IM + Uλ

)−1

Fhα−α⊤1ℓ.

A proof of the above lemma is given in Appendix B. Lemma 2 implies that Problem 5
can be transformed into a combination of a linear program and d MFPs.

Conic Programming for Multi-Task Learning 9

Let us further introduce the vector vk ∈ RM for each edge:

vk = eik − ejk ,

where eik is a unit vector with the ik-th element being one. Let Vlap be a matrix defined
by

Vlap = [v1, . . . ,vK] ∈ RM×K .

Then we can re-express the graph Lagrangian matrix of tasks as

Uλ = Vlap diag(λ)Vlap
⊤.

Given the fact that an MFP can be reduced to an SOCP [23], we have the following
theorem.

Theorem 3 The dual problem (Problem 5) can be reduced to the following SOCP:

Problem 7

min − 1⊤
ℓ α+

1

2

d∑
h=1

s0,h + s1,h + · · ·+ sK,h,

wrt ∀h ∈ Nd, ∀k ∈ NK : s0,h ∈ R, sk,h ∈ R,
∀h ∈ Nd : u0,h ∈ RM ,uh= [u1,h, . . . , uK,h]

⊤∈ RK,

λ ∈ RK
+ , α ∈ Rℓ

+,

subj. to α ≤ Cα1ℓ, Z diag(y)α = 0M ,

1⊤
Kλ ≤ Cρ,

∀h ∈ Nd : M−1/2u0,h + Vlapuh = Fhα,

∀h ∈ Nd :

∥∥∥∥[2u0,h

s0,h − 1

]∥∥∥∥ ≤ s0,h + 1,

∀h ∈ Nd, ∀k ∈ NK :

∥∥∥∥[2uk,h

sk,h − λk

]∥∥∥∥ ≤ sk,h + λk,

The proof is given in Appendix C. Problem 7 can be solved with O((Kd + ℓ)2((M +
K)d+ ℓ)) computation time.

4 Discussions

In this section, we discuss the properties of the proposed MTL method and the relation
to existing methods.

Conic Programming for Multi-Task Learning 10

4.1 MTL with Common Bias

A possible variant of the proposed MTL method would be to share the bias parameter
with all tasks (i.e., b1 = b2 = · · · = bM). The idea is expected to be useful when the
number of samples in each task is very small since overfitting can be avoided. We can
also apply the common bias idea in the kernelized version just by replacing the constraint

Z diag(y)α = 0M

in Problem 5 by

y⊤α = 0.

4.2 Relation to Standard SVMs

By construction, the proposed MTL method includes the standard SVM learning algo-
rithm as a special case. Indeed, when the number of tasks is one, Problem 5 is reduced to
the standard SVM optimization problem. Thus, the proposed method may be regarded
as a natural extension of SVMs.

When the task network in completely unconnected, we end up in training SVMs
individually:

1

2
∥wi∥2 + Cα

ni∑
t=1

Hinge(fi(xt,i;wi, bi), yt,i),

for i = 1, . . . ,M.

We refer to this as individually learned SVM (IL-SVM) for comparison purposes. IL-
SVM can also be recovered by setting Cρ = 0 in the proposed method.

4.3 Global/Local Constraints

In the papers [5, 6] an MTL method has been proposed for SVMs that upper-bounds the
sum of the distances between solutions over all pairs of related tasks:

1

2

M∑
i,j=1

∥wi −wj∥2 ≤ ρ.

Upper-bounding the sum is often referred to as a global constraint [11], and requiring
the solutions of all tasks to be close can be regarded as using a fully-connected task
network. For this reason, we refer to the above approach as MTL-SVM (global/full).
The global constraint can allow some of the distances to be large since only the sum is
globally upper-bounded. In practice, this causes a significant performance degradation,
which will be experimentally shown in Section 5. In contrast, we proposed upper-bounding
each distance between the solutions of task pairs:

1

2
∥wi −wj∥2 ≤ ρ, for ∀i, ∀j ∈ NM .

Conic Programming for Multi-Task Learning 11

1

2

5

4

3

1

2

5

4

3

(a) full (b) network

Figure 1: A main feature of our MTL-SVM is to upper-bound the difference between
model parameters of each task pair. The upper-bounds in MTL-SVM (local/full) are
applied to all task pairs as in (a), whereas those in MTL-SVM (local/network) are to a
part of task pairs as in (b). MTL-SVM (global/full) and MTL-SVM (global/network)
upper-bound the sum of differences for all task pairs and a part of task pairs, respectively.

Thus, all the task pairs are guaranteed to have similar solutions. Upper-bounding each
component is often referred to as a local constraint [11], and we refer to our approach as
MTL-SVM (local/full) below.

Micchelli and Pontil [8] proposed another formulation to represent particular pairs
being strongly related:

1

2

K∑
k=1

∥wik −wjk∥
2 ≤ ρ,

where the tasks ik and jk (k = 1, . . . , K) are related to each other, but the rest are
not. Since task network information is utilized, we refer to this approach as MTL-SVM
(global/network). Our local-constraint method could also utilize a task network as

1

2
∥wik −wjk∥

2 ≤ ρ, for ∀k ∈ NK .

We refer to this approach as MTL-SVM (local/network) below. Our algorithm is not
included in the formulation of Micchelli and Pontil [8] and therefore is novel. The four
methods are summarized in Figure 1.

4.4 Ordinal Regression

MTL approaches are also useful in ordinal regression problems. The goal of ordinal regres-
sion is to predict ordinal class labels such as users’ preferences (“like”/“neutral”/“dislike”)
or students’ grades (from “A” to “F”). The ordinal regression problems can be formulated
as a set of binary classification problems. For example, in the case of students’ grades

Conic Programming for Multi-Task Learning 12

from A to F, we have the following five binary classification problems:

A vs. B,C,D,E, F,

A,B vs. C,D,E, F,

A,B,C vs. D,E, F,

A,B,C,D vs. E,F,

A,B,C,D,E vs. F.

A naive approach to ordinal regression is IL-SVM, but the approach does not utilize the
relatedness among tasks. Alternatively, Shashua and Levin [14] have proposed an ordinal
regression method called the support vector ordinal regression (SVOR), where the weight
vectors are shared by all SVMs (i.e., w1 = w2 = · · · = wM) and only the bias parameter
is learned individually.

If we allow wi (i = 1, . . . ,M) to be slightly different from each other, the ordinal
regression problem becomes an MTL problem. Since the task network is not fully con-
nected in the ordinal regression setup (i.e., the task network only has a weight between
consecutive tasks), MTL-SVM (local/network) would be a suitable choice:

∥wi −wi+1∥2 ≤ ρ, i = 1, . . . ,M − 1,

This method includes the above two ordinal regression approaches as special cases. Cρ = 0
(i.e., ignoring the task network) yields IL-SVM and Cρ = ∞ (i.e., the weight vectors of all
SVMs agree) is reduced to SVOR. Thus, in the context of ordinal regression, the proposed
method smoothly bridges two extremes.

In the next section, we experimentally show that the proposed MTL-SVM (local/full)
and MTL-SVM (local/network) method tends to outperform existing approaches.

4.5 Link Prediction

We can also use the MTL methods in link prediction problems. Suppose we are given a
graph G with n nodes and undirected links. We denote the set of vertices by

V = {1, . . . , n},

and all the pairs of nodes by

P ≡
{
(i, j)

∣∣ 1 ≤ i < j ≤ n
}
.

Note that the number of elements in P is n(n− 1)/2. The set of links E is a subset of P ,
and the node pairs in the complementary set Ē ≡ P \ E are not linked. We express the
link information as

yji =

{
+1 if (i, j) ∈ E ,
−1 if (i, j) ̸∈ E .

Conic Programming for Multi-Task Learning 13

Each node is assumed to be given a d-dimensional feature vector xi. Let Ptra be a subset
of P such that we know whether each pair of nodes in Ptra is linked or not (i.e., pairs in
Ptra are “labeled”). The goal is to predict the presence or the absence of the links of the
“unlabeled” pairs of nodes in Ptst ≡ P \ Ptra.

A standard approach to link prediction is to employ a global model that accounts for
the entire network [15, 16, 17]. However, a global model trained with all of the training
information can be heavily affected by irrelevant (or noisy) information. To cope with
this problem, Bleakley et al. [18] proposed using local models (i.e., one local model for
one node). In this method, each local model is trained with only local information (i.e.,
the training samples related to the target node) and therefore the effect of noise may be
alleviated. However, since the amount of training information available in a local region
is limited, local models trained with a limited amount of information are unreliable.
Indeed, the above local-model approach corresponds to IL-SVM in the MTL context and
is therefore not effective.

In contrast, our proposed MTL-SVM can be effectively used in link prediction by
regarding local models of the linked neighbors in the network as related tasks. This
approach is motivated by the following consideration. Many of the complex networks in
nature share interesting properties [34]. One of these properties is that a node A is likely
to be linked with node B when they share a common neighbor (e.g., A and B are likely to
be friends if they share a common friend). We exploite this property in the context of MTL
learning by requiring the model parameter of node A to be similar to the model parameter
of node B. This requirement can be effectively fulfilled by our MTL-SVM (local/network)
approach.

4.6 Collaborative Filtering

Collaborative filtering is a machine-learning problem to fill in missing elements of an
incomplete table. Let us denote an m × n incomplete binary table by Y ∈ Rm×n. Each
element Yji takes ±1 or 0, where 0 represents a missing value. Thus, the goal of the
collaborative filtering task addressed here is to predict the binary labels of the missing
elements with Yji = 0.

Let us denote the matrix Y as

Y = [x1, . . . ,xn] =

y1
...
ym

 , (3)

where the i-th column and the j-th row are denoted by xi ∈ Rm×1 and yj ∈ R1×n,
respectively. A supervised learning formulation of this collaborative filtering problem is
to regard each column xi as an m-dimensional feature vector and train a classifier. More
specifically, let us regard each row yj in the table as a task. For the j-th task, a binary
classifier is trained using features xi and labels Yji for all i ∈ N such that Yji = ±1 (i.e.,
non-missing entries). Then the missing values are predicted using the trained classifier.

Conic Programming for Multi-Task Learning 14

We can directly extend this formulation to a multi-task problem by finding related
rows (tasks); then an MTL classifier could be employed in collaborative filtering. A
practical idea of building a task network is that a task j′ is judged to be related to the
task j if the row j′ has many non-missing elements with the same labels as the task j. We
will show through experiments that the proposed MTL method is useful in this scenario.

5 Experiments

In this section, we experimentally investigate the usefulness of the proposed method.

5.1 Protein Super-Family Classification

We test the performance of the proposed method using real-world protein super-family
classification problems. Proteins are macromolecules in a cell. There are many kinds of
proteins which function differently and cooperatively for survival of the cells. The function
of a protein is determined by the tertiary structure, which is three dimensional coordinates
of the atoms included in the macromolecules. Hence, the tertiary structures are a powerful
clue to investigate the function of the proteins. However, the tertiary structure of a
protein is not always available because measuring three dimensional coordinates of the
atoms needs extremely expensive experiments. On the other hand, protein amino acid
sequences are abundantly available. We here infer the class of tertiary structures from
the amino acid sequences.

We counted 2-mers for extraction of feature vectors from the amino acid sequences.
There are 20 kinds of amino acids. Hence, the number of features is 202 = 400. We predict
the super-families of a protein classified in the SCOP database [35] (not SOCP). That is
a multi-class classification problems. In this experiment, we used seven super-families in
‘Flavodoxin’ and ‘OB-Fold.’ If we take the one-vs-rest approach, the number of tasks is
equal to the number of super-families.

We compare the proposed MTL-SVM (local/network) with IL-SVM, MTL-SVM
(global/full), and MTL-SVM (global/network). In the network methods, we generate
a random tree of tasks and use it as a task network. The values of the parameters, Cα

and Cρ, were determined by 3-fold cross-validation over the training set. We used RBF
kernels (a.k.a. Gaussian kernels), where the parameter σ2

rbf was set to the median of the
squared distances among all the training samples. We randomly picked five samples for
each class of the training set. We compute the classification accuracies of the remaining
test sequences. We repeat this procedure 50 times and take the average of the areas under
the ROC (Receiver Operating Characteristic) curves. We use the one-sample t-test at the
significance level 1% [36] to detect statistically significant differences.

The results are shown in Table 1. Each row shows the performance for each super-
family. The last row is the average. MTL-SVM (local/network) generally outperforms
all the other methods. Table 2 shows the computational time. The algorithms with local
constrants are not fast. Especially, MTL-SVM (local/full) takes the longer computational

Conic Programming for Multi-Task Learning 15

time then MTL-SVM (local/network). That is because MTL-SVM (local/full) has more
dual variables. MTL-SVM (local/network) is faster, yet the prediction performance is not
significantly different from MTL-SVM (local/full) for most of cases.

5.2 Ordinal Regression

We created six ordinal regression data sets as described in Table 3, where all the data
sets were originally regression of real output values and the output values were divided
into five quantiles. Therefore, the overall task could be divided into four isolated clas-
sification tasks, each of which estimates a quantile. We compare MTL-SVM (local/full)
and MTL-SVM (local/network) with IL-SVM, SVOR [14] (see Section 4), MTL-SVM
(global/full), and MTL-SVM (global/network). The values of the parameters, Cα and
Cρ, were determined by 3-fold cross-validation over the training set. We used RBF ker-
nels (a.k.a. Gaussian kernels), where the parameter σ2

rbf was set to the median of the
squared distances among all the training examples. We randomly picked ten samples for
training. The remaining samples were used for evaluating the classification accuracies.
Statistically significant differences were evaluated by using the one-sample t-test at the
significance level 1% [36].

The averaged performance over 100 runs is described in Table 3, showing that the
proposed MTL-SVM (local/full) is promising also in ordinal regression scenarios. The
performance of MTL-SVM (local/network) is not significantly different from MTL-SVM
(local/full), although it is computationally more expensive.

5.3 Link Prediction

We use two kinds of protein networks in yeast. One is the metabolic gene network. Genes
encode various proteins, and some of them are enzymes. Enzymes accelerate many bio-
chemical reactions occurring within cells. A series of reactions form metabolic pathways.
Through the metabolic pathways, the first molecules are modified into the last products.
Some products are used as a metabolic product. Some are stored in a cell. Some became
substrates of another pathway. In the metabolic gene network, the nodes are enzymes. An
edge is established if two enzymes catalyze successive reactions in any metabolic pathway.
This network, which contains 769 proteins and 3702 undirected edges, is identical to the
one used in Yamanishi et al [17].

We also tested our algorithms on a protein-protein interaction network. The network
we used in this experiment has been provided by von Mering et al [37]. This interaction
network is produced from the results of various biological experiments. Each edge is rated
according to the confidence level: high, middle or low. We only used high confidence edges
because they are supported by multiple experiments. By removing isolated proteins with
no edge, we obtained a network of 984 proteins and 2438 edges. The edge in the interaction
network indicates the physical interaction of two proteins.

We compared our algorithm with the approach of Bleakley et al. [18]. We determined
Cα and Cρ by 3-fold cross-validation over the training set. We took 100 nodes with the

Conic Programming for Multi-Task Learning 16

highest degree-of-nodes, and learned the local model for each node to predict the links
between that node and the other nodes. The average areas under the ROC (Receiver Oper-
ating Characteristic) curves for prediction of the enzyme network and protein interactions
are shown in Tables 4 and 5. All the datasets except ady were also used by Lanckriet et
al. [38]. The ady dataset is the set of feature vectors extracted by the approach described
in Section 4.6. MTL-SVM (local/network) generally outperforms all the other methods.
We confirmed this by using the one-sample t-test at the significance level 1% [36]. We
can not show the performance of MTL-SVM (local/full) because MTL-SVM (local/full)
is expected to require several months for learning this task.

5.4 Collaborative Filtering

We used the MovieLens dataset3, which includes a table consisting of ratings of movies
by users. Our goal is to predict whether or not a target user rated (bought and watched)
a target movie; thus we are predicting purchase information [39].

We constructed five tables, A, B, C, D, and E, from the entire dataset. Table A
includes four categories, Action, Adventure, Animation, and Children’s. Table B includes
Comedy and Crime. Table C includes Documentary, Drama, Fantasy, Film-Noir, Horror,
and Musical. Table D includes Mystery, Romance, and Sci-Fi. Table E includes Thriller,
War, and Western. We then selected users who rated more than 50 movies for each table.
We created a binary table with the rows and the columns representing users and movies,
respectively. The elements of the table are binary values whether the movie is rated by
the corresponding user (+1) or the movie is not rated (−1). We randomly picked up 30%
of the elements as the known elements, and the binary values of the remaining 70% were
treated as missing and were predicted. We regard the task j′ to be related to the task j
if the users j and j′ share the positive label for more than two movies. We determined
Cα and Cρ in our algorithm by 3-fold cross-validation over the training set.

We compared our algorithm with the latent semantic indexing (LSI) [19] and maximum
margin matrix factorization (MMMF) [40] which are popular methods for collaborative fil-
tering. We determined the hyper-parameter of LSI and MMMF by 3-fold cross-validation.
The average areas under the ROC curves for collaborative filtering are shown in Table 6.
This shows that MTL-SVM (local/network) achieved the best performance, and statisti-
cally significant differences were detected using the one-sample t-test at the significance
level 1% [36]. MTL-SVM (local/full) obtained good results, but the algorithm took much
of computational time. Indeed, we could not finish the experiments for Dataset A and
Dataset D.

3http://www.grouplens.org/

Conic Programming for Multi-Task Learning 17

T
ab

le
1:

P
ro
te
in

su
p
er
-f
am

il
y
cl
as
si
fi
ca
ti
on

.
T
h
e
ta
sk

n
et
w
or
k
s
ar
e
ra
n
d
om

ly
ge
n
er
at
ed

tr
ee
s.

T
h
e
b
ol
d
-f
ac
ed

fi
gu

re
s
in

th
e
ta
b
le

re
p
re
se
n
t
th
e
b
es
t
ac
cu
ra
cy
.
T
h
e
u
n
d
er
li
n
ed

fi
gu

re
s
in

th
e
ta
b
le

in
d
ic
at
e
th
at

th
e
p
er
fo
rm

an
ce

is
n
ot

si
gn

ifi
ca
n
tl
y

d
iff
er
en
t
fr
om

th
e
b
es
t
ac
cu
ra
cy
.

C
la
ss

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

1
0.
89
3
(0
.0
33
)

0
.8
9
6
(0
.0
32
)

0.
88
5
(0
.0
53
)

0.
88
7
(0
.0
40
)

0.
88
4
(0
.0
43
)

2
0.
80
3
(0
.0
66
)

0.
82
7
(0
.0
40
)

0.
82
0
(0
.0
43
)

0
.8
3
3
(0
.0
35
)

0.
83
1
(0
.0
38
)

3
0.
91
6
(0
.0
13
)

0.
91
9
(0
.0
16
)

0.
91
8
(0
.0
18
)

0
.9
2
6
(0
.0
12
)

0.
92
5
(0
.0
12
)

4
0.
70
2
(0
.1
03
)

0.
76
2
(0
.0
46
)

0.
76
9
(0
.0
41
)

0
.7
7
6
(0
.0
55
)

0.
77
1
(0
.0
67
)

5
0.
93
8
(0
.0
30
)

0
.9
4
8
(0
.0
24
)

0.
94
7
(0
.0
27
)

0.
94
2
(0
.0
23
)

0.
94
2
(0
.0
26
)

6
0.
75
5
(0
.0
85
)

0.
76
3
(0
.0
57
)

0.
78
2
(0
.0
41
)

0
.7
8
6
(0
.0
48
)

0.
78
5
(0
.0
61
)

7
0.
59
1
(0
.0
61
)

0.
61
2
(0
.0
67
)

0.
61
6
(0
.0
73
)

0
.6
2
9
(0
.0
55
)

0.
62
7
(0
.0
60
)

av
e

0.
80
0
(0
.0
24
)

0.
81
8
(0
.0
19
)

0.
81
9
(0
.0
21
)

0
.8
2
5
(0
.0
17
)

0.
82
3
(0
.0
20
)

T
ab

le
2:

C
om

p
u
ta
ti
on

ti
m
e.

C
la
ss

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

T
im

e
(s
ec
)

0.
06
9
(0
.0
06
)

0.
26
9
(0
.0
07
)

0.
28
8
(0
.0
16
)

2
.3
3
9
(0
.0
89
)

0.
88
4
(0
.0
57
)

Conic Programming for Multi-Task Learning 18

T
ab

le
3:

T
h
e
ac
cu
ra
cy

of
ea
ch

m
et
h
o
d
in

or
d
in
al

re
gr
es
si
on

ta
sk
s.

T
h
e
b
ol
d
-f
ac
ed

fi
gu

re
s
in

th
e
ta
b
le

re
p
re
se
n
t
th
e
b
es
t

ac
cu
ra
cy
.
T
h
e
u
n
d
er
li
n
ed

fi
gu

re
s
in

th
e
ta
b
le

in
d
ic
at
e
th
at

th
e
p
er
fo
rm

an
ce

is
n
ot

si
gn

ifi
ca
n
tl
y
d
iff
er
en
t
fr
om

th
e
b
es
t

ac
cu
ra
cy
. D
at
as
et

L
S
I

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

ab
al
on

e
0.
96
5
(0
.0
16
)

0.
96
5
(0
.0
16
)

0.
96
5
(0
.0
16
)

0.
96
5
(0
.0
16
)

0
.9
7
2
(0
.0
12
)

0.
96
6
(0
.0
16
)

b
o
d
y
fa
t

0.
95
7
(0
.0
16
)

0.
95
8
(0
.0
13
)

0.
95
8
(0
.0
16
)

0.
95
8
(0
.0
15
)

0
.9
6
2
(0
.0
13
)

0
.9
6
2
(0
.0
13
)

ca
d
at
a

0.
97
4
(0
.0
10
)

0.
97
4
(0
.0
10
)

0.
97
4
(0
.0
10
)

0.
97
4
(0
.0
10
)

0
.9
7
5
(0
.0
09
)

0
.9
7
5
(0
.0
10
)

h
ou

si
n
g

0.
96
9
(0
.0
12
)

0.
97
0
(0
.0
12
)

0.
96
9
(0
.0
12
)

0.
96
9
(0
.0
12
)

0
.9
7
3
(0
.0
11
)

0.
97
2
(0
.0
11
)

m
g

0.
96
9
(0
.0
10
)

0.
96
9
(0
.0
10
)

0.
96
9
(0
.0
10
)

0.
96
9
(0
.0
10
)

0.
96
9
(0
.0
09
)

0
.9
7
0
(0
.0
10
)

m
p
g

0.
96
4
(0
.0
12
)

0.
96
6
(0
.0
12
)

0.
96
3
(0
.0
11
)

0.
96
3
(0
.0
11
)

0
.9
6
9
(0
.0
11
)

0
.9
6
9
(0
.0
11
)

T
ab

le
4:

T
h
e
A
U
C
s
fo
r
en
zy
m
e
n
et
w
or
k
p
re
d
ic
ti
on

.
T
h
e
b
ol
d
-f
ac
ed

fi
gu

re
s
in

th
e
ta
b
le

re
p
re
se
n
t
th
e
b
es
t
A
U
C
s.

T
h
e

u
n
d
er
li
n
ed

fi
gu

re
s
in

th
e
ta
b
le

in
d
ic
at
e
th
at

th
e
p
er
fo
rm

an
ce

is
n
ot

si
gn

ifi
ca
n
tl
y
d
iff
er
en
t
fr
om

th
e
b
es
t
A
U
C
s.

D
at
as
et

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

ad
y

0.
73
3
(0
.1
13
)

0.
74
4
(0
.1
22
)

0.
74
6
(0
.1
20
)

n
/a

0
.7
5
2
(0
.1
18
)

b
la
st

0.
78
6
(0
.1
02
)

0.
79
2
(0
.1
04
)

0.
80
0
(0
.0
97
)

n
/a

0
.8
0
6
(0
.0
98
)

d
iff

0.
62
0
(0
.1
30
)

0.
63
0
(0
.1
24
)

0.
63
9
(0
.1
22
)

n
/a

0
.6
5
4
(0
.1
09
)

ex
p
r

0.
63
0
(0
.1
04
)

0.
63
5
(0
.1
09
)

0.
63
6
(0
.1
07
)

n
/a

0
.6
4
5
(0
.1
00
)

ff
t

0.
65
2
(0
.1
11
)

0.
66
3
(0
.1
12
)

0.
66
8
(0
.1
09
)

n
/a

0
.6
7
5
(0
.1
03
)

li
n
in
t

0.
58
8
(0
.1
11
)

0.
60
9
(0
.1
29
)

0.
61
1
(0
.1
27
)

n
/a

0
.6
1
4
(0
.1
19
)

p
fa
m

h
m
m

0.
74
0
(0
.1
23
)

0.
74
8
(0
.1
23
)

0.
74
9
(0
.1
25
)

n
/a

0
.7
6
0
(0
.1
24
)

sw
0.
73
2
(0
.1
26
)

0.
73
1
(0
.1
35
)

0.
72
5
(0
.1
46
)

n
/a

0
.7
5
3
(0
.1
22
)

Conic Programming for Multi-Task Learning 19

T
ab

le
5:

T
h
e
A
U
C
s
fo
r
p
re
d
ic
ti
on

of
p
ro
te
in

in
te
ra
ct
io
n
s.

T
h
e
b
ol
d
-f
ac
ed

fi
gu

re
s
in

th
e
ta
b
le

re
p
re
se
n
t
th
e
b
es
t
A
U
C
s.

T
h
e
u
n
d
er
li
n
ed

fi
gu

re
s
in

th
e
ta
b
le

in
d
ic
at
e
th
at

th
e
p
er
fo
rm

an
ce

is
n
ot

si
gn

ifi
ca
n
tl
y
d
iff
er
en
t
fr
om

th
e
b
es
t
A
U
C
s.

D
at
as
et

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

ad
y

0.
74
8
(0
.1
39
)

0.
74
8
(0
.1
51
)

0.
75
0
(0
.1
51
)

n
/a

0
.7
6
1
(0
.1
44
)

b
la
st

0.
62
1
(0
.0
95
)

0
.6
5
7
(0
.0
96
)

0.
65
5
(0
.0
95
)

n
/a

0.
65
6
(0
.0
95
)

ex
p
r

0.
82
0
(0
.1
17
)

0
.8
3
2
(0
.1
24
)

0.
83
1
(0
.1
23
)

n
/a

0
.8
3
2
(0
.1
23
)

ff
t

0.
59
1
(0
.1
09
)

0.
60
4
(0
.1
09
)

0.
60
3
(0
.1
10
)

n
/a

0
.6
1
2
(0
.1
04
)

p
fa
m

h
m
m

0.
62
8
(0
.1
37
)

0.
64
7
(0
.1
36
)

0.
65
0
(0
.1
28
)

n
/a

0
.6
5
7
(0
.1
27
)

sw
0.
69
3
(0
.1
14
)

0.
67
8
(0
.1
73
)

0.
67
2
(0
.1
78
)

n
/a

0
.7
1
7
(0
.1
32
)

T
ab

le
6:

T
h
e
A
U
C
s
fo
r
co
ll
ab

or
at
iv
e
fi
lt
er
in
g.

T
h
e
b
ol
d
-f
ac
ed

fi
gu

re
s
in

th
e
ta
b
le

re
p
re
se
n
t
th
e
b
es
t
p
er
fo
rm

an
ce
.
T
h
e

u
n
d
er
li
n
ed

fi
gu

re
s
in

th
e
ta
b
le

in
d
ic
at
e
th
at

th
e
p
er
fo
rm

an
ce

is
n
ot

si
gn

ifi
ca
n
tl
y
d
iff
er
en
t
fr
om

th
e
b
es
t
A
U
C
s.

D
at
as
et

L
S
I

M
M
M
F

IL
-S
V
M

M
T
L
-S
V
M

(g
lo
b
al
/f
u
ll
)

M
T
L
-S
V
M

(g
lo
b
al
/n

et
w
or
k
)

M
T
L
-S
V
M

(l
o
ca
l/
fu
ll
)

M
T
L
-S
V
M

(l
o
ca
l/
n
et
w
or
k
)

A
0.
76
4
(0
.0
97
)

0.
76
0
(0
.0
38
)

0.
79
6
(0
.0
43
)

0.
82
2
(0
.0
38
)

0.
81
3
(0
.0
44
)

n
/a

0
.8
2
7
(0
.0
35
)

B
0.
77
0
(0
.0
76
)

0.
80
8
(0
.0
46
)

0.
78
5
(0
.0
37
)

0.
81
4
(0
.0
29
)

0.
81
4
(0
.0
29
)

0.
81
6
(0
.0
29
)

0
.8
1
7
(0
.0
28
)

C
0.
80
1
(0
.0
88
)

0.
80
9
(0
.0
28
)

0.
80
3
(0
.0
43
)

0
.8
3
5
(0
.0
40
)

0
.8
3
5
(0
.0
40
)

0.
83
2
(0
.0
42
)

0.
83
2
(0
.0
42
)

D
0.
77
6
(0
.0
81
)

0.
77
8
(0
.0
47
)

0.
78
6
(0
.0
43
)

0.
81
6
(0
.0
41
)

0.
80
6
(0
.0
45
)

n
/a

0
.8
1
7
(0
.0
39
)

E
0.
77
0
(0
.0
86
)

0.
77
7
(0
.0
50
)

0.
76
7
(0
.0
48
)

0.
79
8
(0
.0
42
)

0.
79
3
(0
.0
44
)

0.
80
2
(0
.0
41
)

0
.8
0
3
(0
.0
41
)

Conic Programming for Multi-Task Learning 20

6 Conclusions

We proposed a new multi-task learning method that overcomes the limitation of existing
approaches by making use of local constraints. We demonstrated through simulations
that the proposed method is useful in various multi-task learning scenarios.

There are several methods which learn the tasks and estimate the task network si-
multaneously using non-convex Bayesian approach [9, 41, 42, 43]. Future work includes
development of a convex algorithm for it. In the papers [5, 6], global-constraint MTL
has been addressed in the context of multiple kernel learning. A possible extension of
our work along this line would be to formulate local-constraint MTL as multiple kernel
learning and investigate their relation.

The standard SVMs have a variety of extensions and have been combined with various
techniques, for example, one-class classification [44, 45], regression [46, 21, 47], and the
ν-trick [48, 49, 50]. We expect that such extensions and techniques can also be applied
similarly to the proposed method. Other possible future works include the elucidation
of the entire regularization path [51, 52] and the application to learning from multiple
networks [53, 11, 54]. Developing algorithms for learning probabilistic models with a task
network is also a promising direction to be explored.

A Proof of Theorem 2

Let
X̃ ≡ (Z ⊗ 1d) ◦ (1M ⊗X),

where we have defined

X ≡
[
x1,1, . . . ,xn1,1,x1,2, . . . ,xnM−1,M−1,x1,M , . . . ,xnM ,M

]
and the operators ⊗ and ◦ are the Kronecker and Hadamard product, respectively. Define

Dx ≡ diag{x} ∈ Rn×n, for ∀x ∈ Rn.

The constraints associated with Hinge loss can be rewritten as

Dα

(
X̃⊤w +Z⊤b

)
≥ 1ℓ − ξα.

The squared Euclidean distance can be expressed as

∥wik −wjk∥2 = w⊤
ik
wik +w⊤

jk
wjk −w⊤

ik
wjk −w⊤

jk
wii

= w⊤ (Eik,ik ⊗ Id
)
w +w⊤ (Ejk,jk ⊗ Id

)
w

−w⊤ (Eik,jk ⊗ Id
)
w −w⊤ (Ejk,ik ⊗ Id

)
w

= w⊤ (Uk ⊗ Id)w.

Conic Programming for Multi-Task Learning 21

If we denote the primal and dual variables by

θP ≡
[
w⊤, b⊤, ξ⊤α , ρ

]⊤
,

θD ≡
[
α⊤,λ⊤µ,η⊤

α

]⊤ ≥ 0,

respectively, the Lagrangian function [12] is given by

L(θP ,θD) =
1

2M
∥w∥2 + Cα∥ξα∥1 + Cρρ+α⊤

(
1ℓ − ξα −Dα

(
X̃⊤w +Z⊤b

))
+

K∑
k=1

λk(
1

2
w⊤ (Uk ⊗ Id)w − ρ)− ρµ− ξ⊤αηα

=
1

2
w⊤

((
1

M
IM + Uλ

)
⊗ Id

)
w −α⊤Dy

(
X̃⊤w +Z⊤b

)
+ ∥α∥1

+ ξ⊤α (Cα1K −α− ηα) + ρ(Cρ − µ− 1⊤
Kλ).

=
1

2
w⊤ (Knet(λ)

−1 ⊗ Id
)
w −α⊤Dy

(
X̃⊤w +Z⊤b

)
+ ∥α∥1

+ ξ⊤α (Cα1K −α− ηα) + ρ(Cρ − µ− 1⊤
Kλ).

The derivatives of θP are written as

∂L
∂w

=
(
Knet(λ)

−1 ⊗ Id
)
w − X̃Dyα,

∂L
∂b

= ZDyα,

∂L
∂ξα

= Cα1K − λα − ηα,

∂L
∂ρ

= Cρ − µ− 1⊤
Kλ.

Setting the derivatives to zero yields

L(θP ,θD) = −1

2
α⊤DyX̃

⊤ (Knet(λ)⊗ Id) X̃Dyα+α⊤1ℓ

= −1

2
α⊤Dy

(
Kfea ◦

(
Z⊤Knet(λ)Z

))
Dyα+α⊤1ℓ.

Negating the Lagrangian, the dual form in Problem 5 is derived.

Conic Programming for Multi-Task Learning 22

B Proof of Lemma 2

The objective function of Problem 5 can be rearranged as

1

2
α⊤ diag(y)Kint(λ) diag(y)α− ∥α∥1

=
1

2
α⊤ diag(y)

(
Kfea ◦

(
Z⊤Knet(λ)Z

))
diag(y)α− ∥α∥1

=
1

2
α⊤ diag(y)

(
d∑

i=1

(
fif

⊤
i

)
◦
(
Z⊤Knet(λ)Z

))
diag(y)α− ∥α∥1

=
1

2

d∑
i=1

α⊤ diag(y)
((
fif

⊤
i

)
◦
(
Z⊤Knet(λ)Z

))
diag(y)α− ∥α∥1

=
1

2

d∑
i=1

α⊤ diag(y ◦ fi)Z
⊤Knet(λ)Z diag(y ◦ fi)α− ∥α∥1

=
1

2

d∑
h=1

α⊤F⊤
h Knet(λ)Fhα−α⊤1ℓ

=
1

2

d∑
h=1

α⊤F⊤
h

(
1

M
IM + Uλ

)−1

Fhα−α⊤1ℓ,

which concludes the proof.

C Proof of Theorem 3

The graph Laplacian is expressed as

Uλ =
K∑
k=1

λk

(
Eikik +Ejkjk −Eikjk −Ejkik

)
=

K∑
k=1

λkvkv
⊤
k

= Vlap diag(λ)Vlap
⊤.

If we let

P0 ≡
1

M
IM ,

Pk ≡ vkv
⊤
k , ∀k,

g ≡ 0M ,

Conic Programming for Multi-Task Learning 23

the objective function of the dual problem is expressed as

1

2

d∑
h=1

(Fhα+ g)⊤
(
P0 +

K∑
k=1

λkPk

)−1

(Fhα+ g)−α⊤1ℓ,

which implies that Problem 5 can be transformed into the combination of a linear program
and d MFPs. Following Lobo et al [23], we show that the equivalence between Problem 7
and Problem 5 as follows. We rewrite Problem 7 as

min − 1⊤
ℓ α+

1

2

d∑
h=1

s0,h + s1,h + · · ·+ sK,h,

wrt s0,h ∈ R, sk,h ∈ R, u0,h ∈ RM ,

uh = [u1,h, . . . , uK,h]
⊤ ∈ RK , ∀k, ∀h,

λ ∈ RK
+ , α ∈ Rℓ

+,

subj. to α ≤ Cα1ℓ, Z diag(y)α = 0M , 1⊤
Kλ ≤ Cρ,

1√
M

IMu0,h +
K∑
k=1

uk,hvk = Fhα+ g,

∥u0,h∥2 ≤ s20,h, ∀h,
∥uk,h∥2 ≤ sk,hλk, ∀k, ∀h.

Eliminating s0,h, sk,h ∀k, ∀h, the problem can be reduced to

min − 1⊤
ℓ α+

1

2

∑
h

(
∥u0,h∥2 +

∑
k

1

λk

∥uk,h∥2
)
,

wrt u0,h ∈ RM , uh = [u1,h, . . . , uK,h]
⊤ ∈ RK , ∀k, ∀h,

λ ∈ RK
+ , α ∈ Rℓ

+,

subj. to α ≤ Cα1ℓ, Z diag(y)α = 0M , 1⊤
Kλ ≤ Cρ,

1√
M

u0,h +
K∑
k=1

uk,hvk = Fhα+ g,

where 0/0 is here treated as 0. Introducing d Lagrangian multipliers ζh ∈ Rd for the
linear equality constraints of u0,h and uk,h, the Lagrangian function is expressed as

−1⊤
ℓ α+

1

2

∑
h

(
∥u0,h∥2 +

∑
k

1

λk

∥uk,h∥2
)

+
∑
h

ζ⊤
h

(
1√
M

u0,h +
K∑
k=1

uk,hvk − Fhα− g

)
.

Conic Programming for Multi-Task Learning 24

Setting the derivatives to zero yields

∀h ∈ Nd : u0,h = − 1√
M

ζh,

∀h ∈ Nd, ∀k ∈ NK : uk,h = −λkv
⊤
k ζh,

Substituting them back into the objective function, the problem is obtained as

min − 1⊤
ℓ α+

1

2

∑
h

ζ⊤
h

(
P0 +

∑
k

λkPk

)
ζh,

wrt λ ∈ RK
+ , α ∈ Rℓ

+,

subj. to α ≤ Cα1ℓ, Z diag(y)α = 0M , 1⊤
Kλ ≤ Cρ,

∀h ∈ Nd :

(
P0 +

∑
k

λkPk

)
ζh = Fhα+ g,

Then the theorem is established by substituting the last equality constraint into the
objective function.

Acknowledgment

This work was supported by a Grant-in-Aid for Young Scientists (B), number 18700287,
from the Ministry of Education, Culture, Sports, Science and Technology, Japan and
BIRD of Japan Science and Technology Agency (JST).

References

[1] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp. 41–75, 1997.

[2] S. Thrun and L. Pratt, Learning to Learn. Springer, 1997.

[3] J. Baxter, “A model of inductive bias learning,” Journal of Artificial Intelligence
Research, vol. 12, pp. 149–198, 2000.

[4] B. Bakker and T. Heskes, “Task clustering and gating for Bayesian multitask learn-
ing,” Journal of Machine Learning Research, vol. 4, pp. 83–99, 2003.

[5] T. Evgeniou and M. Pontil, “Regularized multitask learning,” in Proceedings of the
17th SIGKDD Conference on Knowledge Discovery and Data Mining, 2004, pp. 109–
117.

[6] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple tasks with kernel
methods,” Journal of Machine Learning Research, vol. 6, pp. 615–637, 2005.

Conic Programming for Multi-Task Learning 25

[7] N. D. Lawrence and J. C. Platt, “Learning to learn with the informative vector
machine,” in Proceedings of the Twenty First International Conference on Machine
Learning, 2004, pp. 512–519.

[8] C. A. Micchelli and M. Pontil, “Kernels for multi-task learning,” in Advances in
Neural Information Processing Systems 17. Cambridge, MA: MIT Press, 2005, pp.
921–928.

[9] K. Yu, V. Tresp, and A. Schwaighofer, “Learning Gaussian processes from multiple
tasks,” in Proceedings of the 22nd International Conference on Machine Learning,
2005, pp. 1012–1019.

[10] E. V. Bonilla, F. V. Agakov, and C. K. I. Williams, “Kernel multi-task learning
using task-specific features,” in Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, 2007, pp. 43–50.

[11] K. Tsuda and W. S. Noble, “Learning kernels from biological networks by maximizing
entropy,” Bioinformatics, vol. 20, no. Suppl. 1, pp. i326–i333, 2004.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[13] Y. Amit, M. Fink, N. Srebro, and S. Ullman, “Uncovering shared structures in multi-
class classification,” in Proceedings of the 24th International Conference on Machine
Learning, 2007, pp. 17–24.

[14] A. Shashua and A. Levin, “Ranking with large margin principle: two approaches,”
in Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT
Press, 2003, pp. 937–944.

[15] T. Kato, K. Tsuda, and K. Asai, “Selective integration of multiple biological data
for supervised network inference,” Bioinformatics, vol. 21, pp. 2488–2495, 2005.

[16] J.-P. Vert and Y. Yamanishi, “Supervised graph inference,” in Advances in Neural
Information Processing Systems 17. Cambridge, MA: MIT Press, 2005.

[17] Y. Yamanishi, J. P. Vert, and M. Kanehisa, “Supervised enzyme network inference
from the integration of genomic data and chemical information,” Bioinformatics, vol.
21 Suppl. 1, pp. i468–i477, Jun 2005.

[18] K. Bleakley, G. Biau, and J.-P. Vert, “Supervised reconstruction of biological net-
works with local models,” Bioinformatics, vol. 23, no. 13, pp. i57–i65, 2007.

[19] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In-
dexing by latent semantic analysis.” Journal of the American Society for Information
Science, vol. 41, no. 6, pp. 391–407, 1990.

Conic Programming for Multi-Task Learning 26

[20] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, “Multi-task learning for classifi-
cation with Dirichlet process priors,” Journal of Machine Learning Research, vol. 8,
pp. 35–63, 2007.

[21] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.

[22] B. Borchers, “CSDP, a C library for semidefinite programming,” Optimization Meth-
ods and Software, vol. 11, no. 1, pp. 613–623, 1999.

[23] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order
cone programming,” Linear Algebra and its Applications, vol. 284, pp. 193–228, 1998.

[24] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty, “Nonparametric transforms
of graph kernels for semi-supervised learning,” in Advances in Neural Information
Processing Systems 17. Cambridge, MA: MIT Press, 2004, pp. 1641–1648.

[25] D. Haussler, “Convolution kernels on discrete structures,” UC Santa Cruz, Tech.
Rep. UCSC-CRL-99-10, July 1999.

[26] T. Jaakkola and D. Haussler, “Exploiting generative models in discriminative classi-
fiers,” in Advances in Neural Information Processing Systems 11, M. S. Kearns, S. A.
Solla, and D. A. Cohn, Eds. Cambridge, MA.: MIT Press, 1999, pp. 487–493.

[27] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, “Text clas-
sification using string kernels,” Journal of Machine Learning Research, vol. 2, pp.
419–444, 2002.

[28] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete in-
put spaces,” in Proceedings of the Nineteenth International Conference on Machine
Learning, 2002, pp. 315–322.

[29] C. Leslie, E. Eskin, and W. S. Noble, “The spectrum kernel: A string kernel for SVM
protein classification,” in Proceedings of the Pacific Symposium on Biocomputing,
2002, pp. 566–575.

[30] H. Kashima and T. Koyanagi, “Kernels for semi-structured data,” in Proceedings of
the Nineteenth International Conference on Machine Learning, 2002, pp. 291–298.

[31] T. Gärtner, “A survey of kernels for structured data,” SIGKDD Explorations, vol. 5,
no. 1, pp. S268–S275, 2003.

[32] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and efficient
alternatives,” in Proceedings of the Sixteenth Annual Conference on Computational
Learning Theory, 2003, pp. 129–143.

[33] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between labeled
graphs,” in Proceedings of the Twentieth International Conference on Machine Learn-
ing, 2003, pp. 321–328.

Conic Programming for Multi-Task Learning 27

[34] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network
motifs: Simple building blocks of complex networks,” Science, vol. 298, pp. 824–827,
Jan. 2002.

[35] A. Andreeva, D. Howorth, S. E. Brenner, T. J. P. Hubbard, C. Chothia, and A. G.
Murzin, “SCOP database in 2004: refinements integrate structure and sequence fam-
ily data,” Nuclear Acid Research, vol. 32, pp. D226–D229, 2004.

[36] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. Springer, 2005.

[37] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P. Bork,
“Comparative assessment of large-scale data sets of protein-protein interactions,”
Nature, vol. 417, pp. 399–403, 2002.

[38] G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. I. Jordan, and W. S. Noble, “A
statistical framework for genomic data fusion,” Bioinformatics, vol. 20, pp. 2626–
2635, 2004.

[39] M. Kurucz, A. A. Benczúr, T. Kiss, I. Nagy, A. Szabó, and B. Torma, “KDD cup
2007 task1 winner report,” in ACM SIGKDD Explorations Newsletter, vol. 9, no. 2,
2008, pp. 53–56.

[40] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola, “Maximum-margin matrix factoriza-
tion,” in Advances in Neural Information Processing Systems 17, L. Saul, Y. Weiss,
and L. Bottou, Eds. MIT Press, 2005, pp. 1329–1336.

[41] E. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian process prediction,” in
Advances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer,
and S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, pp. 153–160.

[42] X. Liao, Y. Xue, and L. Carin, “Logistic regression with an auxiliary data source,”
in Proceedings of the 22nd International Conference on Machine Learning, 2005, pp.
505–512.

[43] Q. Liu, X. Liao, and L. Carin, “Semi-supervised multitask learning,” in Advances
in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and
S. Roweis, Eds. Cambridge, MA: MIT Press, 2008, pp. 937–944.

[44] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
“Estimating the support of a high-dimensional distribution,” Neural Computation,
vol. 13, no. 7, pp. 1443–1471, 2001.

[45] D. M. J. Tax and R. P. W. Duin, “Support vector data description,” Machine Learn-
ing, vol. 54, no. 1, pp. 45–66, 2004.

[46] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector
regression machines,” in Advances in Neural Information Processing Systems 9, M. C.
Mozer, M. I. Jordan, and T. Petsche, Eds. MIT Press, 1997, pp. 155–161.

Conic Programming for Multi-Task Learning 28

[47] C.-C. Chang and C.-J. Lin, “Training ν-support vector regression: Theory and algo-
rithms,” Neural Computation, vol. 14, no. 8, pp. 1959–1977, 2002.

[48] B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett, “New support vector algo-
rithms,” Neural Computation, vol. 12, no. 5, pp. 1207–1245, 2000.

[49] F. Perez-Cruz, D. J. L. H. J. Weston, and B. Schölkopf, “Extension of the ν-SVM
range for classification,” in Advances in Learning Theory: Methods, Models and Ap-
plications 190, J. A. K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vande-
walle, Eds. Amsterdam: IOS Press, 2003, pp. 179–196.

[50] P. H. Chen, C. J. Lin, and B. Schölkopf, “A tutorial on ν-support vector machines,”
Applied Stochastic Models in Business and Industry, vol. 21, no. 2, pp. 111–136, 2005.

[51] B. Efron, T. Hastie, R. Tibshirani, and I. Johnstone, “Least angle regression,” The
Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[52] T. Hastie, S. Rosset, R. Tibshirani, and J. ZHu, “The entire regularization path
for the support vector machine,” Journal of Machine Learning Research, vol. 5, pp.
1391–1415, 2004.

[53] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan,
“Learning the kernel matrix with semidefinite programming,” Journal of Machine
Learning Research, vol. 5, pp. 27–72, Jan 2004.

[54] T. Kato, H. Kashima, and M. Sugiyama, “Integration of multiple networks for robust
label propagation,” in Proceedings of 2008 SIAM International Conference on Data
Mining (SDM2008), Atlanta, Georgia, USA, 2008, pp. 716–726.

