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ABSTRACT

Support vector regression(SVR) is a popular regression
algorithm in machine learning and signal processing. In
this paper, we first prove that the SVR algorithm is equiva-
lent to minimizing theconditional value-at-risk(CVaR) of
the distribution of theℓ1-loss residuals, which is a popu-
lar risk measure in finance. The equivalence between SVR
and CVaR minimization allows us to derive a new upper
bound on theℓ1-loss generalization error of SVR. Then we
show that SVR actually minimizes the upper bound under
some condition, implying its optimality. We finally apply
the SVR method to an index tracking problem in finance,
and develop a new portfolio selection method. Experiments
show that the proposed method compares favorably with al-
ternative approaches.

1. INTRODUCTION

Support vector classification(SVC) is a useful classifica-
tion algorithm in machine learning [1, 2, 3]. SVC separates
training samples in different classes by the hyperplane with
maximum margin. The maximum margin hyperplane was
shown to minimize the Vapnik-Chervonenkis bound, an up-
per bound of the generalization error [4]. Thus, the general-
ization performance of SVC is theoretically guaranteed.

Following the success of the SV method in classifica-
tion, it was extended to be able to handle real-valued out-
puts, i.e., regression scenarios [5, 2]. The SV regression
(SVR) method was shown to perform well, and thus be-
coming one of the popular data analysis tools in machine
learning and signal processing. However, the superior per-
formance of SVR was not completely understood beyond
its experimental success. A primal goal of this paper is to
provide a novel theoretical insight into the SVR algorithm.

We first prove that SVR is equivalent to minimizing the
conditional value-at-risk(CVaR) [6, 7] of the distribution of
theℓ1-loss residuals. Theβ-CVaR is defined as the mean of
the largest100β% residuals (see Figure 1), and is a popular
risk measure in risk-sensitive learning, e.g., in the context

of financial data analysis. Similar equivalence has been ob-
tained for SVC [8], so the present result can be regarded as
generalization of the previous work to regression scenarios.

We then give a novel upper bound of the generalization
error measured by theℓ1-loss function, where the equiva-
lence between SVR and CVaR minimization plays an im-
portant role in its derivation. Under some condition, we
can show that the SVR method minimizes the upper bound.
This would partially explain the reason why SVR is a supe-
rior regression approach.

As an application of the CVaR minimization approach,
we consider an index tracking problem in finance and de-
velop a new portfolio selection method. Our SVR-based
portfolio selection method is shown to perform well in ex-
periments.

2. SVR AND CVAR MINIMIZATION

Let us consider a regression problem of obtaining a linear
function approximatory = ⟨w,x⟩+b fromm training sam-
ples,(xi, yi), i ∈ M := {1, . . . ,m}, wherexi ∈ IRn is an
input point,yi ∈ IR is an output value, andw ∈ IRn and
b ∈ IR are parameters to be learned.

In this section, we briefly review the definition of SVR
and CVaR minimization methods.

2.1. SVR

In theϵ-SVR framework [5],w andb are determined so that
the following regularized empirical risk is minimized:

min
w,b

1

2
w⊤w +

C ′

m

∑
i∈M

[|yi − ⟨w,xi⟩ − b| − ϵ]+,

whereϵ is a positive constant and[X]+ := max{X, 0}.
[|yi −⟨w,xi⟩− b| − ϵ]+ is called the Vapnik’sϵ-insensitive
loss function [4].C ′ > 0 is a regularization constant con-
trolling the trade-off between the goodness-of-fit and the
complexity of the model. The positive parameterϵ con-
trols the sensitivity to noise in the training data. A potential
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Fig. 1. Illustration of CVaRϕβ(w, b) and VaRαβ(w, b).

weakness of theϵ-SVR formulation is that the choice ofϵ is
not intuitive beyond the role as the insensitive zone.

Another formulation of SVR calledν-SVR was pro-
posed in [2], which automatically determinesϵ based on an-
other tuning parameterν. In ν-SVR,w andb are learned as
follows:

min
w,b,α,z

1
2w

⊤w + C ′ (να+ 1
m

∑
i∈M zi

)
subject to zi − |yi − ⟨w,xi⟩ − b|+ α ≥ 0,

zi ≥ 0, i ∈ M.

(1)

By settingν = 0 andα = ϵ, the formulation (1) is reduced
to theϵ-SVR formulation.

An advantage of theν-SVR formulation is that the
meaning ofν is intuitive [2]: ν is an upper bound of the
fraction of margin errors (i.e., the samples incurring posi-
tive z∗i , i ∈ M ), and is a lower bound of the fraction of SVs
(i.e., the non-zero elements of the dual solution).

2.2. CVaR Minimization

Let f(w, b;x, y) be some loss function. Figure 1 illustrates
the distribution of lossf(w, b;xi, yi). LetΦ(α|w, b) be the
cumulative distribution function off(w, b;xi, yi), ∀i ∈ M :

Φ(α|w, b) :=
1

m
|{i ∈ M : f(w, b;xi, yi) ≤ α}|.

Its 100β-percentile (β ∈ (0, 1)), denoted byαβ(w, b), is
called theβ-value-at-risk(VaR) (see Figure 1 again) [9, 6]:

αβ(w, b) := min{α : Φ(α |w, b) ≥ β }.

The conditional value-at-risk (CVaR), denoted byϕβ(w, b),
is defined as the average loss exceeding the VaRαβ(w, b),
i.e., the average off(w, b;xi, yi) in the shaded region in
Figure 1.

Now let us consider minimizing the CVaRϕβ(w, b)
with respect to(w, b). According to [6],minw,b ϕβ(w, b)
is equivalently expressed as

min
w,b,α

α+
1

(1− β)m

m∑
i=1

[f(w, b;xi, yi)− α]+. (2)

More precisely, the solutions(w∗, b∗) of these two prob-
lems are the same, and their optimal valuesϕβ(w

∗, b∗) are
also the same. The solutionα∗ of (2), obtained as a by-
product, is equal to theβ-VaRαβ(w

∗, b∗) under some con-
dition [6].

3. SVR AS CVAR MINIMIZATION

In this section, we first show that SVR can be interpreted
as minimizing CVaR. Then, based on this interpretation, we
derive an upper bound of the generalization error of SVR.

3.1. Equivalence between SVR and CVaR Minimization

For someC > 0, let us consider the following loss function:

f(w, b;x, y) =

∣∣∣∣y − C
⟨w,x⟩+ b

∥w∥

∣∣∣∣ . (3)

Letw∗ andb∗ be the solution of CVaR minimization (2) for
the loss (3), with which we construct a regressor as

h(x) = ⟨ C

∥w∗∥
w∗,x⟩+ C

∥w∗∥
b∗. (4)

Then we have the following lemma.

Lemma 1 LetCβ := ∥w̃β∥, wherew̃β is the solution of

min
w,b,α

α+
1

(1− β)m

m∑
i=1

[|yi − (⟨w,xi⟩+ b)| − α]+. (5)

Whenβ ∈ (0, 1) andC ≤ Cβ , the CVaR minimization prob-
lem (2) for the loss(3) is equivalent to1

min
w,b,α,z

α+ 1
(1−β)m

∑
i∈M zi

subject to zi − |yi − ⟨w,xi⟩ − b|+ α ≥ 0,
zi ≥ 0, i ∈ M, w⊤w ≤ C2.

(6)

A sketch of proof of the above lemma is given in Ap-
pendix A. This lemma implies that the problem (2) for the
loss (3) can be interpreted as the CVaR minimization prob-
lem with the lossf(w, b;x, y) = |y − (⟨w,x⟩+ b)| and
the region ofw restricted tow⊤w ≤ C2.

Based on the above lemma, we can easily show that the
problem has the following properties (proofs are omitted
due to lack of space).

Lemma 2 The optimal value of (6),ϕβ(w
∗, b∗), is strictly

decreasing asC increases or asβ decreases.

1WhenC > Cβ , (2) for the loss (3) is equivalent to (6) with the con-
straintw⊤w ≤ C2 replaced byw⊤w = C2, which is not convex.



Theorem 3 The CVaR minimization problem (2), equiva-
lently (6), is the same asν-SVR (1) underβ = 1− ν and

C=(C ′ν)

√ ∑
i,j∈M

(λ̄
(1)
i − λ̄

(2)
i )(λ̄

(1)
j − λ̄

(2)
j )⟨xi,xj⟩=∥w̄∥,

whereλ̄
(1)

and λ̄
(2)

are the solutions of the dualν-SVR.
λ̄
(1)
i and λ̄

(2)
i correspond to the constraintszi − (yi −

⟨w,xi⟩ − b) +α ≥ 0 andzi + (yi − ⟨w,xi⟩ − b) +α ≥ 0,
respectively, and̄w is the solution of the primalν-SVR.

By comparing the dual problem of (6) and that ofν-
SVR (1), we find that both dual problems have the same
solution under the above-mentioned parameter transforma-
tion, although there is a gap between their optimal values.

3.2. Generalization Performance ofν-SVR

Here, we derive a new bound of the generalization error of
ν-SVR based on the notion of CVaR (a sketch of proof of
the following theorem is given in Appendix B).

Theorem 4 Suppose that the training samples(xi, yi), i ∈
M , are drawn independently from a distributionP , whose
support lives in the ball of radiusB centered at the origin.
Then, for anyν ∈ (0, 1) and any(w, b) such that∥w∥ ≤
C > 0, with probability at least1− δ over the training set,
the probability thatf(w, b;x, y) = |y − (⟨w,x⟩+ b)| is
larger than a thresholdθ is bounded as

P{f(w, b;x, y) > θ}
≤ ν +G(θ − ϕ1−ν(w, b)) if ϕ1−ν(w, b) < θ, (7)

P{f(w, b;x, y) > θ}
≤ ν +G(θ − α1−ν(w, b)) if α1−ν(w, b) < θ, (8)

P{f(w, b;x, y) > θ}
≥ ν −G(α1−ν(w, b)− θ) if α1−ν(w, b) > θ, (9)

whereP denotes the probability with respect to(x, y) over
the distributionP , and

G(γ) := 2

√
2

m

(
κ

γ2
log2(2m)− 1 + ln

(
2

δ

))
,

κ := 4c2(B + θ + 1)2
{
C2 +B2(C2 + 1) + 1

}
.

Whenϕ1−ν(w
∗, b∗) < θ, the solution(w∗, b∗) of ν-

SVR minimizes the upper bound (7) because of the follow-
ing facts: (a)G(γ) is strictly decreasing as|γ| increases.
(b) The upper boundν + G(θ − ϕ1−ν(w, b)) is lowered if
ϕ1−ν(w, b) is reduced. (c) The solution(w∗, b∗) of ν-SVR
minimizesϕ1−ν(w, b) under the constraint∥w∥ ≤ C.

Similarly, whenα1−ν(w, b) < θ or α1−ν(w, b) > θ,
the upper bound (8) or the lower bound (9) is lowered if
α1−ν(w, b) is reduced. Sinceα1−ν(w, b) ≤ ϕ1−ν(w, b)
always holds (see Figure 1), minimizingϕ1−ν(w, b) by ν-
SVR may lower the bounds (8) and (9).

4. APPLICATION: PORTFOLIO SELECTION BY
INDEX TRACKING

We have shown that SVR is equivalent to CVaR minimiza-
tion, and SVR minimizes a bound of the generalization error
under some condition. In this section, we apply the CVaR
minimization idea to financial data analysis, and develop a
new algorithm.

4.1. Background

The problem of allocating funds to a given set of investable
assets is known asportfolio selectionin finance. In his sem-
inal paper [10], Markowitz assumed that only the expecta-
tion and variability of return (i.e., mean and variance) matter
to investors, where the variance plays a role as a measure of
the risk.

Although the variance would be the most fundamental
risk measure to be minimized, it has several drawbacks. A
critical one is that the variance is affected by the deviation
in the direction of both profit and loss—in reality, we only
want to suppress the deviation in the direction of loss. A
partial risk measure such as VaR, which gained popularity
in the 1990s in finance, can account for a large loss with a
small probability. More recently, CVaR has been growing in
popularity, as it can overcome critical shortcomings of VaR
such as non-convexity.

In financial markets, investment strategies can be di-
vided intopassiveinvestment strategies andactive invest-
ment strategies. Investors who adopt active investment
strategies aggressively exchange assets so that they can con-
stantly find profit opportunities. Active investors take it for
granted that they can beat markets continuously. On the
other hand, investors who adopt passive investment strate-
gies conservatively consider that they cannot continuously
go beyond the average level of market.

Index tracking investmentis a kind of passive invest-
ment strategy: investors purchase all or some of the assets
contained in a market index, and construct a portfolio that
tracks the market index. Since the market index is consid-
ered as a benchmark, the investors expect to obtain a similar
return to that of the benchmark through the index tracking
investment.

In this section, we propose a new index tracking portfo-
lio selection model based on SVR. An investor’s wealth is
allocated amongn risky assets which are component stocks
contained in the asset market index.

We will use the following notations: LetRt :=
(R1,t, . . . , Rn,t)

⊤ be an observed historical return vector of
then assets at timet (t = 1, . . . , T ), π := (π1, . . . , πn)

⊤

be a decision vector which shows the proportion of the total
amount of money devoted to asseti (i = 1, . . . , n), andIt
be observed market index return at timet (t = 1, . . . , T ).



4.2. Traditional Models

The problem of portfolio selection by index tracking has
been formulated as a linear regression problem, where a lin-
ear modelI = R⊤π (with parameterπ) is estimated based
on a given set of observed data(It,Rt), t = 1, . . . , T . For
someδ > 0, thetracking error is defined as

gδ(π) :=
1

T

[
T∑

t=1

|It −R⊤
t π|δ

](1/δ)
.

Roll [11] usedg2(π) for portfolio selection. More pre-
cisely, the squared errorg2(π) is minimized with respect to
π subject toπ ∈ Π, whereΠ = {π :

∑n
i=1 πi = 1, πi ≥

0, i = 1, . . . , n}. The non-negativity constraint is called
the short sale constraint, meaning that the investor cannot
sell an asset that the investor does not own. The squared-
error formulation results in a quadratic program, which is
the same as the standard Lasso regression subject toπ ∈ Π,
and thus the solution can be obtained by a standard opti-
mization software. We refer to this method as ‘Sqr’.

Instead of the squared deviationsg2(π), the absolute er-
ror g1(π) is also a popular choice (e.g., [12, 13, 14]). This
is advantageous in that the optimization problem is reduced
to a linear program, which can be more efficiently solved
than quadratic programs. Furthermore, the absolute error
formulation is more robust against outliers than the squared
error formulation [15]. We refer to this method as ‘Abs’.

Alternatively, the∞-norm was used in [14], which re-
sults in the minmax measure:maxt |It −R⊤

t π|. The opti-
mization problem still yields a linear program, but the solu-
tion may be too conservative due to the minmax nature. We
refer to this method as ‘Minmax’.

Theβ-CVaR formulation would be a useful alternative
to the minmax formulation since it bridges the absolute er-
ror and the minmax approaches by the parameterβ:

min
π∈Π,α

α+
1

(1− β)T

T∑
t=1

[|It −R⊤
t π| − α]+. (10)

Indeed, if the parameterβ is sufficiently close to1, the prob-
lem (10) is reduced to the minmax formulation, and ifβ
goes to0, it agrees with the absolute error formulation (see
also Figure 1). Furthermore, the CVaR minimization prob-
lem is still a linear program, so it can be solved efficiently.
However, naively minimizing CVaR may result in overfit-
ting if the number of training samples is small. We refer to
this method as ‘CVaR’.

4.3. Proposed Model

Here, we propose to solve the following SVR-type problem:

min
π∈Π,α

α+
1

(1− β)T

T∑
t=1

[∣∣∣∣∣It − C
R⊤

t π

∥π∥

∣∣∣∣∣− α

]+
. (11)

As shown in Lemma 1, this is equivalent to

min
π∈Π,α,z

α+ 1
(1−β)T

∑T
t=1 zt

subject to zt − |It −R⊤
t π|+ α ≥ 0, zt ≥ 0, ∀t,

∥π∥ ≤ C.

We refer to this formulation as thenorm-constrained CVaR
(NCCVaR) deviation model.

Let I be the return of a target asset to be mimicked, and
let each component ofR represent the rate of return of each
asset. We regard(I,R) as a random variable. Suppose that
(I,R) has a bounded support in a ball of radiusB centered
at the origin, and that(I1,R1), . . . , (IT ,RT ) are indepen-
dently drawn from a distributionP . We then immediately
have the following corollary from Theorem 4.

Corollary 5 For any feasible portfolioπ satisfying∥π∥ ≤
C, the probability of the tracking error being greater than
a thresholdθ, P{|I − R⊤π| > θ}, is bounded as (7)–(9)
with probability at least1− δ, where

G(γ) := 2

√
2

T

{
4c2(B+θ)2(C2+1)

γ2
log2(2T )+ln

2

δe

}
.

At a glance, the difference between the plain CVaR
model (10) and the proposed NCCVaR model (11) seems
rather minor—we just included the additional norm con-
straint∥π∥ ≤ C in NCCVaR. However, this small differ-
ence is highly fruitful in two respects. One is that the NC-
CVaR formulation has the theoretical guarantee as shown
in the above corollary, while no theoretical generalization
bound exists for the plain CVaR, to the best of our knowl-
edge. Another is the experimental performance. Since the
norm constraint essentially works as a regularizer, NCCVaR
works better than plain CVaR, as shown next.

4.4. Experiments

First, we report experimental results on an artificial data set.
We randomly generatedRt ∈ IRn, t = 1, . . . , T (n = 100
andT = 120), following a regime-switching model[16]
with a low-return low-volatility regime and a high-return
high-volatility regime. More specifically, each element
of Rt were independently drawn fromN(µlow, σ

2
low) or

N(µhigh, σ
2
high), whereN(µ, σ2) denotes the normal dis-

tribution with meanµ and varianceσ2. For each element
of Rt, the parametersµlow, µhigh, σlow, andσhigh were
drawn fromU(0, 2), U(3, 5), U(7, 10), andU(10, 13), re-
spectively, whereU(a, b) denotes the uniform distribution
on [a, b]. The true indexIt at time t was set to the mean
of the elements ofRt. The initial regime was chosen ran-
domly. The regimes change from timet to time t + 1 with
probability0.05; otherwise the regime stays unchanged.

Let π̂ be a decision vector learned from theT training
samples. In NCCVaR (11), the parameters(β,C) were sys-
tematically tuned as follows. Using the first5

6T -period of
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Fig. 4. Test error (Nikkei weekly).

the training samples, we obtained the pair(β,C) that gave
the best prediction for the remaining16T -period. β was
chosen from{0.1, 0.3, . . . , 0.9}, andC was chosen from
1/
√
n+ k(1− 1/

√
n)/(10

√
n), k = 1, . . . , 5.

The prediction performance of the learned vectorπ̂ was
evaluated for the(T + 1)-th sample (generated in the same
way as the training samples) as|IT+1−R⊤

T+1π̂|. Changing
the random seed, we generated the(T + 1)-th sample100
times and evaluated the mean and the95-percentile of the
above test error. We repeated this experimental procedure
100 times, and evaluated the distributions of the mean and
the95-percentile of the test error over100 runs. Figure 2 de-
picts the box plots of the experimental results, showing that
NCCVaR compares favorably with other methods in partic-
ular in the95-percentile.

Next, we report experimental results on real financial
market data:monthly and weekly return data of stocks listed
in the Nikkei 225 index. The monthly data set consists of re-
turns of182 companies during the 270 consecutive months
between May 1987 and October 2009, whereas the weekly
data set consists of returns of the182 companies during the
1178 consecutive weeks from April 12, 1987 to November
1, 2009. These monthly and weekly returns of the Nikkei
225 index are our target to be tracked.

We randomly chosen (= 20, 40, . . . , 180) assets from
the182 assets, and designed a portfolioπ̂t using historical
dataRt, . . . ,Rt+T−1 for T = 120 (10 years) consecutive
periods from the monthly data set or forT = 150 (almost
3 years) consecutive periods from the weekly data set. We
evaluated the test error|It+T − R⊤

t+T π̂t| for the next-step
sample(It+T ,Rt+T ). This procedure was repeated fort =
1, . . . , T (T = 150 for the monthly data set andT = 1028

for the weekly data set). The test error1
T

∑T
t=1 |It+T −

R⊤
t+T π̂t| was employed as a performance measure.

Figure 3 depicts the mean and the95-percentile of the
test error for the monthly data, showing that NCCVaR gave
the lowest test error for almost all cases (Minmax was omit-
ted since it performed very poorly). NCCVaR dominated
over the other methods also for the weekly data (see Fig-

ure 4). From these results, we conclude that the proposed
NCCVaR is a useful alternative to the existing methods.

5. CONCLUSIONS

In this paper, we showed that the popular SVR algorithm
is equivalent to minimizing theconditional value-at-risk
(CVaR). This finding allowed us to derive a new upper
bound of the generalization error. We showed that SVR
actually minimizes the upper bound under some condition,
implying its optimality. We then applied the SVR method to
portfolio selection based on index tracking, and showed the
proposed method has a theoretical performance guarantee
and also performs well in experiments.

As shown in the proof of Theorem 4, a sharper gener-
alization error bound can be obtained in terms of the VaR
α1−ν(w, b). Thus, directly minimizing the VaR, instead of
the CVaR, would be theoretically more favorable. However,
minimizing the VaR is known to be hard since the resulting
optimization problem is non-convex. Thus, developing a
powerful optimization algorithm for better solving the VaR
minimization problem would be a challenging and promis-
ing future direction to be pursued.

6. REFERENCES

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training
algorithm for optimal margin classifiers,” inProceedings of
the Fifth Annual ACM Workshop on Computational Learning
Theory. 1992, pp. 144–152, ACM Press.
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A. SKETCH OF PROOF OF LEMMA 1

SupposeC ≤ Cβ . If w⊤w < C2 holds at optimality, we
can construct a feasible solution with a smaller objective
value than the optimal value (see [17] for details). How-
ever, this contradicts the optimality of (6). Therefore, by
contradiction, the solution of (6) satisfiesw⊤w = C2. The
variablezi of (6) corresponds to[f(w, b;xi, yi) − α]+ of
(2) with the loss (3). The scaling of the solutions is differ-
ent, but their (normalized) regressorsh(x) defined by (4)
are the same. 2

B. SKETCH OF PROOF OF THEOREM 4

In this proof, we use the following lemma, which holds
wheny = ±1 (i.e., classification) andb = 0 (i.e., homo-
geneous):

Lemma 6 [2] Suppose that the margiñγ > 0 and the sup-
portX is in a centered ball of radius̃R. Then, for allw such
that∥w∥ ≤ 1, there exists a positive constantc such that the
following bound holds with probability at least1− δ:

P{y(⟨w,x⟩) < 0} ≤ |{i : yi⟨w,xi⟩ < γ̃}|
m

+

√√√√ 2

m

(
4c2R̃2

γ̃2
log2(2m)− 1 + ln

2

δ

)
.

In order to fit our CVaR minimization (6) to the setup of
the above lemma, let us express

P{θ − f(w, b;x, y) < 0}
= P{θ−y+⟨w,x⟩+b < 0}+ P{θ+y−⟨w,x⟩−b < 0}.

Then, the functionθ − f(w, b;x, y) can be expressed as
⟨w̃, x̃(1)⟩ or ⟨w̃, x̃(2)⟩, where

w̃ =
(
w⊤ b 1

)⊤
, x̃(1) =

(
x⊤ 1 θ − y

)⊤
,

x̃(2) =
(
−x⊤ − 1 θ + y

)⊤
.

We begin with the case whereα1−ν(w, b) < θ. Let
us consider the distribution of(θ − f(w, b;xi, yi))/∥w̃∥,
i ∈ M against the “margin”γ := (θ − α1−ν(w, b))/∥w̃∥.
Then the property of(1− ν)-CVaR (see [6]) provides

1

m

∣∣∣∣{ i :
θ − f(w, b;xi, yi)

∥w̃∥
< γ

}∣∣∣∣
=

1

m
|{ i : α1−ν(w, b) < f(w, b;xi, yi)}| ≤ ν.

Since∥w̃∥ ≤
√
C2 +B2(C2 + 1) + 1 and∥x̃(i)∥ ≤ B +

θ + 1, Lemma 6 yields thatP{f(w, b;x, y) > θ} is upper-
bounded byν +G(θ − α1−ν(w, b)).

In the same way, the upper boundν + G(θ −
ϕ1−ν(w, b)) whenϕ1−ν(w, b) < θ can be obtained by us-
ing α1−ν(w, b) ≤ ϕ1−ν(w, b).

Finally, we consider the case whereα1−ν(w, b) > θ.
In this case,γ is negative although it should be positive in
Lemma 6. In order to resolve this issue, let us consider
an “inverted” classifier−θ + f(w, b;x, y), whose sign is
opposite of that ofθ− f(w, b;x, y). Applying Lemma 6 to

P{−θ+f(w, b;x, y) < 0} = 1−P{θ−f(w, b;x, y) < 0},

we obtain an upper bound in the same way as the above
case, leading to the lower boundν−G(α1−ν(w, b)− θ). 2


