
1IEICE Transactions on Information and Systems,
vol.E93-D, no.10, pp.2690–2701, 2010.
Revised on June 26, 2011.

Superfast-Trainable Multi-Class Probabilistic Classifier
by Least-Squares Posterior Fitting

Masashi Sugiyama (sugi@cs.titech.ac.jp)
Tokyo Institute of Technology

and
Japan Science and Technology Agency

Abstract

Kernel logistic regression (KLR) is a powerful and flexible classification algorithm,
which possesses an ability to provide the confidence of class prediction. How-
ever, its training—typically carried out by (quasi-)Newton methods—is rather time-
consuming. In this paper, we propose an alternative probabilistic classification
algorithm called Least-Squares Probabilistic Classifier (LSPC). KLR models the
class-posterior probability by the log-linear combination of kernel functions and its
parameters are learned by (regularized) maximum likelihood. In contrast, LSPC
employs the linear combination of kernel functions and its parameters are learned
by regularized least-squares fitting of the true class-posterior probability. Thanks
to this linear regularized least-squares formulation, the solution of LSPC can be
computed analytically just by solving a regularized system of linear equations in a
class-wise manner. Thus LSPC is computationally very efficient and numerically
stable. Through experiments, we show that the computation time of LSPC is faster
than that of KLR by orders of magnitude, with comparable classification accuracy.

Keywords

Probabilistic classification, kernel logistic regression, class-posterior probability, squared-
loss.

1 Introduction

The support vector machine (SVM) [7, 33] is a popular method for classification. Various
computationally efficient algorithms for training SVM with massive datasets have been
proposed so far (see [24, 16, 5, 6, 29, 26, 32, 13, 11, 30, 17, 31, 12] and many other softwares
available online). However, SVM cannot provide the confidence of class prediction since it
only learns the decision boundaries between different classes. To cope with this problem,

Superfast-Trainable Multi-Class Probabilistic Classifier 2

several post-processing methods have been developed for approximately computing the
class-posterior probability [25, 34].

On the other hand, logistic regression (LR) is a classification algorithm that can nat-
urally give the confidence of class prediction since it directly learns the class-posterior
probabilities [15]. Recently, various efficient algorithms for training LR models special-
ized in sparse data have been developed [22, 10].

Applying the kernel trick to LR as done in SVM, one can easily obtain a non-linear
classifier with probabilistic outputs, called kernel logistic regression (KLR). Since the ker-
nel matrix is often dense (e.g., Gaussian kernels), the state-of-the-art LR algorithms for
sparse data are not applicable to KLR. Thus, in order to train KLR classifiers, standard
non-linear optimization techniques such as Newton’s method (more specifically, iteratively
reweighted least-squares) and quasi-Newton methods (for example, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method) seem to be commonly used in practice [15, 23]. Al-
though the performance of these general-purpose non-linear optimization techniques has
been improved together with the evolution of computer environment in the last decade,
computing the KLR solution is still challenging when the number of training samples is
large. The purpose of this paper is to propose an alternative probabilistic classification
method that can be trained very efficiently.

Our proposed method is called the Least-Squares Probabilistic Classifier (LSPC). In
LSPC, we use a linear combination of Gaussian kernels centered at training points as a
model of class-posterior probabilities. Then we fit this model to the true class-posterior
probability by least-squares1. An advantage of this linear least-squares formulation is
that consistency is guaranteed without taking into account the normalization factor. In
contrast, normalization is essential in the maximum-likelihood LR formulation; otherwise
the likelihood tends to infinity. Thanks to the simplification brought by excluding the
normalization factor from the optimization criterion, we can compute the globally optimal
solution of LSPC analytically just by solving a system of linear equations.

Furthermore, we show that the use of a linear combination of kernel functions in
LSPC allows us to learn the parameters in a class-wise manner. This highly contributes to
further reducing the computational cost particularly in multi-class classification scenarios.
Through experiments, we show that LSPC is computationally much more efficient than
KLR with comparable accuracy.

2 Least-squares Approach to Probabilistic Classifica-

tion

In this section, we formulate the problem of probabilistic classification and give a new
method in the least-squares framework.

1A least-squares formulation has been employed for improving the computational efficiency of SVMs
[29, 26, 13]. However, these approaches deal with deterministic classification, not probabilistic classifica-
tion.

Superfast-Trainable Multi-Class Probabilistic Classifier 3

2.1 Problem Formulation

Let X (⊂ Rd) be the input domain, where d is the dimensionality of the input domain.
Let Y = {1, . . . , c} be the set of labels, where c is the number of classes. Let us consider
a joint probability distribution on X × Y with joint probability density p(x, y). Suppose
that we are given n independent and identically distributed (i.i.d.) paired samples of
input x and output y:

{(xi, yi) ∈ X × Y}ni=1.

The goal is to estimate the class-posterior probability p(y|x) from the samples
{(xi, yi)}ni=1. The class-posterior probability allows us to classify test sample x to class ŷ
with confidence p(ŷ|x):

ŷ := argmax
y

p(y|x).

Let us denote the marginal density of x by p(x) and we assume that it is strictly
positive:

p(x) > 0 for all x ∈ X .
Then, by definition, the class-posterior probability p(y|x) can be expressed as

p(y|x) = p(x, y)

p(x)
. (1)

This expression will be utilized in the derivation of the proposed method below.

2.2 Linear Least-squares Fitting of Class-posterior Probability

Here we introduce our least-squares fitting idea. We begin with the formulation for
learning the class-posterior probability p(y|x) as a function of both x and y, i.e., the
class-posterior probabilities for all classes are learned simultaneously. Then in Section 2.3,
we show that this simultaneous learning problem can be decomposed into independent
class-wise learning problems, which highly contributes to reducing the computational cost.

We model the class-posterior probability p(y|x) by the following linear model:

q(y|x;α) :=
b∑

ℓ=1

αℓϕℓ(x, y) = α
⊤ϕ(x, y),

where ⊤ denotes the transpose of a matrix or a vector,

α = (α1, . . . , αb)
⊤

are parameters to be learned from samples, and

ϕ(x, y) = (ϕ1(x, y), . . . , ϕb(x, y))
⊤

are basis functions such that

ϕ(x, y) ≥ 0b for all (x, y) ∈ X × Y .

Superfast-Trainable Multi-Class Probabilistic Classifier 4

0b denotes the b-dimensional vector with all zeros and the inequality for vectors is applied
in the element-wise manner. We explain how the basis functions ϕ(x, y) are practically
chosen in Section 2.3.

We determine the parameter α in the model q(y|x;α) so that the following squared
error J is minimized:

J(α) :=
1

2

c∑
y=1

∫
(q(y|x;α)− p(y|x))2 p(x)dx

=
1

2

c∑
y=1

∫
q(y|x;α)2p(x)dx−

c∑
y=1

∫
q(y|x;α)p(x, y)dx+ Const.

=
1

2
α⊤Hα− h⊤α+ Const.,

where we used Eq.(1). The b× b matrix H and the b-dimensional vector h are defined as

H :=
c∑

y=1

∫
ϕ(x, y)ϕ(x, y)⊤p(x)dx,

h :=
c∑

y=1

∫
ϕ(x, y)p(x, y)dx.

H and h contain the expectations over unknown densities p(x) and p(x, y), so we ap-
proximate the expectations by sample averages. Then we have

Ĥ :=
1

n

c∑
y=1

n∑
i=1

ϕ(xi, y)ϕ(xi, y)
⊤,

ĥ :=
1

n

n∑
i=1

ϕ(xi, yi).

Now our optimization criterion is formulated as

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+ λα⊤α

]
,

where a regularizer λα⊤α (λ > 0) is included for regularization purposes. Taking the
derivative of the above objective function and equating it to zero, we see that the solution
α̂ can be obtained just by solving the following system of linear equations.

(Ĥ + λIb)α = ĥ, (2)

where Ib denotes the b-dimensional identity matrix. Thus, the solution α̂ is given ana-
lytically as

α̂ = (Ĥ + λIb)
−1ĥ.

Superfast-Trainable Multi-Class Probabilistic Classifier 5

In order to assure that the solution q(y|x; α̂) is a conditional probability, we round up
negative outputs to zero [35] and renormalize the solution. Consequently, our final solution
is expressed as

p̂(y|x) = max(0, α̂⊤ϕ(x, y)∑c
y′=1max(0, α̂⊤ϕ(x, y′))

, (3)

We call the above method Least-Squares Probabilistic Classifier (LSPC). LSPC can be
regarded as an application of a density ratio estimation method called the unconstrained
Least-Squares Importance Fitting (uLSIF) [18] to probabilistic classification. Thus all the
theoretical properties of uLSIF such as consistency, the rate of convergence, and numerical
stability [19, 20] may be directly translated into the current context.

2.3 Basis Function Design

A naive choice of basis functions ϕ(x, y) would be a kernel model, i.e., for some kernel
function K ′,

q(y|x;α) =
c∑

y′=1

n∑
ℓ=1

α
(y′)
ℓ K ′(x,xℓ, y, y

′), (4)

which contains cn parameters. For this model, the computational complexity for solving
Eq.(2) is O(c3n3).

Here we propose to separate input x and output y, and use the delta kernel for y (as
in KLR):

q(y|x;α) =
c∑

y′=1

n∑
ℓ=1

α
(y′)
ℓ K(x,xℓ)δy,y′ ,

where K is a kernel function for x and δy,y′ is the Kronecker delta:

δy,y′ =

{
1 if y = y′,

0 otherwise.

This model choice actually allows us to speed up the computation of LSPC significantly
since all the calculations can be carried out separately in a class-wise manner. Indeed,
the above model for class y is expressed as

q(y|x;α) =
n∑

ℓ=1

α
(y)
ℓ K(x,xℓ). (5)

Then the matrix Ĥ becomes block-diagonal, as illustrated in Figure 1(a). Thus we only
need to train a model with n parameters separately c times for each class y, by solving
the following equation:

(Ĥ
′
+ λIn)α

(y) = h̃
(y)
,

Superfast-Trainable Multi-Class Probabilistic Classifier 6

Kernels
for class 1

Kernels
for class 2

Kernels
for class 3Ĥ′ Ĥ′ Ĥ′

(a) Model (5)

Samples
in class 1

Samples
in class 2

Samples
in class 3

Ĥ
(1)

Ĥ
(2)

Ĥ
(3)

(b) Model (7)

Figure 1: Structure of matrix Ĥ for model (5) and model (7). The number of classes is
c = 3. Suppose training samples {(xi, yi)}ni=1 are sorted according to label y. Colored
blocks are non-zero and others are zeros. For model (5) consisting of c sets of n basis

functions, the matrix Ĥ becomes block-diagonal (with common block matrix Ĥ
′
), and

thus training can be carried out separately for each block. For model (7) consisting of c
sets of ny basis functions, the size of the target block is further reduced.

where Ĥ
′
is the n× n matrix and h̃

(y)
is the n-dimensional vector defined as

Ĥ ′
ℓ,ℓ′ :=

1

n

n∑
i=1

K(xi,xℓ)K(xi,xℓ′),

h̃
(y)
ℓ :=

1

n

n∑
i=1

K(xi,xℓ)δy,yi .

Since Ĥ
′
is common to all y, we only need to compute (Ĥ

′
+ λIn)

−1 once. Then the
computational complexity for obtaining the solution is O(n3+ cn2), which is smaller than
the case with general kernel model (4). Thus this approach would be computationally
efficient when the number of classes c is large.

Here, we further propose to reduce the number of kernels in model (5). To this end,
we focus on a kernel function K(x,x′) that is “localized”. Examples of such localized
kernels include the popular Gaussian kernel [28]:

K(x,x′) = exp

(
−∥x− x

′∥2

2σ2

)
. (6)

Our idea is to reduce the number of kernels by locating the kernels only at samples
belonging to the target class:

q(y|x;α) =
ny∑
ℓ=1

α
(y)
ℓ K(x,x

(y)
ℓ), (7)

Superfast-Trainable Multi-Class Probabilistic Classifier 7

Input

O
ut

pu
t

Figure 2: Heuristic of reducing the number of basis functions—locate Gaussian kernels
only at the samples of the target class.

where ny is the number of training samples in class y, and {x(y)
i }

ny

i=1 is the training input
samples in class y.

The rationale behind this model simplification is as follows (Figure 2). By definition,
the class-posterior probability p(y|x) takes large values in the regions where samples in
class y are dense; conversely, p(y|x) takes smaller values (i.e., close to zero) in the regions
where samples in class y are sparse. When a non-negative function is approximated by a
Gaussian kernel model, many kernels may be needed in the region where the output of
the target function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following
this heuristic, many kernels are allocated in the region where p(y|x) takes large values,
which can be achieved by Eq.(7).

This model simplification allows us to further reduce the computational cost since the
size of the target blocks in matrix Ĥ is further reduced, as illustrated in Figure 1(b). In
order to learn the ny-dimensional parameter vector

α(y) = (α
(y)
1 , . . . , α(y)

ny
)⊤

for each class y, we only need to solve the following system of ny linear equations:

(Ĥ
(y)

+ λIny)α
(y) = ĥ

(y)
, (8)

where Ĥ
(y)

is the ny × ny matrix and ĥ
(y)

is the ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

1

n

n∑
i=1

K(xi,x
(y)
ℓ)K(xi,x

(y)
ℓ′), (9)

ĥ
(y)
ℓ :=

1

n

ny∑
i=1

K(x
(y)
i ,x

(y)
ℓ).

Let α̂(y) be the solution of Eq.(8). Then our final solution is given by

p̂(y|x) = max(0,
∑ny

ℓ=1 α̂
(y)
ℓ K(x,x

(y)
ℓ))∑c

y′=1max(0,
∑ny′

ℓ=1 α̂
(y′)
ℓ K(x,x

(y′)
ℓ))

. (10)

Superfast-Trainable Multi-Class Probabilistic Classifier 8

Input: Labeled training samples {(xi, yi)}ni=1

(equivalently, {x(y)
i }

ny

i=1 for class y = 1, . . . , c),
Gaussian width σ, and regularization parameter λ;

Output: Class-posterior probability p̂(y|x);
for y = 1, . . . , c

Ĥ
(y)
ℓ,ℓ′ ←−

1

n

n∑
i=1

exp

(
−∥xi − x(y)

ℓ ∥2 + ∥xi − x(y)
ℓ′ ∥2

2σ2

)
for ℓ, ℓ′ = 1, . . . , ny;

ĥ
(y)
ℓ ←−

1

n

ny∑
i=1

exp

(
−∥x

(y)
i − x

(y)
ℓ ∥2

2σ2

)
for ℓ = 1, . . . , ny;

Solve linear equation (Ĥ
(y)

+ λIny)α
(y) = ĥ

(y)
and obtain α̂(y);

end

p̂(y|x)←−
max

(
0,

ny∑
ℓ=1

α̂
(y)
ℓ exp

(
−∥x− x

(y)
ℓ ∥2

2σ2

))
c∑

y′=1

max

(
0,

ny′∑
ℓ=1

α̂
(y′)
ℓ exp

(
−∥x− x

(y′)
ℓ ∥2

2σ2

)) ;

Figure 3: Pseudo code of LSPC for simplified model (7) with Gaussian kernel (6).

For the simplified model (7), the computational complexity for obtaining the solution
is O(cn2

yn)—when ny = n/c for all y, this is equal to O(c−1n3). Thus this approach is
computationally highly efficient for multi-class problems.

A pseudo code of the simplest LSPC implementation for Gaussian kernels is summa-
rized in Figure 3. Its MATLABR⃝ implementation is available from

http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/LSPC/

3 Experiments

In this section, we experimentally compare the performance of the following classification
methods:

• LSPC: LSPC with model (7).

• LSPC(full): LSPC with model (5).

• KLR: ℓ2-penalized kernel logistic regression with Gaussian kernels. We used a
MATLAB R⃝ implementation included in the ‘minFunc’ package [27], which uses
limited-memory BFGS updates with Shanno-Phua scaling in computing the step
direction and a bracketing line-search for a point satisfying the strong Wolfe condi-
tions to compute the step size.

Superfast-Trainable Multi-Class Probabilistic Classifier 9

When we fed data to learning algorithms, the input samples were normalized in the
element-wise manner so that each element has mean zero and unit variance. The Gaussian
width σ and the regularization parameter λ for all the methods are chosen based on 2-fold
cross-validation from

σ ∈ { 1
10
m, 1

5
m, 1

2
m, 2

3
m,m, 3

2
m, 2m, 5m, 10m},

λ ∈ {10−2, 10−1.5, 10−1, 10−0.5, 100},

where
m := median({∥xi − xj∥}ni,j=1).

3.1 Illustrative Examples

First, we illustrate the behavior of each method using a toy dataset.
We set the dimension of the input space to d = 2 and the number of classes to c = 3.

We independently drew samples in each class from the following class-conditional sample
densities (see Figure 4):

p(x|y = 1) = N

(
x;

[
−2
0

]
,

[
1 0
0 1

])
,

p(x|y = 2) = N

(
x;

[
2
0

]
,

[
1 0
0 1

])
,

p(x|y = 3) =
1

2
N

(
x;

[
0
−3

]
,

[
4 0
0 1

])
+

1

2
N

(
x;

[
0
2

]
,

[
1 0
0 4

])
,

where N(x;µ,Σ) denotes the Gaussian density with mean µ and covariance matrix Σ.
We set the class-prior probabilities p(y) as

p(y) =

{
1/4 if y = 1, 2,

1/2 if y = 3,

and we set the number of training samples to n = 200. Generated samples are plotted in
Figure 5.

The true class-posterior probabilities p(y|x) (∝ p(x|y)p(y)), their estimates obtained
by LSPC, LSPC(full), and KLR are depicted in Figure 6. The plots show that all the
methods approximate the true class-posterior probabilities well in the training region
(say, [−5, 5]2). However, the output outside the training region is substantially different
in LSPC and KLR. This is induced by the difference of the models—a linear combination
of Gaussian kernels is used in LSPC, while its exponent is used in KLR. Outside the
training region, there is no kernel, and thus a linear combination of Gaussian kernels
takes values close to zero (note that the values are not exactly zero since Gaussian tails
extended from training regions remain everywhere); then typically one of the classes takes
a value close to one, and the others tend to zero outside the training regions. On the other

Superfast-Trainable Multi-Class Probabilistic Classifier 10

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p(x|y=1)

x(2
)

0

0.05

0.1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p(x|y=2)

x(2
)

0

0.05

0.1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p(x|y=3)

x(2
)

0.01

0.02

0.03

0.04

Figure 4: Illustrative examples. Class-conditional sample densities p(x|y).

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Optimal classification

Tr1
Te1
Tr2
Te2
Tr3
Te3

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Classification by LSPC

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Classification by LSPC(full)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
Classification by KLR

Figure 5: Illustrative examples. Training samples are plotted with filled symbols. Unfilled
symbols denote the classification results based on the true class-posterior probabilities and
their estimates obtained by LSPC, LSPC(full), and KLR.

Superfast-Trainable Multi-Class Probabilistic Classifier 11

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

True p(y=1|x)

x(2
)

0.2

0.4

0.6

0.8

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

True p(y=2|x)

x(2
)

0.2

0.4

0.6

0.8

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

True p(y=3|x)

x(2
)

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=1|x) by LSPC

x(2
)

0.2

0.4

0.6

0.8

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=2|x) by LSPC

x(2
)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=3|x) by LSPC

x(2
)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=1|x) by LSPC(full)

x(2
)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=2|x) by LSPC(full)

x(2
)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=3|x) by LSPC(full)

x(2
)

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=1|x) by KLR

x(2
)

0.2

0.4

0.6

0.8

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=2|x) by KLR

x(2
)

0.2

0.4

0.6

0.8

−10 −5 0 5 10
−10

−5

0

5

10

x(1)

p−hat(y=3|x) by KLR

x(2
)

0.2

0.4

0.6

0.8

Figure 6: Illustrative examples. The plots show the true class-posterior probabilities
p(y|x), their estimates by LSPC, LSPC(full), and KLR from top to bottom, and y = 1, 2, 3
from left to right.

Superfast-Trainable Multi-Class Probabilistic Classifier 12

hand, KLR outputs values close to one outside the training region since exp(0) = 1; then
they are normalized and thus are reduced to 1/c.

The classification results based on the true class-posterior probabilities and their esti-
mates obtained by LSPC, LSPC(full), and KLR are plotted in Figure 5. This shows that
all the method gave reasonable classification results.

3.2 Performance Comparison

Next, we evaluate the classification accuracy and computation time of each method using
the following multi-class classification datasets taken from the LIBSVM web page [5]:

• mnist: Input dimensionality is 717 and the number of classes is 10.

• usps: Input dimensionality is 256 and the number of classes is 10.

• satimage: Input dimensionality is 36 and the number of classes is 6.

• letter: Input dimensionality is 16 and the number of classes is 26.

We investigated the classification accuracy and computation time of LSPC,
LSPC(full), and KLR. For given n and c, we randomly chose ny = ⌊n/c⌋ training samples
from each class y, where ⌊t⌋ is the largest integer not greater than t. In the first set of
experiments, we fixed the number of classes c to the original number shown above, and
changed the number of training samples as n = 100, 200, 500, 1000, 2000. In the second
set of experiments, we fixed the number of training samples to n = 1000, and changed
the number of classes c—samples only in the first c classes in the dataset are used. The
classification accuracy is evaluated using 100 test samples randomly chosen from each
class. The computation time is measured by the CPU computation time required for
training each classifier when the Gaussian width and the regularization parameter chosen
by cross-validation were used.

The experimental results are summarized in Figure 7 and Figure 8. The left column
in Figure 7 shows that when n is increased, the misclassification error for all the methods
tends to decrease, and LSPC, LSPC(full), and KLR performed similarly well. The right
column in Figure 7 shows that when n is increased, the computation time tends to grow for
all the methods. LSPC is faster than KLR by two orders of magnitude. The left column
in Figure 8 shows that when c is increased, the misclassification error tends to increase
for all the methods, and LSPC, LSPC(full), and KLR behaved similarly well. The right
column in Figure 8 shows that when c is increased, the computation time of KLR tends
to grow, while that of LSPC is kept constant or even it tends to slightly decrease. This
happened because the number of samples in each class decreases when c is increased, and
the computation time of LSPC is governed by the number of samples in each class, not
by the total number of samples (see Section 2.3).

Overall, the computation of LSPC was shown to be faster than that of KLR by orders
of magnitude, while LSPC and KLR were shown to be comparable to each other in
terms of the classification accuracy. LSPC and LSPC(full) were shown to possess similar

Superfast-Trainable Multi-Class Probabilistic Classifier 13

100 200 500 1000 2000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

n

Misclassification rate (mnist, c=10)

LSPC

LSPC(full)

KLR

100 200 500 1000 2000
10

−2

10
0

10
2

10
4

n

Training time (mnist, c=10)

100 200 500 1000 2000 5000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

n

Misclassification rate (usps, c=10)

100 200 500 1000 2000 5000
10

−2

10
0

10
2

10
4

n

Training time (usps, c=10)

100 200 500 1000 2000
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

n

Misclassification rate (satimage, c=6)

100 200 500 1000 2000
10

−2

10
0

10
2

10
4

n

Training time (satimage, c=6)

100 200 500 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

Misclassification rate (letter, c=26)

100 200 500 1000
10

−2

10
0

10
2

10
4

n

Training time (letter, c=26)

Figure 7: Misclassification rate (in percent, left) and computation time (in second, right)
as functions of the number of training samples n. From top to bottom, the graphs
correspond to the ‘mnist’, ‘usps’, ‘satimage’, and ‘letter’ datasets.

Superfast-Trainable Multi-Class Probabilistic Classifier 14

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

c

Misclassification rate (mnist, n=1000)

LSPC
LSPC(full)
KLR

2 4 6 8 10
10

−1

10
0

10
1

10
2

10
3

10
4

c

Training time (mnist, n=1000)

2 4 6 8 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

c

Misclassification rate (usps, n=1000)

2 4 6 8 10
10

−1

10
0

10
1

10
2

10
3

c

Training time (usps, n=1000)

2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

c

Misclassification rate (satimage, n=1000)

2 3 4 5 6
10

−1

10
0

10
1

10
2

10
3

c

Training time (satimage, n=1000)

2 5 10 15 20 26
0

0.05

0.1

0.15

0.2

0.25

c

Misclassification rate (letter, n=1000)

2 5 10 15 20 26
10

−2

10
0

10
2

10
4

c

Training time (letter, n=1000)

Figure 8: Misclassification rate (in percent, left) and computation time (in second, right)
as functions of the number of classes c. From top to bottom, the graphs correspond to
the ‘mnist’, ‘usps’, ‘satimage’, and ‘letter’ datasets.

Superfast-Trainable Multi-Class Probabilistic Classifier 15

classification performance, and thus a computationally efficient version, LSPC, would be
more preferable in practice.

4 Discussion and Conclusion

Recently, various efficient algorithms for computing the solution of logistic regression have
been developed for high-dimensional sparse data [22, 10]. However, for dense data, using
standard non-linear optimization techniques such as Newton’s method or quasi-Newton
methods seem to be a common choice [15, 23]. The performance of these general-purpose
non-linear optimizers has been improved in the last decade, but computing the solution of
logistic regression for a large number of dense training samples is still a challenge problem.

In this paper, we proposed a simple probabilistic classification algorithm called Least-
Squares Probabilistic Classifier (LSPC). LSPC employs a linear combination of Gaussian
kernels centered at training points for modeling the class-posterior probability and the
parameters are learned by least-squares. Notable advantages of LSPC are that its solution
can be computed analytically just by solving a system of linear equations and training
can be carried out separately in a class-wise manner. In experiments, we showed that
LSPC is faster than kernel logistic regression (KLR) in computation time by two orders
of magnitude, with comparable accuracy.

The computational efficiency of LSPC was brought by the combination of appropriate
model choice and loss function. More specifically, KLR uses a log-linear combination of
kernel functions and its parameters are learned by regularized maximum likelihood. In
this log-linear maximum likelihood formulation, normalization of the model is essential
to avoid the likelihood diverging to infinity. Thus the likelihood function tends to be
complicated and numerically solving the optimization problem may be unavoidable. On
the other hand, in LSPC, we chose a linear combination of Gaussian kernel functions
for modeling the class-posterior probability and its parameters are learned by regularized
least-squares. This combination allowed us to obtain the solution analytically. When
Newton’s method (more specifically, iteratively reweighted least-squares) is used for learn-
ing the KLR model, a system of linear equations needs to be solved in every iteration
until convergence [15]. On the other hand, LSPC requires to solve a system of linear
equations only once.

We chose to separate the kernel for inputs and outputs, and adopted the delta kernel
for outputs (see Eq.(5)). This allowed us to perform the training of LSPC in a class-wise
manner. We showed that this contributes to reducing the training time particularly in
multi-class classification problems. We note that this model choice is essentially the same
as that of KLR2.

We further proposed to reduce the number of kernels when “localized” kernels such
as the Gaussian kernel (6) is used. Through the experimental evaluation in Section 3, we
found that this heuristic model simplification does not degrade the classification accuracy,

2The number of parameters in LSPC with model (5) is cn, while the number of parameters in KLR is
(c− 1)n since the normalization (‘sum-to-one’) constraint is incorporated in the training phase.

Superfast-Trainable Multi-Class Probabilistic Classifier 16

but reduces the computation time.
It is straightforward to show that solutions for all regularization parameter values (i.e.,

the regularization path, see [9, 14]) can be computed efficiently in LSPC. Let us consider

the eigendecomposition of the matrix Ĥ
(y)

(see Eq.(9)):

Ĥ
(y)

=

ny∑
ℓ=1

γℓψℓψ
⊤
ℓ ,

where {ψℓ}
ny

ℓ=1 are the eigenvectors of Ĥ
(y)

associated with the eigenvalues {γℓ}ny

ℓ=1. Then,

the solution α̂(y) can be expressed as

α̂(y) = (Ĥ
(y)

+ λIny)
−1ĥ

(y)
=

ny∑
ℓ=1

ĥ
⊤
ψℓ

γℓ + λ
ψℓ.

Since (ĥ
⊤
ψℓ)ψℓ is common to all λ, we can compute the solution α̂(y) for all λ efficiently

by eigendecomposing the matrix Ĥ
(y)

once in advance. Although eigendecomposition of

Ĥ
(y)

may be computationally slightly more demanding than solving a system of linear
equations of the same size, this approach would be useful, e.g., when computing the
solutions for various values of λ in the cross-validation procedure.

When ny is large, we may further reduce the computational cost and memory space
by using only a subset of kernels.

q(y|x;α) =
by∑
ℓ=1

α
(y)
ℓ K(x, c

(y)
ℓ),

Ĥ
(y)
ℓ,ℓ′ =

1

n

n∑
i=1

K(xi, c
(y)
ℓ)K(xi, c

(y)
ℓ′),

ĥ
(y)
ℓ =

1

n

ny∑
i=1

K(x
(y)
i , c

(y)
ℓ),

where by is a constant chosen to be smaller than ny and {c(y)ℓ }
by
ℓ=1 is a subset of {x(y)

ℓ }
ny

ℓ=1.
This would be a useful heuristic when a huge number of samples are used for training.

Another option for reducing the computation time when the number of samples is very
large would be the stochastic gradient descent method [1]. That is, starting from some
initial parameter value, gradient descent is carried out only for a randomly chosen single
sample in each iteration. Since our optimization problem is convex, convergence to the
global solution is guaranteed (in a probabilistic sense) by stochastic gradient descent.

We focused on using the delta kernel for class labels (see Section 2.3). We expect that
designing appropriate kernel functions for class labels would be useful for improving the
classification performance, e.g., in the context of multi-task learning [4, 2, 21]. We will
pursue this direction in our future work.

Superfast-Trainable Multi-Class Probabilistic Classifier 17

Acknowledgments

The author thanks Dr. Ryota Tomioka, Mr. Jaak Simm, and Dr. Hirotaka Hachiya for
their valuable comments. This work was supported by AOARD, SCAT, and the JST
PRESTO program.

References

[1] S. Amari, “Theory of adaptive pattern classifiers,” IEEE Transactions on Electronic
Computers, vol.EC-16, no.3, pp.299–307, 1967.

[2] B. Bakker and T. Heskes, “Task clustering and gating for Bayesian multitask learn-
ing,” Journal of Machine Learning Research, vol.4, pp.83–99, 2003.

[3] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, NY,
USA, 2006.

[4] R. Caruana, L. Pratt, and S. Thrun, “Multitask learning,” Machine Learning, vol.28,
pp.41–75, 1997.

[5] C.C. Chang and C.J. Lin, “LIBSVM: A library for support vector machines,” tech.
rep., Department of Computer Science, National Taiwan University, 2001. http:

//www.csie.ntu.edu.tw/∼cjlin/libsvm/.

[6] R. Collobert and S. Bengio., “SVMTorch: Support vector machines for large-scale
regression problems,” Journal of Machine Learning Research, vol.1, pp.143–160, 2001.

[7] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol.20,
pp.273–297, 1995.

[8] R.O. Duda, P.E. Hart, and D.G. Stor, Pattern Classification, Wiley, New York, 2001.

[9] B. Efron, T. Hastie, R. Tibshirani, and I. Johnstone, “Least angle regression,” The
Annals of Statistics, vol.32, no.2, pp.407–499, 2004.

[10] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin, “LIBLINEAR: A
library for large linear classification,” Journal of Machine Learning Research, vol.9,
pp.1871–1874, 2008.

[11] R.E. Fan, P.H. Chen, and C.J. Lin, “Working set selection using second order infor-
mation for training SVM,” Journal of Machine Learning Research, vol.6, pp.1889–
1918, 2005.

[12] V. Franc and S. Sonnenburg, “Optimized cutting plane algorithm for large-scale risk
minimization,” Journal of Machine Learning Research, vol.10, pp.2157–2192, 2009.

Superfast-Trainable Multi-Class Probabilistic Classifier 18

[13] G.M. Fung and O.L. Mangasarian, “Multicategory proximal support vector machine
classifiers,” Machine Learning, vol.59, no.1–2, pp.77–97, 2005.

[14] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path for
the support vector machine,” Journal of Machine Learning Research, vol.5, pp.1391–
1415, 2004.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer, New York, 2001.

[16] T. Joachims, “Making large-scale SVM learning practical,” in Advances in Ker-
nel Methods—Support Vector Learning, ed. B. Schölkopf, C.J.C. Burges, and A.J.
Smola, pp.169–184, The MIT Press, Cambridge, MA, 1999.

[17] T. Joachims, “Training linear SVMs in linear time,” ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD2006), pp.217–226, 2006.

[18] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to direct im-
portance estimation,” Journal of Machine Learning Research, vol.10, pp.1391–1445,
Jul. 2009.

[19] T. Kanamori, T. Suzuki, and M. Sugiyama, “Condition number analysis of kernel-
based density ratio estimation,” tech. rep., arXiv, 2009.

[20] T. Kanamori, T. Suzuki, and M. Sugiyama, “Theoretical analysis of density ratio
estimation,” IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol.E93-A, no.4, pp.787–798, 2010.

[21] T. Kato, H. Kashima, M. Sugiyama, and K. Asai, “Conic programming for multi-
task learning,” IEEE Transactions on Knowledge and Data Engineering, vol.22, no.7,
pp.957–968, 2010.

[22] K. Koh, S.J. Kim, and S.P. Boyd, “An interior-point method for large-scale
l1-regularized logistic regression,” Journal of Machine Learning Research, vol.8,
pp.1519–1555, 2007.

[23] T.P. Minka, “A comparison of numerical optimizers for logistic regression,” tech.
rep., Microsoft Research, 2007.

[24] J. Platt, “Fast training of support vector machines using sequential minimal optimiza-
tion,” in Advances in Kernel Methods—Support Vector Learning, ed. B. Schölkopf,
C.J.C. Burges, and A.J. Smola, pp.169–184, The MIT Press, Cambridge, MA, 1999.

[25] J. Platt, “Probabilities for SV machines,” in Advances in Large Margin Classifiers,
ed. A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, The MIT Press,
Cambridge, MA, 2000.

Superfast-Trainable Multi-Class Probabilistic Classifier 19

[26] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares classification,” Ad-
vances in Learning Theory: Methods, Models and Applications, ed. J.A.K. Suykens,
G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, NATO Science Series III:
Computer & Systems Sciences, vol.190, Amsterdam, the Netherlands, pp.131–154,
IOS Press, 2003.

[27] M. Schmidt, minFunc, 2005. http://people.cs.ubc.ca/∼schmidtm/Software/

minFunc.html.

[28] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, Cambridge, MA,
2002.

[29] J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, B.D. Moor, and J. Vandewalle, Least
Squares Support Vector Machines, World Scientific Pub. Co., Singapore, 2002.

[30] Y. Tang and H.H. Zhang, “Multiclass proximal support vector machines,” Journal
of Computational and Graphical Statistics, vol.15, no.2, pp.339–355, 2006.

[31] C.H. Teo, Q. Le, A. Smola, and S.V.N. Vishwanathan, “A scalable modular convex
solver for regularized risk minimization,” ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD2007), pp.727–736, 2007.

[32] I. Tsang, J. Kwok, and P.M. Cheung, “Core vector machines: Fast SVM training
on very large data sets,” Journal of Machine Learning Research, vol.6, pp.363–392,
2005.

[33] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, NY, USA, 1998.

[34] T.F. Wu, C.J. Lin, and R.C. Weng, “Probability estimates for multi-class classifi-
cation by pairwise coupling,” Journal of Machine Learning Research, vol.5, pp.975–
1005, 2004.

[35] M. Yamada, M. Sugiyama, G. Wichern, and J. Simm, “Improving the accuracy
of least-squares probabilistic classifiers,” IEICE Transactions on Information and
Systems, 2011. submitted.

