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Abstract

Estimating the conditional mean of an input-output relation is the goal of regres-
sion. However, regression analysis is not sufficiently informative if the conditional
distribution has multi-modality, is highly asymmetric, or contains heteroscedastic
noise. In such scenarios, estimating the conditional distribution itself would be more
useful. In this paper, we propose a novel method of conditional density estimation
that is suitable for multi-dimensional continuous variables. The basic idea of the
proposed method is to express the conditional density in terms of the density ratio
and the ratio is directly estimated without going through density estimation. Ex-
periments using benchmark and robot transition datasets illustrate the usefulness
of the proposed approach.
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1 Introduction

Regression is aimed at estimating the conditional mean of output y given input x. When
the conditional density p(y|x) is unimodal and symmetric, regression would be sufficient
for analyzing the input-output dependency. However, estimating the conditional mean
may not be sufficiently informative, when the conditional distribution possesses multi-
modality (e.g., inverse kinematics learning of a robot [4]) or a highly skewed profile with
heteroscedastic noise (e.g., biomedical data analysis [13]). In such cases, it would be
more informative to estimate the conditional distribution itself. In this paper, we address
the problem of estimating conditional densities when x and y are continuous and multi-
dimensional.

When the conditioning variable x is discrete, estimating the conditional density
p(y|x = x̃) from samples {(xi,yi)}ni=1 is straightforward—by only using samples {yi}ni=1

such that xi = x̃, a standard density estimation method gives an estimate of the con-
ditional density. However, when the conditioning variable x is continuous, conditional
density estimation is not straightforward since no sample exactly matches the condition
xi = x̃. A naive idea for coping with this problem is to use samples {yi}ni=1 that ap-
proximately satisfy the condition: xi ≈ x̃. However, such a naive method is not reliable
in high-dimensional problems. Slightly more sophisticated variants have been proposed
based on weighted kernel density estimation [10, 47], but they still share the same weak-
ness.

The mixture density network (MDN) [4] models the conditional density by a mixture
of parametric densities, where the parameters are estimated by a neural network. MDN
was shown to work well, although its training is time-consuming and only a local optimal
solution may be obtained due to the non-convexity of neural network learning. Similarly,
a mixture of Gaussian processes was explored for estimating the conditional density [42].
The mixture model is trained in a computationally efficient manner by an expectation-
maximization algorithm [8]. However, since the optimization problem is non-convex, one
may only access to a local optimal solution in practice.

The kernel quantile regression (KQR) method [40, 25] allows one to predict percentiles
of the conditional distribution. This implies that solving KQR for all percentiles gives
an estimate of the entire conditional cumulative distribution. KQR is formulated as a
convex optimization problem, and therefore a unique global solution can be obtained.
Furthermore, the entire solution path with respect to the percentile parameter, which
was shown to be piece-wise linear, can be computed efficiently [41]. However, the range
of applications of KQR is limited to one-dimensional output and solution path tracking
tends to be numerically rather unstable in practice.

In this paper, we propose a new method of conditional density estimation named
least-squares conditional density estimation (LS-CDE), which can be applied to multi-
dimensional inputs and outputs. The proposed method is based on the fact that the
conditional density can be expressed in terms of unconditional densities as p(y|x) =
p(x,y)/p(x). Our key idea is that we do not estimate the two densities p(x,y) and p(x)
separately, but we directly estimate the density ratio p(x,y)/p(x) without going through
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density estimation. Experiments using benchmark and robot transition datasets show
that our method compares favorably with existing methods in terms of the accuracy and
computational efficiency.

The rest of this paper is organized as follows. In Section 2, we present our proposed
method LS-CDE and investigate its theoretical properties. In Section 3, we discuss the
characteristics of existing and proposed approaches. In Section 4, we compare the ex-
perimental performance of the proposed and existing methods. Finally, in Section 5, we
conclude by summarizing our contributions and outlook.

2 A New Method of Conditional Density Estimation

In this section, we formulate the problem of conditional density estimation and give a
new method.

2.1 Conditional Density Estimation via Density Ratio Estima-
tion

Let DX (⊂ RdX) and DY (⊂ RdY) be input and output data domains, where dX and dY are
the dimensionality of the data domains, respectively. Let us consider a joint probability
distribution on DX ×DY with probability density function p(x,y), and suppose that we
are given n independent and identically distributed (i.i.d.) paired samples of input x and
output y:

{zi | zi = (xi,yi) ∈ DX ×DY}ni=1.

The goal is to estimate the conditional density p(y|x) from the samples {zi}ni=1.
Our primal interest is in the case where both variables x and y are continuous. In

this case, conditional density estimation is not straightforward since no sample exactly
matches the condition.

Our proposed approach is to consider the ratio of two densities:

p(y|x) = p(x,y)

p(x)
:= r(x,y),

where we assume p(x) > 0 for all x ∈ DX. However, naively estimating two densities
and taking their ratio can result in large estimation error. In order to avoid this, we
propose to estimate the density ratio function r(x,y) directly without going through
density estimation of p(x,y) and p(x).

2.2 Linear Density-ratio Model

We model the density ratio function r(x,y) by the following linear model:

r̂α(x,y) := α⊤ϕ(x,y), (1)
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where ⊤ denotes the transpose of a matrix or a vector,

α = (α1, α2, . . . , αb)
⊤

are parameters to be learned from samples, and

ϕ(x,y) = (ϕ1(x,y), ϕ2(x,y), . . . , ϕb(x,y))
⊤

are basis functions such that

ϕ(x,y) ≥ 0b for all (x,y) ∈ DX ×DY.

0b denotes the b-dimensional vector with all zeros. The inequality for vectors is applied
in an element-wise manner.

Note that the number b of basis functions is not necessarily a constant; it can depend
on the number n of samples. Similarly, the basis functions ϕ(x,y) could be dependent
on the samples {xi,yi}ni=1. This means that kernel models (i.e., b = n and ϕi(x,y) is
a kernel function ‘centered’ at (xi,yi)) are also included in the above formulation. We
explain how the basis functions ϕ(x,y) are practically chosen in Section 2.6.

2.3 A Least-squares Approach to Conditional Density Estima-
tion

We determine the parameter α in the model r̂α(x,y) so that the following squared error
J0 is minimized:

J0(α) :=
1

2

∫∫
(r̂α(x,y)− r(x,y))2 p(x)dxdy.

This can be expressed as

J0(α) =
1

2

∫∫
r̂α(x,y)

2p(x)dxdy −
∫∫

r̂α(x,y)r(x,y)p(x)dxdy + C

=
1

2

∫∫ (
α⊤ϕ(x,y)

)2
p(x)dxdy −

∫∫
α⊤ϕ(x,y)p(x,y)dxdy + C, (2)

where

C :=
1

2

∫∫
r(x,y)p(x,y)dxdy

is a constant and therefore can be safely ignored. Let us denote the first two terms of
Eq.(2) by J :

J(α) := J0(α)− C

=
1

2
α⊤Hα− h⊤α,
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where

H :=

∫
Φ(x)p(x)dx,

h :=

∫∫
ϕ(x,y)p(x,y)dxdy,

Φ(x) :=

∫
ϕ(x,y)ϕ(x,y)⊤dy. (3)

H and h included in J(α) contain the expectations over unknown densities p(x) and
p(x,y), so we approximate the expectations by sample averages. Then we have

Ĵ(α) :=
1

2
α⊤Ĥα− ĥ

⊤
α,

where

Ĥ :=
1

n

n∑
i=1

Φ(xi), (4)

ĥ :=
1

n

n∑
i=1

ϕ(xi,yi).

Note that the integral over y included in Φ(x) (see Eq.(3)) can be computed in principle
since it does not contain any unknown quantity. As shown in Section 2.6, this integration
can be computed analytically in our basis function choice.

Now our optimization criterion is summarized as

α̃ := argmin
α∈Rb

[
Ĵ(α) +

λ

2
α⊤α

]
, (5)

where a regularizer λα⊤α/2 (λ > 0) is included for stabilization purposes1. Taking the
derivative of the above objective function and equating it to zero, we can see that the
solution α̃ can be obtained just by solving the following system of linear equations.

(Ĥ + λIb)α = ĥ,

where Ib denotes the b-dimensional identity matrix. Thus, the solution α̃ is given ana-
lytically as

α̃ = (Ĥ + λIb)
−1ĥ. (6)

Since the density ratio function is non-negative by definition, we modify the solution α̃
as2

α̂ := max(0b, α̃), (7)

1We may also use λα⊤Rα as a regularizer for an arbitrary positive symmetric matrix R without
sacrificing the computational advantage.

2A variant of the proposed method would be to include the positivity constraint α ≥ 0n directly in
Eq.(6). Our preliminary experiments showed that the estimation accuracy of this modified algorithm
turned out to be comparable to Eq.(7), while the constrained version was computationally less efficient
than Eq.(7) since we need to use a numerical quadratic program solver for computing the solution. For
this reason, we only consider Eq.(7) in the rest of this paper.
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where the ‘max’ operation for vectors is applied in an element-wise manner. Thanks
to this rounding-up processing, the solution α̂ tends to be sparse, which contributes to
reducing the computation time in the test phase.

In order to assure that the obtained density-ratio function is a conditional density, we
renormalize the solution in the test phase—given a test input point x̃, our final solution
is given as

p̂(y|x = x̃) =
α̂⊤ϕ(x̃,y)∫
α̂⊤ϕ(x̃,y′)dy′

. (8)

We call the above method Least-Squares Conditional Density Estimation (LS-CDE). LS-
CDE can be regarded as an application of the direct density ratio estimation method called
the unconstrained Least-Squares Importance Fitting (uLSIF) [17, 18] to the problem of
density ratio estimation.

A MATLAB R⃝ implementation of the LS-CDE algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSCDE/

2.4 Convergence Analysis

Here, we show a non-parametric convergence rate of the LS-CDE solution. Those who
are interested in practical issues of the proposed method may skip this subsection.

Let G be a general set of functions on DX ×DY. Note that G corresponds to the span
of our model, which could be non-parametric (i.e., an infinite dimensional linear space3).
For a function g (∈ G), let us consider a non-negative function R(g) such that

max

{
sup
x

[∫
g(x,y)dy

]
, sup

x,y
[g(x,y)]

}
≤ R(g).

Then the problem (5) can be generalized as

r̂ := argmin
g∈G

[
1

2n

n∑
i=1

∫
g(xi,y)

2dy − 1

n

n∑
i=1

g(xi,yi) + λnR(g)
2

]
,

where λn is the regularization parameter depending on n. We assume that the true density
ratio function r(x,y) is contained in G and there exists M (> 0) such that R(r) < M .
We also assume that there exists γ (0 < γ < 2) such that

H[](GM , ϵ, L2(px × µY)) = O
((

M

ϵ

)γ)
,

where
GM := {g ∈ G | R(g) ≤M}.

3If a reproducing kernel Hilbert space is chosen as G and the regularization term R(g) is chosen
appropriately, the optimization problem in the infinite dimensional space is reduced to a finite dimensional
one. Then the optimal approximation can be found in the form of r̂α(x,y) when kernel functions centered
at the training samples are used as the basis functions [20].
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µY is the Lebesgue measure on DY, px × µY is a product measure of px and µY, and H[]

is the bracketing entropy of GM with respect to the L2(px × µY)-norm [45].
Intuitively, the bracketing entropyH[](GM , ϵ, L2) expresses the complexity of the model

GM , and ϵ is a precision measure of the model complexity. The larger the bracketing
entropy H[](GM , ϵ, L2) is for a certain precision ϵ, the more complex the model is for that
precision level. As the precision is increased (i.e., ϵ→ 0), the bracketing entropy measured
with precision ϵ typically diverges to infinity. The “dimension” of the model is reflected
in the divergence rate of the bracketing entropy when ϵ→ 0. See the book [45] for details.

When the set GM is the closed ball of radius M centered at the origin of a Sobolev
space, γ is given by (dX + dY)/p, where p is the order of differentiability of the Sobolev
space (see page 105 of the book [9] for details). Hence, γ is small for a set of smooth
functions with few variables. The reproducing kernel Hilbert spaces with Gaussian kernel

exp

(
−∥x− x′∥2

2σ2

)
exp

(
−∥y − y′∥2

2σ2

)
,

which we will use in our practical implementation (see Section 2.6) satisfy the above
entropy condition for any small γ > 0 [49]. On the other hand, in the above setup, the
bracketing entropy is lower-bounded by K(M/ϵ)(dX+dY)/p with a constant K depending
only on p, dX, and dY [21]. Therefore, if the dimension of the domains DX and DY is so
large that (dX + dY)/p > 2, γ should be larger than 2. This means that a situation where
p is small and dX and dY are large is not covered in our analysis; such a model is too
complex to deal with in our framework. Fortunately, it is known that the Gaussian kernel
satisfies γ ∈ (0, 2). Hence, the Gaussian kernel as well as Sobolev spaces with large p and
small dX and dY is included in our analysis.

Under the above assumptions, we have the following theorem (its proof is omitted
since it follows essentially the same line as the references [28, 38]).

Theorem 1 Under the above setting, if λn → 0 and λ−1
n = o(n2/(2+γ)), then

∥r̂ − r∥2 = Op(λ
1/2
n ),

where ∥ · ∥2 denotes the L2(px × µY)-norm and Op denotes the asymptotic order in prob-
ability.

Note that the conditions λn → 0 and λ−1
n = o(n2/(2+γ)) intuitively means that λn

should converge to zero as n tends to infinity but the speed of convergence should not be
too fast.

2.5 Cross-validation for Model Selection

We elucidated the convergence rate of the LS-CDE solution. However, its practical perfor-
mance still depends on the choice of model parameters such as the basis functions ϕ(x,y)
and the regularization parameter λ.
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Here we show that cross-validation (CV) is available for model selection. CV should be
carried out in terms of the error metric used for evaluating the test performance. Below,
we investigate two cases: the squared (SQ) error and the Kullback-Leibler (KL) error.
The SQ error for a conditional density estimator p̂(y|x) is defined as

SQ0 :=
1

2

∫∫
(p̂(y|x)− p(y|x))2 p(x)dxdy

= SQ + CSQ,

where

SQ :=
1

2

∫∫
(p̂(y|x))2 p(x)dxdy −

∫∫
p̂(y|x)p(x,y)dxdy,

and CSQ is the constant defined by

CSQ :=
1

2

∫∫
p(y|x)p(x,y)dxdy.

The KL error for a conditional density estimator p̂(y|x) is defined as

KL0 :=

∫∫
p(x,y) log

p(x,y)

p̂(y|x)p(x)
dxdy

= KL + CKL,

where

KL := −
∫∫

p(x,y) log p̂(y|x)dxdy,

and CKL is the constant defined by

CKL :=

∫∫
p(x,y) log p(y|x)dxdy.

The smaller the value of SQ or KL is, the better the performance of the conditional density
estimator p̂(y|x) is.

For the above performance measures, CV is carried out as follows. First, the samples

Z := {zi | zi = (xi,yi)}ni=1

are divided into K disjoint subsets {Zk}Kk=1 of approximately the same size. Let p̂Z\Zk

be the conditional density estimator obtained using Z\Zk (i.e., the estimator obtained
without Zk). Then the target error values are approximated using the hold-out samples
Zk as

ŜQZk
:=

1

2|Zk|
∑
x̃∈Zk

∫ (
p̂Z\Zk

(y|x̃)
)2

dy − 1

|Zk|
∑

(x̃,ỹ)∈Zk

p̂Z\Zk
(ỹ|x̃),

K̂LZk
:= − 1

|Zk|
∑

(x̃,ỹ)∈Zk

log p̂Z\Zk
(ỹ|x̃),
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where |Zk| denotes the number of elements in the set Zk. This procedure is repeated for
k = 1, 2, . . . , K and its average is computed:

ŜQ :=
1

K

K∑
k=1

ŜQZk
,

K̂L :=
1

K

K∑
k=1

K̂LZk
.

We can show that ŜQ and K̂L are almost unbiased estimators of the true costs SQ and
KL, respectively; the ‘almost’-ness comes from the fact that the number of samples is
reduced in the CV procedure due to data splitting [26, 33].

2.6 Basis Function Design

A good model may be chosen by CV, given that a family of promising model candidates
is prepared. As model candidates, we propose to use a Gaussian kernel model: for z =
(x⊤,y⊤)⊤,

ϕℓ(x,y) = exp

(
−∥z −wℓ∥2

2σ2

)
= exp

(
−∥x− uℓ∥2

2σ2

)
exp

(
−∥y − vℓ∥2

2σ2

)
, (9)

where
{wℓ | wℓ = (u⊤

ℓ ,v
⊤
ℓ )

⊤}bℓ=1

are center points randomly chosen from

{zi | zi = (x⊤
i ,y

⊤
i )

⊤}ni=1.

We may use different Gaussian widths for x and y. However, for simplicity, we decided to
use the common Gaussian width σ for both x and y under the setting where the variance
of each element of x and y is normalized to one.

An advantage of the above Gaussian kernel model is that the integrals over y in matrix
Φ (see Eq.(3)) and in the normalization factor (see Eq.(8)) can be computed analytically;
indeed, a simple calculation yields

Φℓ,ℓ′(x) =

∫
ϕℓ(x,y)ϕℓ′(x,y)dy

= (
√
πσ)dY exp

(
−ξℓ,ℓ

′(x)

4σ2

)
,∫

α̂⊤ϕ(x̃,y)dy = (
√
2πσ)dY

b∑
ℓ=1

α̂ℓ exp

(
−∥x̃− uℓ∥2

2σ2

)
,
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where
ξℓ,ℓ′(x) := 2∥x− uℓ∥2 + 2∥x− uℓ′∥2 + ∥vℓ − vℓ′∥2.

In the experiments, we fix the number of basis functions to

b = min(100, n),

and choose the Gaussian width σ and the regularization parameter λ by CV from

σ, λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}.

2.7 Extention to Semi-supervised Scenarios

Another potential advantage of LS-CDE lies in the semi-supervised learning setting [5]—
in addition to the labeled samples {(xi,yi)}ni=1, unlabeled samples {x′

i}n+n′

i=n+1 which are
drawn independently from the marginal density p(x) are available.

In conditional density estimation, unlabeled samples {x′
i}n+n′

i=n+1 are not generally useful
since they are irrelevant to the conditional density p(y|x). However, in LS-CDE, unlabeled
samples could be used for improving the estimation accuracy of the matrix H . More
specifically, instead of Eq.(4), the following estimator may be used:

Ĥ =
1

n+ n′

n+n′∑
i=1

Φ(xi).

3 Discussions

In this section, we discuss the characteristics of existing and proposed methods of condi-
tional density estimation.

3.1 ϵ-neighbor Kernel Density Estimation (ϵ-KDE)

For estimating the conditional density p(y|x), ϵ-neighbor kernel density estimation (ϵ-
KDE) employs the standard kernel density estimator using a subset of samples, {yi}i∈Ix,ϵ

for some threshold ϵ (≥ 0), where Ix,ϵ is the set of sample indices such that

∥xi − x∥ ≤ ϵ.

In the case of Gaussian kernels, ϵ-KDE is expressed as

p̂(y|x) = 1

|Ix,ϵ|
∑
i∈Ix,ϵ

N(y;yi, σ
2IdY),

where N(y;µ,Σ) denotes the Gaussian density with mean µ and covariance matrix Σ.
The threshold ϵ and the bandwidth σ may be chosen based on CV [12]. ϵ-KDE is simple
and easy to use, but it may not be reliable in high-dimensional problems. Slightly more
sophisticated variants have been proposed based on weighted kernel density estimation [10,
47], but they may still share the same weakness.



Least-Squares Conditional Density Estimation 11

3.2 Mixture Density Network (MDN)

The mixture density network (MDN) models the conditional density by a mixture of
parametric densities [4]. In the case of Gaussian densities, MDN is expressed as

p̂(y|x) =
t∑

ℓ=1

πℓ(x)N(y;µℓ(x), σ
2
ℓ (x)IdY),

where πℓ(x) denotes the mixing coefficient such that

t∑
ℓ=1

πℓ(x) = 1 and 0 ≤ πℓ(x) ≤ 1 for all x ∈ DX.

All the parameters {πℓ(x),µℓ(x), σ
2
ℓ (x)}tℓ=1 are learned as a function of x by a neural

network with regularized maximum likelihood estimation. The number t of Gaussian
components, the number of hidden units in the neural network, and the regularization
parameter may be chosen based on CV. MDN has been shown to work well, although
its training is time-consuming and only a local solution may be obtained due to the
non-convexity of neural network learning.

3.3 Kernel Quantile Regression (KQR)

Kernel quantile regression (KQR) allows one to predict the 100τ -percentile of conditional
distributions for a given τ (∈ (0, 1)) when y is one-dimensional [40, 25]. For the Gaussian
kernel model

f̂τ (x) =
n∑

i=1

αi,τϕi(x) + bτ ,

where

ϕi(x) = exp

(
−∥x− xi∥2

2σ2

)
,

the parameters {αi,τ}ni=1 and bτ are learned by

min
{αi,τ}ni=1,bτ

[
n∑

i=1

ψτ (yi − f̂τ (xi))+λ
n∑

i,j=1

ϕi(xj)αi,ταj,τ

]
,

where ψτ (r) denotes the pin-ball loss function defined by

ψτ (r) =

{
(1− τ)|r| (r ≤ 0),

τ |r| (r > 0).

Thus, solving KQR for all τ ∈ (0, 1) gives an estimate of the entire conditional distribution.
The bandwidth σ and the regularization parameter λ may be chosen based on CV.
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A notable advantage of KQR is that the solution of KQR is piece-wise linear with
respect to τ , so the entire solution path can be computed efficiently [41]. This implies that
the conditional cumulative distribution can be computed efficiently. However, solution
path tracking tends to be numerically rather unstable and the range of applications of
KQR is limited to one-dimensional output y. Furthermore, some heuristic procedure is
needed to convert conditional cumulative distributions into conditional densities, which
can cause additional estimation errors.

3.4 Other Methods of Density Ratio Estimation

A naive method for estimating the density ratio p(x,y)/p(x) is to first approximate the
two densities p(x,y) and p(x) by standard kernel density estimation and then taking the
ratio of the estimated densities. We refer to this method as the ratio of kernel density
estimators (RKDE). As we will show through experiments in the next section, RKDE
does not work well since taking the ratio of estimated quantities significantly magnifies
the estimation error.

To overcome the above weakness, we decided to directly estimate the density ratio
without going through density estimation under the squared-loss (see Section 2.3). The
kernel mean matching method [14] and the logistic regression based method [30, 6, 3] also
allow one to directly estimate a density ratio q(x)/q′(x). However, the derivation of these
methods heavily relies on the fact that the two density functions q(x) and q′(x) share the
same domain, which is not fulfilled in the current setting. For this reason, these methods
may not be employed for conditional density estimation.

Other methods of direct density ratio estimation [37, 38, 28, 29, 43, 44, 48] employs
the Kullback-Leibler divergence [22] as the loss function, instead of the squared-loss. It is
possible to use these methods for conditional density estimation in the same way as the
proposed method, but it is computationally rather inefficient [17, 18]. Furthermore, in the
context of density estimation, the squared-loss is often preferred to the Kullback-Leibler
loss [2, 34].

4 Numerical Experiments

In this section, we investigate the experimental performance of the proposed and existing
methods.

4.1 Illustrative Examples

Here we illustrate how the proposed LS-CDE method behaves using toy datasets.
Let dX = dY = 1. Inputs {xi}ni=1 were independently drawn from U(−1, 1), where

U(a, b) denotes the uniform distribution on (a, b). Outputs {yi}ni=1 were generated by the
following heteroscedastic noise model:

yi = sinc(2πxi) +
1

8
exp(1− xi) · εi.
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We tested the following three different distributions for {εi}ni=1:

(a) Gaussian: εi
i.i.d.∼ N(0, 1),

(b) Bimodal: εi
i.i.d.∼ 1

2
N(−1, 4

9
) + 1

2
N(1, 4

9
),

(c) Skewed: εi
i.i.d.∼ 3

4
N(0, 1) + 1

4
N(3

2
, 1
9
),

where ‘
i.i.d.∼ ’ denotes ‘independent and identically distributed’ and N(µ, σ2) denotes the

Gaussian distribution with mean µ and variance σ2. See Figure 1(a)–Figure 1(c) for
their profiles. The number of training samples was set to n = 200. The numerical
results were depicted in Figure 1(a)–Figure 1(c), illustrating that LS-CDE well captures
heteroscedasticity, bimodality, and asymmetricity.

We have also investigated the experimental performance of LS-CDE using the following
real datasets:

(d) Bone Mineral Density dataset: Relative spinal bone mineral density measure-
ments on 485 North American adolescents [13], having a heteroscedastic asymmetric
conditional distribution.

(e) Old Faithful Geyser dataset: The durations of 299 eruptions of the Old Faithful
Geyser [46], having a bimodal conditional distribution.

Figure 1(d) and Figure 1(e) depict the results, showing that heteroscedastic and multi-
modal structures were nicely revealed by LS-CDE.

4.2 Benchmark Datasets

We applied the proposed and existing methods to the benchmark datasets accompanied
with the R package [31] (see Table 1) and evaluate their experimental performance.

In each dataset, 50% of samples were randomly chosen for conditional density esti-
mation and the rest was used for computing the estimation accuracy. The accuracy of a
conditional density estimator p̂(y|x) was measured by the negative log-likelihood for test
samples {z̃i | z̃i = (x̃i, ỹi)}ñi=1:

NLL := − 1

ñ

ñ∑
i=1

log p̂(ỹi|x̃i). (10)

Thus, the smaller the value of NLL is, the better the performance of the conditional
density estimator p̂(y|x) is.
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(e) Old Faithful Geyser

Figure 1: Illustrative examples of LS-CDE. (a) Artificial dataset containing heteroscedas-
tic Gaussian noise, (b) Artificial dataset containing heteroscedastic bimodal Gaussian
noise, (c) Artificial dataset containing heteroscedastic asymmetric bimodal Gaussian
noise, (d) Relative spinal bone mineral density measurements on North American ado-
lescents [13] having a heteroscedastic asymmetric conditional distribution, and (e) The
durations of eruptions of the Old Faithful Geyser [46] having a bimodal conditional dis-
tribution.
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We compared LS-CDE, ϵ-KDE, MDN, KQR, and RKDE. For model selection, we
used CV based on the Kullback-Leibler (KL) error (see Section 2.5), which is consistent
with the above NLL. In MDN, CV over three tuning parameters (the number of Gaussian
components, the number of hidden units in the neural network, and the regularization
parameter; see Section 3.2) was unbearably slow, so the number of Gaussian components
was fixed to t = 3 and the other two tuning parameters were chosen by CV.

The experimental results are summarized in Table 1. ϵ-KDE was computationally
very efficient, but it tended to perform rather poorly. MDN worked well, but it is com-
putationally highly demanding. KQR overall performed well and it was computationally
slightly more efficient than LS-CDE. However, its solution path tracking algorithm was
numerically rather unstable and we could not obtain solutions for the ‘engel’ and ‘cpus’
datasets. RKDE did not perform well for all cases, implying that density ratio estima-
tion via density estimation is not reliable in practice. Overall, the proposed LS-CDE
was shown to be a promising method for conditional density estimation in terms of the
accuracy and computational efficiency.

4.3 Robot Transition Estimation

We further applied the proposed and existing methods to the problem of robot transition
estimation. We used the pendulum robot and the Khepera robot simulators illustrated
in Figure 2.

The pendulum robot consists of wheels and a pendulum hinged to the body. The
state of the pendulum robot consists of angle θ and angular velocity θ̇ of the pendulum.
The amount of torque τ applied to the wheels can be controlled, by which the robot can
move left or right and the state of the pendulum is changed to θ′ and θ̇′. The task is to
estimate p(θ′, θ̇′|θ, θ̇, τ), the transition probability density from state (θ, θ̇) to state (θ′, θ̇′)
by action τ .

The Khepera robot is equipped with two infra-red sensors and two wheels. The
infra-red sensors dL and dR measure the distance to the left-front and right-front walls.
The speed of left and right wheels vL and vR can be controlled separately, by which
the robot can move forward/backward and rotate left/right. The task is to estimate
p(d′L, d

′
R|dL, dR, vL, vR), where d′L and d′R are the next state.

The state transition of the pendulum robot is highly stochastic due to slip, friction,
or measurement errors with strong heteroscedasticity. Sensory inputs of the Khepera
robot suffer from occlusions and contain highly heteroscedastic noise, so the transition
probability density may possess multi-modality and heteroscedasticity. Thus transition
estimation of dynamic robots is a challenging task. Note that transition estimation is
highly useful in model-based reinforcement learning [39].

For both robots, 100 samples were used for conditional density estimation and addi-
tional 900 samples were used for computing NLL (see Eq.(10)). The number of Gaussian
components was fixed to t = 3 in MDN, and all other tuning parameters were chosen by
CV based on the Kullback-Leibler (KL) error (see Section 2.5). Experimental results are
summarized in Table 2, showing that LS-CDE is still useful in this challenging task of
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(a) Pendulum robot. (b) Khepera robot.

Figure 2: Illustration of robots used for experiments.

Table 2: Experimental results on robot transition estimation. The average and the stan-
dard deviation of NLL (see Eq.(10)) over 10 runs are described (smaller is better). The
best method in terms of the mean error and comparable methods according to the two-
sided paired t-test at the significance level 5% are specified by bold face. Mean computa-
tion time is normalized so that LS-CDE is one.

Dataset LS-CDE ϵ-KDE MDN RKDE
Pendulum1 1.27 ± 0.05 2.04 ± 0.10 1.44 ± 0.67 11.24 ± 0.32
Pendulum2 1.38 ± 0.05 2.07 ± 0.10 1.43 ± 0.58 11.24 ± 0.32
Khepera1 1.69 ± 0.01 2.07 ± 0.02 1.90 ± 0.36 11.03 ± 0.03
Khepera2 1.86 ± 0.01 2.10 ± 0.01 1.92 ± 0.26 11.09 ± 0.02
Time 1 0.164 1134 0.431

robot transition estimation.

5 Conclusions and Outlook

We proposed a novel approach to conditional density estimation called LS-CDE. Our
basic idea was to directly estimate the ratio of density functions without going through
density estimation. LS-CDE was shown to offer a sparse solution in an analytic form and
therefore is computationally efficient. A non-parametric convergence rate of the LS-CDE
algorithm was also provided. Experiments on benchmark and robot-transition datasets
demonstrated the usefulness of LS-CDE.

The validity of the proposed LS-CDE method may be intuitively explained by the fact
that it is a “one-shot” procedure (directly estimating the density ratio)—while a naive
approach is two-fold (two densities are first estimated and then the ratio is estimated by
plugging in the estimated densities). The plug-in approach may not be preferable since
the first step is carried out without taking into account how the estimation error produced
in the first step influences the second step; indeed, our experiments showed that the two-
step procedure did not work properly in all cases. On the other hand, beyond these
experimental results, it is important to theoretically investigate how and why the one-
shot approach is more suitable than the plug-in approach in conditional density estimation
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or in more general context of density ratio estimation. Furthermore, it is important to
elucidate the asymptotic distribution of the proposed estimator, e.g., following the line of
the papers [11, 27].

We used a regularizer expressed in terms of the density-ratio function in the theoretical
analysis in Section 2.4, while the ℓ2-norm of the parameter vector was adopted in the
practical procedure described in Section 2.3. In order to fill the gap between theory and
the practical procedure, we may use, for example, the squared norm in the function space
as a regularizer. However, in our preliminary experiments, we found that the use of the
function space norm as the regularizer was numerically unstable. Thus, an important
future topic is to further investigate the role of regularizers in terms of consistency and
also numerical stability. Smoothed analysis [35, 32, 19] would be a promising approach to
addressing this issue.

In the proposed LS-CDE method, a direct density-ration estimation method based on
the squared-loss called unconstrained Least-Squares Importance Fitting (uLSIF) [17, 18]
was applied to conditional density estimation. Similarly, applying the direct density-
ration estimation method based on the log-loss called the Kullback-Leibler Importance
Estimation Procedure (KLIEP) [37, 38, 28, 29, 43, 44, 48], we can obtain a log-loss variant
of the proposed method. A valiant of the KLIEP method explored in the papers [43, 44]
uses a log-linear model (a.k.a. amaximum entropy model [16]) for density ratio estimation:

r̂α(x,y) :=
exp(α⊤ϕ(x,y))∫
exp(α⊤ϕ(x,y′))dy′ .

Applying this log-linear KLIEP method to conditional density estimation is actually
equivalent to maximum likelihood estimation of conditional densities for log-linear models
(for structured output, it is particularly called a conditional random field [23]):

max
α∈Rb

[
n∑

i=1

log r̂α(xi,yi)

]
.

A crucial fact regarding maximum-likelihood conditional density estimation is that the
normalization factor

∫
exp(α⊤ϕ(x,y′))dy′ needs to be included in the model; otherwise

the likelihood tends to infinity. On the other hand, the proposed method (based on the
squared-loss) does not require the normalization factor to be included in the optimization
problem. This is evidenced by the fact that, without the normalization factor, the pro-
posed LS-CDE estimator is still consistent (see Section 2.4). This highly contributes to
simplifying the optimization problem (see Eq.(5)); indeed, by choosing the linear density
ratio model (1), the solution can be obtained analytically, as shown in Eq.(6). This is a sig-
nificant advantage of the proposed method over standard maximum-likelihood conditional
density estimation. An interesting theoretical research direction along this line would be
to generalize the loss function to a broader class, for example, the f -divergences [1, 7].
An approach based on the paper [28] would be a promising direction to pursue.

When dX = 1, dY = 1, and the true ratio r is twice differentiable, the convergence
rate of ϵ-KDE is

∥r̂ − r∥2 = Op(n
−1/3),
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given that the bandwidth ϵ is optimally chosen [15]. On the other hand, Theorem 1
and the discussions before the theorem in the current paper imply that our method can
achieve

Op(n
− 1

(dX+dY)/p+2 log n) = Op(n
− 1

2/p+2 log n),

where p ≥ 2. Therefore, if we choose a model such that p > 2 and the true ratio r is
contained, the convergence rate of our proposed method dominates that of ϵ-KDE. This
is because ϵ-KDE just takes the average around the target point x and hence it does not
capture higher order smoothness of the target conditional density. On the other hand,
our method can utilize the information of higher order smoothness by properly choosing
the degree of smoothness with cross-validation.

In the experiments, we used the common width for all Gaussian basis functions (9)
in the proposed LS-CDE procedure. As shown in Section 2.4, the proposed method
is consistent even with the common Gaussian width. However, in practice, it may be
more flexible to use different Gaussian widths for different basis functions. Although
our method in principle allows the use of different Gaussian widths, this in turn makes
cross-validation computationally harder. A possible measure for this issue would be to
also learn the Gaussian widths from the data together with coefficients. An expectation-
maximization approach to density ratio estimation based on the log-loss for Gaussian
mixture models has been explored [48], which allows us to learn the Gaussian covariances
in an efficient manner. Developing a squared-loss variant of this method could produce a
useful variant of the proposed LS-CDE method.

As explained in Section 2.7, LS-CDE can take advantage of the semi-supervised learn-
ing setup [5], although this was not explored in the current paper. Thus it is important to
investigate how the performance of LS-CDE is improved under semi-supervised learning
scenarios both in theoretically and experimentally.

Although we focused on conditional density estimation in this article, one may have
interests in substantially simpler tasks such as error bar estimation and confidential in-
terval estimation. Investigating whether the current line of research can be adapted to
solving such simpler problems with higher accuracy is an important future issue.

Even though the proposed approach was shown to work well in experiments, its per-
formance (and also the performance of any other non-parametric approaches) is still poor
in high-dimensional problems. Thus, a further challenge is to improve the accuracy in
high-dimensional cases. Application of a dimensionality reduction idea in density ratio
estimation [36] would be a promising direction to address this issue.

Another possible future work from the application point of view would be the use of the
proposed method in reinforcement learning scenarios, since a good transition model can be
directly used for solving Markov decision problems in continuous and multi-dimensional
domains [24, 39]. Our future work will explore this issue in more detail.
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[12] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semipara-
metric Models, Springer, Berlin, 2004.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer, New York, 2001.

[14] J. Huang, A. Smola, A. Gretton, K.M. Borgwardt, and B. Schölkopf, “Correcting
sample selection bias by unlabeled data,” in Advances in Neural Information Pro-
cessing Systems 19, ed. B. Schölkopf, J. Platt, and T. Hoffman, pp.601–608, MIT
Press, Cambridge, MA, 2007.

[15] R.J. Hyndman, D.M. Bashtannyk, and G.K. Grunwald, “Estimating and visualiz-
ing conditional densities,” Journal of Computational and Graphical Statistics, vol.5,
no.4, pp.315–336, 1996.

[16] E.T. Jaynes, “Information theory and statistical mechanics,” Physical Review,
vol.106, no.4, pp.620–630, 1957.

[17] T. Kanamori, S. Hido, and M. Sugiyama, “Efficient direct density ratio estimation for
non-stationarity adaptation and outlier detection,” Advances in Neural Information
Processing Systems 21, ed. D. Koller, D. Schuurmans, Y. Bengio, and L. Botton,
Cambridge, MA, pp.809–816, MIT Press, 2009.

[18] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to direct im-
portance estimation,” Journal of Machine Learning Research, vol.10, pp.1391–1445,
Jul. 2009.

[19] T. Kanamori, T. Suzuki, and M. Sugiyama, “Condition number analysis of kernel-
based density ratio estimation,” Tech. Rep. TR09-0006, Department of Computer
Science, Tokyo Institute of Technology, Feb. 2009.

[20] G.S. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline functions,”
Journal of Mathematical Analysis and Applications, vol.33, no.1, pp.82–95, 1971.

[21] A.N. Kolmogorov and V.M. Tikhomirov, “ε-entropy and ε-capacity of sets in func-
tion spaces,” American Mathematical Society Translations, vol.17, no.2, pp.277–364,
1961.

[22] S. Kullback and R.A. Leibler, “On information and sufficiency,” Annals of Mathe-
matical Statistics, vol.22, pp.79–86, 1951.

[23] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic
models for segmenting and labeling sequence data,” Proceedings of the 18th Inter-
national Conference on Machine Learning, pp.282–289, 2001.

[24] M.G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine
Learning Research, vol.4, pp.1107–1149, 2003.



Least-Squares Conditional Density Estimation 22

[25] Y. Li, Y. Liu, and J. Zhu, “Quantile regression in reproducing kernel Hilbert spaces,”
Journal of the American Statistical Association, vol.102, no.477, pp.255–268, 2007.

[26] A. Luntz and V. Brailovsky, “On estimation of characters obtained in statistical
procedure of recognition,” Technicheskaya Kibernetica, vol.3, 1969. in Russian.

[27] W.K. Newey, “Convergence rates and asymptotic normality for series estimators,”
Journal of Econometrics, vol.70, no.1, pp.147–168, 1997.

[28] X. Nguyen, M. Wainwright, and M. Jordan, “Estimating divergence functionals and
the likelihood ratio by penalized convex risk minimization,” in Advances in Neural In-
formation Processing Systems 20, ed. J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
pp.1089–1096, MIT Press, Cambridge, MA, 2008.

[29] X. Nguyen, M.J. Wainwright, and M.I. Jordan, “Nonparametric estimation of the
likelihood ratio and divergence functionals,” Proceedings of IEEE International Sym-
posium on Information Theory, Nice, France, pp.2016–2020, 2007.

[30] J. Qin, “Inferences for case-control and semiparametric two-sample density ratio
models,” Biometrika, vol.85, no.3, pp.619–639, 1998.

[31] R Development Core Team, The R Manuals, 2008. http://www.r-project.org.

[32] A. Sankar, D.A. Spielman, and S.H. Teng, “Smoothed analysis of the condition num-
bers and growth factors of matrices,” SIAM Journal on Matrix Analysis and Appli-
cations, vol.28, no.2, pp.446–476, 2006.

[33] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT Press, Cambridge, MA,
2002.

[34] D.W. Scott, “Remarks on fitting and interpreting mixture models,” Computing Sci-
ence and Statistics, vol.31, pp.104–109, 1999.

[35] D.A. Spielman and S.H. Teng, “Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time,” Journal of the ACM, vol.51, no.3, pp.385–
463, 2004.

[36] M. Sugiyama, M. Kawanabe, and P.L. Chui, “Dimensionality reduction for density
ratio estimation in high-dimensional spaces,” Neural Networks, vol.23, no.1, pp.44–
59, 2010.

[37] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe, “Direct
importance estimation with model selection and its application to covariate shift
adaptation,” Advances in Neural Information Processing Systems 20, ed. J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, Cambridge, MA, pp.1433–1440, MIT Press,
2008.



Least-Squares Conditional Density Estimation 23

[38] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe,
“Direct importance estimation for covariate shift adaptation,” Annals of the Institute
of Statistical Mathematics, vol.60, no.4, pp.699–746, 2008.

[39] R.S. Sutton and G.A. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[40] I. Takeuchi, Q.V. Le, T.D. Sears, and A.J. Smola, “Nonparametric quantile estima-
tion,” Journal of Machine Learning Research, vol.7, pp.1231–1264, 2006.

[41] I. Takeuchi, K. Nomura, and T. Kanamori, “Nonparametric conditional density es-
timation using piecewise-linear solution path of kernel quantile regression,” Neural
Computation, vol.21, no.2, pp.533–559, 2009.

[42] V. Tresp, “Mixtures of gaussian processes,” Advances in Neural Information Pro-
cessing Systems 13, ed. T.K. Leen, T.G. Dietterich, and V. Tresp, pp.654–660, MIT
Press, 2001.

[43] Y. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama, “Direct density ra-
tio estimation for large-scale covariate shift adaptation,” Proceedings of the Eighth
SIAM International Conference on Data Mining (SDM2008), ed. M.J. Zaki, K. Wang,
C. Apte, and H. Park, Atlanta, Georgia, USA, pp.443–454, Apr. 24–26 2008.

[44] Y. Tsuboi, H. Kashima, S. Hido, S. Bickel, and M. Sugiyama, “Direct density ratio
estimation for large-scale covariate shift adaptation,” Journal of Information Pro-
cessing, vol.17, pp.138–155, 2009.

[45] A.W. van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes
with Applications to Statistics, Springer, New York, NY, USA, 1996.

[46] S. Weisberg, Applied Linear Regression, John Wiley, New York, NY, USA, 1985.

[47] R.C.L. Wolff, Q. Yao, and P. Hall, “Methods for estimating a conditional distribution
function,” Journal of the American Statistical Association, vol.94, no.445, pp.154–
163, 1999.

[48] M. Yamada and M. Sugiyama, “Direct importance estimation with Gaussian mix-
ture models,” IEICE Transactions on Information and Systems, vol.E92-D, no.10,
pp.2159–2162, 2009.

[49] D.X. Zhou, “The covering number in learning theory,” Journal of Complexity archive,
vol.18, no.3, pp.739–767, 2002.


