
1IEICE Transactions on Information and Systems,
vol.E93-D, no.9, pp.2555–2565, 2010.

Least Absolute Policy Iteration—A Robust Approach
to Value Function Approximation

Masashi Sugiyama (sugi@cs.titech.ac.jp)
Department of Computer Science, Tokyo Institute of Technology

and
Japan Science and Technology Agency

Hirotaka Hachiya (hachiya@sg.cs.titech.ac.jp)
Department of Computer Science, Tokyo Institute of Technology

Hisashi Kashima (kashima@mist.i.u-tokyo.ac.jp)
Department of Mathematical Informatics, the University of Tokyo

Tetsuro Morimura (tetsuro@jp.ibm.com)
IBM Research - Tokyo

Abstract

Least-squares policy iteration is a useful reinforcement learning method in robotics
due to its computational efficiency. However, it tends to be sensitive to outliers in
observed rewards. In this paper, we propose an alternative method that employs
the absolute loss for enhancing robustness and reliability. The proposed method
is formulated as a linear programming problem which can be solved efficiently by
standard optimization software, so the computational advantage is not sacrificed for
gaining robustness and reliability. We demonstrate the usefulness of the proposed
approach through a simulated robot-control task.

Keywords

Reinforcement learning, value function approximation, least-squares policy itera-
tion, outlier, ℓ1-loss function, linear programming

Least Absolute Policy Iteration 2

1 Introduction

One of the popular reinforcement learning frameworks for obtaining the optimal policy is
policy iteration, which performs policy evaluation and improvement steps iteratively [28,
4]. The computational cost of naive implementation of policy iteration is dominated by
the number of states and actions, so it is not scalable to real-world robotics problems
with large state/action space. To cope with this problem, an alternative method called
least-squares policy iteration (LSPI) has been proposed [16]. In LSPI, value functions of
policies are approximated using linear architecture, so its computational cost is governed
by the number of parameters in the linear model. Thus, if the number of parameters is
kept reasonably small, LSPI is applicable to large-scale robot-control tasks.

A basic idea of LSPI is to learn the parameters of the linear model so that the temporal-
difference (TD) error is minimized under the squared loss. On the other hand, in this
paper, we propose to minimize the TD error under the absolute loss (see Figure 1). This
is just a replacement of the loss function, but we argue that this modification brings about
highly useful advantages in practical robotics problems. More specifically, the rationale
behind the use of the absolute loss lies in robustness and reliability.

1.1 Robustness

In many robotics applications, immediate rewards are obtained through measurement such
as distance sensors or computer vision. Due to intrinsic measurement noise or recognition
error, the obtained rewards often deviate from the true value; in particular, the rewards
occasionally contain outliers, which are significantly different from regular values.

Residual minimization under the squared loss amounts to obtaining the mean of sam-
ples {xi}mi=1:

argmin
c

[
m∑
i=1

(xi − c)2

]
= mean({xi}mi=1) =

1

m

m∑
i=1

xi.

If one of the values is very large, the mean would be strongly affected by this outlier
sample. Thus all the values {xi}mi=1 are responsible for the mean, and therefore even a
single outlier observation can significantly damage the learned result.

On the other hand, residual minimization under the absolute loss amounts to obtaining
the median.

argmin
c

[
2n+1∑
i=1

|xi − c|

]
= median({xi}2n+1

i=1) = xn+1,

where x1 ≤ x2 ≤ · · · ≤ x2n+1. The median is influenced not by the magnitude of the
values {xi}2n+1

i=1 but only by their order. Thus, as long as the order is kept unchanged, the
median is not affected by outliers—in fact, the median is known to be the most robust
estimator in the light of breakdown-point analysis [13, 26].

Therefore, the use of the absolute loss would remedy the problem of robustness in
policy iteration.

Least Absolute Policy Iteration 3

−3 −2 −1 0 1 2 3
0

1

2

3

4

5
Absolute loss
Squared loss

Figure 1: The absolute and squared loss functions for reducing the temporal-difference
error.

1.2 Reliability

In practical robot-control tasks, we often want to attain a stable performance, rather
than to achieve a “dream” performance with a little chance of success; for example, in
the acquisition of a humanoid gait, we may want the robot to walk forward in a stable
manner with high probability of success, rather than to rush very fast in a chance level.

On the other hand, we do not want to be too conservative when training robots—if we
are overly concerned with unrealistic failure, no practically useful control policy could be
obtained. For example, any robots can be broken in principle if activated for long time.
However, if we fear this fact too much, we may end up in a control policy that does not
activate the robots at all—obviously this is non-sense in practice.

Since the squared loss solution is not robust against outliers, it is sensitive to rare
events with either positively or negatively very large immediate rewards. Consequently,
the squared loss prefers an extraordinarily successful motion even if the success probability
is very low; similarly, it dislikes an unrealistic trouble even if such a terrible event may not
happen in practice. On the other hand, the absolute loss solution is not easily affected by
such rare events due to robustness. Therefore, the use of the absolute loss would produce
a reliable control policy even in the presence of such extreme events.

1.3 Goal of This Paper

As shown above, the use of the absolute loss in value function approximation would bring
about robustness and reliability, which are preferable properties in real-world robotics
problems. This modification is very simple, but to the best of our knowledge, such an
idea has never been incorporated in value function approximation.

Another important advantage of the proposed approach is that scalability to massive
data is not sacrificed for enhancing robustness and reliability. Indeed, the absolute-loss
solution can be obtained by solving a linear programming problem; this can be carried
out very efficiently by a standard optimization software. We demonstrate the usefulness
of the absolute-loss approach through robotics simulations.

Least Absolute Policy Iteration 4

1.4 Related Work

In the seminal paper [10], the α-value criterion was introduced as an alternative to the
expected discounted reward. This criterion is essentially identical to the value-at-risk of
the discounted reward, which is a popular risk measure in finance [25]. However, the
resulting optimization problem is not convex, and therefore it is difficult to obtain a
good solution efficiently [3]. A soft risk aversion method [19] emphasizes actions whose
rewards are less than expected. Although the idea of this approach is intuitive, it is
rather heuristic and does not have a clear interpretation as risk minimization. In the
paper [27], an approach that optimizes a linear combination of the mean and the variance
of discounted rewards was proposed. This approach is based on the mean-variance model,
which is popular modeling also in finance [18]. The assumption behind the mean-variance
model is that the discounted rewards follow the Gaussian distribution, which may not
be true in practice. On the other hand, the method proposed in this paper has a clear
interpretation as median risk minimization and no strong assumption is imposed on the
rewards. Furthermore, the resulting optimization problem is a linear program, which is
convex and can be solved efficiently using standard optimization software.

In the area of optimal control, robust control theory was used to design stable con-
trollers [15, 20, 2]. Although this approach is also sometimes referred to as robust re-
inforcement learning, its aim is different from the current paper—robust control aims
at enhancing robustness against uncertainties in the environment, while our goal is to
enhance robustness against outliers in the rewards.

2 Problem Formulation

In this section, we formulate the reinforcement learning problem using a Markov decision
process (MDP), and briefly review the core ideas of policy iteration and value function
approximation.

2.1 Markov Decision Process

Let us consider an MDP specified by

(S,A, PT, R, γ),

where S is a set of states, A is a set of actions, PT(s
′|s, a) (∈ [0, 1]) is the conditional tran-

sition probability-density from state s to next state s′ when action a is taken, R(s, a, s′)
(∈ R) is a reward for transition from s to s′ by taking action a, and γ (∈ (0, 1]) is the
discount factor for future rewards.

Let π(a|s) (∈ [0, 1]) be a stochastic policy which is the conditional probability density
of taking action a given state s. The state-action value function Q(s, a) (∈ R) for policy
π is the expected discounted sum of rewards the agent will receive when taking action a

Least Absolute Policy Iteration 5

in state s and following policy π thereafter, i.e.,

Q(s, a) ≡ E
π,PT

[
∞∑
n=1

γn−1R(sn, an, sn+1)

∣∣∣∣∣ s1 = s, a1 = a

]
, (1)

where Eπ,PT
denotes the expectation over trajectory {sn, an}∞n=1 following π(an|sn) and

PT(sn+1|sn, an). The goal of reinforcement learning is to obtain the policy that maximizes
the discounted sum of future rewards.

Computing the value function Q(s, a) is called policy evaluation since this corresponds
to evaluating the value of policy π. Using Q(s, a), we may find a better policy as

π(a|s)← δ(a− argmax
a′

Q(s, a′)),

where δ(·) is Dirac’s delta function. This is called policy improvement. It is known that
repeating policy evaluation and policy improvement leads to the optimal policy under
some condition [28]. This entire process is called policy iteration.

2.2 Value Function Approximation

Although policy iteration is guaranteed to produce the optimal policy, it is computation-
ally intractable when the number of state-action pairs |S| × |A| is very large; |S| or |A|
becomes infinity when the state space or action space is continuous. To overcome this
problem, the state-action value function Q(s, a) may be approximated using the following
linear model:

Q̂(s, a) ≡
B∑
b=1

θbϕb(s, a) = θ
⊤ϕ(s, a),

where
ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))

⊤

are the fixed basis functions, ⊤ denotes the transpose, B is the number of basis functions,
and

θ = (θ1, θ2, . . . , θB)
⊤

are model parameters. Note that B is usually chosen to be much smaller than |S| × |A|.
Suppose we have an N -step data sample, i.e., the agent initially starts from a ran-

domly selected state s1 following the initial-state probability density PI(s1) and chooses
an action based on the current policy π(an|sn). Then the agent makes a transition fol-
lowing PT(sn+1|sn, an) and receives an immediate reward rn (= R(sn, an, sn+1))—thus the
training dataset D is expressed as

D ≡ {(sn, an, rn, sn+1)}Nn=1.

The temporal-difference (TD) error for the n-th sample is defined by

θ⊤ψ̂(sn, an)− rn, (2)

Least Absolute Policy Iteration 6

where ψ̂(s, a) is a B-dimensional column vector defined by

ψ̂(s, a) ≡ ϕ(s, a)− γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[ϕ(s′, a′)] .

D(s,a) is a set of 4-tuple elements (s, a, r, s′) containing state s and action a in the training
data D,

∑
s′∈D(s,a)

denotes the summation over s′ in the set D(s,a), and Eπ(a′|s′) denotes

the conditional expectation with respect to a′ over π(a′|s′) given s′.
The issue we would like to address in this paper is the choice of the loss function when

evaluating the TD error (2); more specifically, we argue that the use of the absolute loss
is more advantageous than the popular squared loss [28, 23, 16]. We note that our results
could be easily extended to various settings—for example, multiple sequences of episodic
training samples can be employed without essentially changing the framework. The off-
policy scenarios where the sampling policy is different from the evaluation policy can also
be incorporated by applying importance-weighting techniques [28, 24, 9]. However, we do
not go into the details of such generalization for keeping the presentation of the current
paper simple.

3 Loss Functions for TD-error Minimization

In this section, we first review a squared-loss method for TD-error minimization, and then
introduce an absolute-loss method.

3.1 Least-Squares Policy Iteration (LSPI)

A standard choice of the loss function for minimizing the residual error would be the
squared loss [28, 23, 16]. The least-squares TD-error solution θ̂LS is defined as

θ̂LS ≡ argmin
θ

[
1

2

N∑
n=1

(
θ⊤ψ̂(sn, an)− rn

)2
]
.

The solution θ̂LS can be analytically computed as

θ̂LS =

(N∑
n=1

ψ̂(sn, an)ψ̂(sn, an)
⊤
)−1 N∑

n=1

rnψ̂(sn, an).

The value-function approximation method based on the above least-squares formulation
is called least-squares TDQ (LSTDQ) of the Bellman residual and the policy iteration
method based on LSTDQ is called least-squares policy iteration (LSPI) [16].

Least Absolute Policy Iteration 7

3.2 Least Absolute Policy Iteration (LAPI)

As explained in the introduction, LSPI suffers from excessive sensitivity to outliers and less
reliability. Here, we introduce an alternative approach to value function approximation,
which we refer to as least absolute TDQ (LATDQ)—we propose to employ the absolute
loss instead of the squared loss (Figure 1):

θ̂LA ≡ argmin
θ

[
N∑

n=1

∣∣∣θ⊤ψ̂(sn, an)− rn

∣∣∣]. (3)

This minimization problem looks cumbersome due to the absolute value operator which
is non-differentiable, but the following mathematical trick mitigates this issue.

Proposition 1 [5]

|x| =min
b

b subject to − b ≤ x ≤ b. (4)

Since Eq.(4) is a linear programming problem, it can be solved efficiently using a
standard optimization software. Using this proposition, we can reduce the minimization
problem (3) to the following linear program:

min
θ,{bn}Nn=1

N∑
n=1

bn

subject to −bn ≤ θ⊤ψ̂(sn, an)− rn ≤ bn, ∀n.

The number of constraints is N in the above linear program. When N is large, we may
employ sophisticated optimization techniques such as column generation [7] for efficiently
solving the linear programming problem. Alternatively, an approximate solution can
be obtained by gradient descent or the (quasi)-Newton methods if the absolute loss is
approximated by a smooth loss (see e.g., Section 5.2).

We refer to the policy iteration method based on LATDQ as least absolute policy
iteration (LAPI).

3.3 Numerical Examples of LATDQ

For illustration purposes, let us consider the 4-state MDP problem described in Figure 2.
The agent is initially located at state s(0) and the actions the agent is allowed to take are
moving to the left or right state. If the left-movement action is chosen, the agent always
receives small positive reward +0.1 at s(L). On the other hand, if the right-movement
action is chosen, the agent receives negative reward −1 with probability 0.9999 at s(R1)

or it receives very large positive reward +20000 with probability 0.0001 at s(R2). The
mean and median rewards for left movement are both +0.1, while the mean and median
rewards for right movement are +1.0001 and −1, respectively.

Least Absolute Policy Iteration 8

Left
movement

Right
movement

Start

s
(0)

p = 1

r = +0.1

p = 0.9999

r = −1

−

p = 0.0001

r = +20000

s
(L)

s
(R1)

s
(R2)

mean(r) = +0.1
median(r) = +0.1

mean(r) = +1.0001
median(r) = −1

Figure 2: Illustrative MDP problem.

If Q(s(0), ‘Left’) and Q(s(0), ‘Right’) are approximated by LSTDQ, it returns the mean
rewards, i.e., +0.1 and +1.0001, respectively. Thus, LSTDQ prefers right movement,
which is a ‘gambling’ policy that negative reward −1 is almost always obtained at s(R1),
but it is possible to obtain very high reward +20000 with a very small probability at s(R2).
On the other hand, if Q(s(0), ‘Left’) and Q(s(0), ‘Right’) are approximated by LATDQ, it
returns the median rewards, i.e., +0.1 and −1, respectively. Thus LATDQ prefers left
movement, which is a stable policy that the agent can always receive small positive reward
+0.1 at s(L).

If all the rewards in Figure 2 are negated, the value functions are also negated and
we obtain different interpretation: LSTDQ is afraid of the risk of receiving very large
negative reward −20000 at s(R2) with a very low probability, and consequently it ends up
in a very conservative policy that the agent always receives negative reward −0.1 at s(L).
On the other hand, LATDQ tries to receive positive reward +1 at s(R1) without being
afraid of visiting s(R2) too much.

As illustrated above, LATDQ tends to provide qualitatively different solutions from
LSTDQ. We argue that the robust and reliable behavior of LATDQ would be more prefer-
able in practical robotics tasks, as discussed in the introduction. In the next section, we
experimentally show the usefulness of the proposed method in robot-control tasks.

3.4 Properties of LATDQ

We have illustrated a robust property of LATDQ above. Here, we investigate its properties
when the model Q̂(s, a) is correctly specified, i.e., there exists a parameter θ∗ such that

Q̂(s, a) = Q(s, a) for all s and a.

Under the correct model assumption, when the number of samples N tends to infinity,
the LATDQ solution θ̂ would satisfy the following equation [14]:

θ̂
⊤
ψ(s, a) = M

PT(s′|s,a)
[R(s, a, s′)] for all s and a, (5)

Least Absolute Policy Iteration 9

whereMPT(s′|s,a) denotes the conditional median of s′ over PT(s
′|s, a) given s and a. ψ(s, a)

is defined by
ψ(s, a) ≡ ϕ(s, a)− γ E

PT(s′|s,a)
E

π(a′|s′)
[ϕ(s′, a′)] ,

where EPT(s′|s,a) denotes the conditional expectation of s′ over PT(s
′|s, a) given s and a,

and Eπ(a′|s′) denotes the conditional expectation of a′ over π(a′|s′) given s′.
From Eq.(5), we can obtain the following Bellman-like recursive expression:

Q̂(s, a) = M
PT(s′|s,a)

[R(s, a, s′)] + γ E
PT(s′|s,a)

E
π(a′|s′)

[
Q̂(s′, a′)

]
. (6)

Note that in the case of LSTDQ where

θ̂
⊤
ψ(s, a) = E

PT(s′|s,a)
[R(s, a, s′)]

is satisfied in the limit under the correct model assumption, we have

Q̂(s, a) = E
PT(s′|s,a)

[R(s, a, s′)] + γ E
PT(s′|s,a)

E
π(a′|s′)

[
Q̂(s′, a′)

]
. (7)

This is the ordinary Bellman equation [28]. Thus, Eq.(6) could be regarded as an extension
of the Bellman equation to the absolute loss.

From the ordinary Bellman equation (7), we can recover Eq.(1), the original defini-
tion of the state-value function Q(s, a) [28]. In contrast, from the absolute-loss Bellman
equation (6), we have

Q′(s, a) ≡ E
π,PT

[
∞∑
n=1

γn−1 M
PT(sn+1|sn,an)

[R(sn, an, sn+1)]

∣∣∣∣∣ s1 = s, a1 = a

]
,

where Eπ,PT
denotes the expectation over {sn, an}∞n=1 following π(an|sn) and

PT(sn+1|sn, an). This is the value function LATDQ is trying to approximate, which is
different from the ordinary value function. Since the discounted sum of median rewards—
not the expected rewards—is maximized, LATDQ would be less sensitive to outliers than
LSTDQ.

4 Experimental Evaluation

In this section, we apply LAPI to simulated robot-control problems and evaluate its
practical performance.

Here, we use an acrobot illustrated in Figure 3. The acrobot is an under-actuated
system and consists of two links, two joints, and an end effector. The length of each link
is 0.3 [m], and the diameter of each joint is 0.15 [m]. The diameter of the end effector
is 0.10 [m] and the height of the horizontal bar is 1.2 [m]. The first joint connects the
first link to the horizontal bar and is not controllable. The second joint connects the first

Least Absolute Policy Iteration 10

Bar

1st link

2nd link

End effector

1st joint

2nd joint

Figure 3: Illustration of the acrobot. The goal is to swing up the end effector by only
controlling the second joint.

link to the second link and is controllable. The end effector is attached to the tip of the
second link. The control command (action) we can choose is applying positive torque
+50 [N ·m], no torque 0 [N ·m], or negative torque −50 [N ·m] to the second joint. Note
that the acrobot moves only within a plane orthogonal to the horizontal bar.

The goal is to acquire a control policy such that the end effector is swung up as high
as possible. The state space consists of the angle θi [rad] and angular velocity θ̇i [rad/s]
of the first and second joints (i = 1, 2). The immediate reward is given according to the
height h of the center of the end effector as follows:

R(s, a, s′) =

10 if h > 1.75,

exp
(
− (h−1.85)2

2(0.2)2

)
if 1.5 < h ≤ 1.75,

0.001 otherwise.

Note that 0.55 ≤ h ≤ 1.85 in the current setting.
Here, we suppose that the length of the links is unknown; thus the height h cannot be

directly computed from state information. The height of the end effector is supposed to
be estimated from an image taken by a camera—the end effector is detected in the image
and then its vertical coordinate is computed. Due to recognition error, the estimated
height is highly noisy and could contain outliers.

In each policy iteration step, 20 episodic training samples of length 150 are gathered.
The performance of the obtained policy is evaluated using 50 episodic test samples of
length 300. Note that the test samples are not used for learning policies; they are used
only for the purpose of evaluating learned policies. The policies are updated in a soft-max
manner:

π(a|s)←− exp(Q(s, a)/η)∑
a′∈A exp(Q(s, a′)/η)

, (8)

where η = 10 − t + 1 with t being the iteration number. The discounted factor is set to
γ = 1, i.e., no discount. As basis functions for value function approximation, we use the

Least Absolute Policy Iteration 11

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Gaussian density
Laplacian density

Figure 4: Probability density functions of Gaussian and Laplacian distributions.

0.55 1.5 1.75 1.85
−4

−2

0

2

4

6

8

10

Height of end−effector

Im
m

ed
ia

te
 r

ew
ar

d

True
Sample with noise

Figure 5: An example of training samples with Laplace noise. The horizontal axis is the
height of the end effector. The solid line denotes the noiseless immediate reward and the
‘◦’ denotes a noisy training sample.

Gaussian kernel with standard deviation π—the Gaussian centers are located at

(θ1, θ2, θ̇1, θ̇2) ∈ {−π,−π
2
, 0, π

2
, π} × {−π, 0, π} × {−π, 0, π} × {−π, 0, π}.

The above 135 (= 5×3×3×3) Gaussian kernels are defined for each of the three actions;
thus 405 (= 135× 3) kernels are used in total.

We consider two noise environments; one is the case where no noise is added to the
rewards and the other case is where Laplacian noise with mean zero and standard deviation
2 is added to the rewards with probability 0.1. Note that the tail of the Laplacian density
is heavier than that of the Gaussian density (see Figure 4), implying that a small number
of outliers tend to be included in the Laplacian noise environment. An example of the
noisy training samples is shown in Figure 5. For each noise environment, the experiment
is repeated 50 times with different random seeds and the average of the sum of rewards
obtained by LAPI and LSPI are summarized in Figure 6. The best method in terms of
the mean value and comparable methods according to the t-test [11] at the significance
level 5% are specified by ‘◦’.

Least Absolute Policy Iteration 12

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Iteration

S
um

 o
f r

ew
ar

ds

LSPI
LAPI

(a) No noise

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Iteration

S
um

 o
f r

ew
ar

ds

(b) Laplacian noise

Figure 6: Average and standard deviation of the sum of rewards over 50 runs for the
acrobot swinging-up simulation. The best method in terms of the mean value and com-
parable methods according to the t-test at the significance level 5% are specified by ‘◦’.

In the noise-less case (see Figure 6(a)), both LAPI and LSPI improve the performance
over iterations in a comparable way. On the other hand, in the noisy case (see Figure 6(b)),
the performance of LSPI is not improved much due to outliers, while LAPI still produces
a good control policy.

Figures 7 and 8 depict motion examples of the acrobot learned by LAPI and LSPI in
the Laplacian-noise environment. A demo movie is available from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/2010/LAPIvsLSPI.mp4’.

When LSPI is used (Figure 7), the second joint is swung hard in order to lift the end
effector. However, the end effector tends to stay below the horizontal bar, and therefore
only a small amount of rewards can be obtained by LSPI. This would be due to the
existence of outliers. On the other hand, when LAPI is used (Figure 8), the end effector
goes beyond the bar, and therefore a large amount of rewards can be obtained even in
the presence of outliers.

5 Possible Extension and Variation

In this section, we show possible extension and variation of the proposed approach.

5.1 Regularization

When the number of training samples is small, approximated functions tend to overfit.
To alleviate this problem, it is common to regularize the solution, i.e., imposing a penalty
on the solution when it is too ‘large’ [12, 32, 8]. Here we introduce regularized variants
of LSTDQ and LATDQ which do not sacrifice computational efficiency.

Least Absolute Policy Iteration 13

Frame 1 Frame 4 Frame 7 Frame 10 Frame 13 Frame 16

Frame 19 Frame 22 Frame 25 Frame 28 Frame 31 Frame 34

Frame 37 Frame 40 Frame 43 Frame 46 Frame 49 Frame 52

Frame 55 Frame 58 Frame 61 Frame 64 Frame 67 Frame 70

Figure 7: A motion example of the acrobot learned by LSPI in the Laplacian-noise envi-
ronment. The frame rate is 50 [ms/frame].

Given that the LSTDQ objective function is in a quadratic form, it is convenient to
use the squared penalty term as follows [12, 22]:

θ̂LS ≡ argmin
θ

[
1

2

N∑
n=1

(
θ⊤ψ̂(sn, an)− rn

)2

+
κ

2

B∑
b=1

θ2b

]
,

where κ (≥ 0) the regularization parameter that controls the strength of regularization.
The above solution is still given analytically as

θ̂LS =

(N∑
n=1

ψ̂(sn, an)ψ̂(sn, an)
⊤ + κI

)−1 N∑
n=1

rnψ̂(sn, an),

where I is the identity matrix.

Least Absolute Policy Iteration 14

Frame 1 Frame 4 Frame 7 Frame 10 Frame 13 Frame 16

Frame 19 Frame 22 Frame 25 Frame 28 Frame 31 Frame 34

Frame 37 Frame 40 Frame 43 Frame 46 Frame 49 Frame 52

Frame 55 Frame 58 Frame 61 Frame 64 Frame 67 Frame 70

Figure 8: A motion example of the acrobot learned by LAPI in the Laplacian-noise
environment. The frame rate is 50 [ms/frame].

Since LATDQ is formulated as a linear programming problem, it is convenient to use
the absolute penalty as follows [33, 30, 6]:

θ̂LA ≡ argmin
θ

[
N∑

n=1

∣∣∣θ⊤ψ̂(sn, an)− rn

∣∣∣+ κ

B∑
b=1

|θb|

]
.

The solution θ̂LA can be obtained by solving the following optimization problem, which
is still a linear program:

min
θ,{bn}Nn=1,{cb}Bb=1

N∑
n=1

bn + κ
B∑
b=1

cb

subject to −bn ≤ θ⊤ψ̂(sn, an)− rn ≤ bn, ∀n.
−cb ≤ θb ≤ cb, ∀b.

Least Absolute Policy Iteration 15

An additional advantage of using the absolute penalty is that the solution tends to
be sparse, i.e., most of {θb}Bb=1 become zero. This highly contributes to reducing the
computation time in the test phase.

5.2 Huber Loss

Minimizing the TD error under the Huber loss corresponds to making a compromise
between the squared and absolute loss functions [13]:

θ̂HB ≡ argmin
θ

[
N∑

n=1

ρHB
t

(
θ⊤ψ̂(sn, an)− rn

)]
,

where t (≥ 0) is a threshold parameter and ρHB
t is the Huber loss defined as follows (see

Figure 9):

ρHB
t (x) ≡

1
2
x2 if |x| ≤ t,

t|x| − 1
2
t2 if |x| > t.

The Huber loss converges to the absolute loss as t tends to zero, and it converges to the
squared loss as t tends to infinity.

The Huber loss function is rather intricate, but the solution θ̂HB can be obtained by
solving the following convex quadratic program [17]:

min
θ,{bn,cn}Nn=1

1

2

N∑
n=1

b2n + t

N∑
n=1

cn

subject to −cn ≤ θ⊤ψ̂(sn, an)− rn − bn ≤ cn, ∀n.

Another way to obtain the solution θ̂HB is to use a gradient descent method—the
parameter θ is updated as follows until convergence:

θ ← θ − ε

N∑
n=1

∆ρHB
t (θ⊤ψ̂(sn, an)− rn)ψ̂(sn, an),

where ε (> 0) is a learning-rate parameter and ∆ρHB
t is the derivative of ρHB

t given by

∆ρHB
t (x) =

x if |x| ≤ t,

t if x > t,

−t if x < −t.
In practice, the following stochastic gradient method [1] would be more convenient—for
a randomly chosen index n (1 ≤ n ≤ N) in each iteration, repeat the following update
until convergence:

θ ← θ − ε∆ρHB
t (θ⊤ψ̂(sn, an)− rn)ψ̂(sn, an).

The plain/stochastic gradient methods also come in handy when approximating the
LATDQ solution—the Huber loss function with small t could be regarded as a smooth
approximation to the absolute loss.

Least Absolute Policy Iteration 16

−3 −2 −1 0 1 2 3
0

1

2

3

4

5
Huber loss
Pinball loss
Deadzone−linear loss

Figure 9: The Huber loss function (with t = 1), the pinball loss function (with τ = 0.3),
and the deadzone-linear loss function (with ϵ = 1).

5.3 Pinball Loss

We have seen that the absolute loss induces the median, which corresponds to the 50-
percentile point. A similar discussion is also possible for an arbitrary percentile 100τ
(0 ≤ τ ≤ 1) based on the pinball loss [14]:

θ̂PB ≡ argmin
θ

[
N∑

n=1

ρPBτ (θ⊤ψ̂(sn, an)− rn)

]
,

where ρPBτ (x) is the pinball loss defined by

ρPBτ (x) ≡

{
2τx if x ≥ 0,

2(τ − 1)x if x < 0.

The profile of the pinball loss is depicted in Figure 9. When τ = 0.5, the pinball loss is
reduced to the absolute loss.

The solution θ̂PB can be obtained by solving the following linear program:
min

θ,{bn}Nn=1

N∑
n=1

bn

subject to
bn

2(τ − 1)
≤ θ⊤ψ̂(sn, an)− rn ≤

bn
2τ

, ∀n.

5.4 Deadzone-linear Loss

Another variant of the absolute loss is the deadzone-linear loss (see Figure 9):

θ̂DL ≡ argmin
θ

[
N∑

n=1

ρDL
ϵ (θ⊤ψ̂(sn, an)− rn)

]
,

Least Absolute Policy Iteration 17

where ρDL
ϵ (x) is the deadzone-linear loss defined by

ρDL
ϵ (x) ≡

{
0 if |x| ≤ ϵ,

|x| − ϵ if |x| > ϵ.

That is, if the magnitude of the TD error is less than ϵ, no error is assessed. This loss is
also called the ϵ-insensitive loss and used in support vector regression [31].

When ϵ = 0, the deadzone-linear loss is reduced to the absolute loss. Thus the
deadzone-linear loss and the absolute loss are highly related to each other. However, the
effect of the deadzone-linear loss is completely opposite to the absolute loss when ϵ > 0—
the influence of ‘good’ samples (with small TD-error) are deemphasized in the deadzone-
linear loss, while the absolute loss tends to suppress the influence of ‘bad’ samples (with
large TD-error) compared with the squared loss.

The solution θ̂DL can be obtained by solving the following linear program [5]:
min

θ,{bn}Nn=1

N∑
n=1

bn

subject to −bn − ϵ ≤ θ⊤ψ̂(sn, an)− rn ≤ bn + ϵ,

bn ≥ 0, ∀n.

5.5 Chebyshev Approximation

The Chebyshev approximation minimizes the error for the ‘worst’ sample:

θ̂CS ≡ argmin
θ

[
max

n
|θ⊤ψ̂(sn, an)− rn|

]
.

This is also called the minimax approximation.
The solution θ̂CS can be obtained by solving the following linear program [5]: min

θ,b
b

subject to −b ≤ θ⊤ψ̂(sn, an)− rn ≤ b, ∀n.

5.6 Conditional Value-at-Risk

In the area of finance, the conditional value-at-risk (CVaR) is a popular risk measure [25].
The CVaR corresponds to the mean of the error for a set of ‘bad’ samples (see Figure 10).

More specifically, let us consider the distribution of the absolute TD-error over all
training samples {(sn, an, rn)}Nn=1:

Φ(α|θ) ≡ P{(sn, an, rn) : |θ⊤ψ̂(sn, an)− rn| ≤ α}.

Least Absolute Policy Iteration 18

F
re

qu
en

cy

Absolute TD-error

Probability

−

0
−

0 αβ φβ

1− β

Figure 10: The conditional value-at-risk (CVaR).

For β ∈ [0, 1), let αβ(θ) be the 100β-percentile of the absolute TD-error distribution:

αβ(θ) ≡ min{α | Φ(α|θ) ≥ β}.

Thus only the fraction (1 − β) of the absolute TD-error |θ⊤ψ̂(sn, an) − rn| exceeds the
threshold αβ(θ). αβ(θ) is also referred to as the value-at-risk (VaR).

Let us consider the β-tail distribution of the absolute TD-error:

Φβ(α|θ) ≡

0 if α < αβ(θ),

Φ(α|θ)− β

1− β
if α ≥ αβ(θ).

Let ϕβ(θ) be the mean of the β-tail distribution of the absolute TD-error:

ϕβ(θ) ≡ EΦβ

[
|θ⊤ψ̂(sn, an)− rn|

]
,

where EΦβ
denotes the expectation over the distribution Φβ. ϕβ(θ) is called the CVaR. By

definition, the CVaR of the absolute TD-error is reduced to the mean absolute TD-error
if β = 0 and it converges to the worst absolute TD-error as β tends to 1. Thus the CVaR
smoothly bridges the proposed least-absolute approach and the Chebyshev approximation
method. CVaR is also referred to as the expected shortfall.

The CVaR minimization problem in the current context is formulated as

θ̂CV ≡ argmin
θ

[
EΦβ

[
|θ⊤ψ̂(sn, an)− rn|

]]
.

This optimization problem looks complicated, but the solution θ̂CV can be obtained by
solving the following linear program [25]:

min
θ,{bn}Nn=1,{cn}Nn=1,α

N(1− β)α +
N∑

n=1

cn

subject to −bn ≤ θ⊤ψ̂(sn, an)− rn ≤ bn,

cn ≥ bn − α, cn ≥ 0, ∀n.

Note that if the definition of the absolute TD-error is slightly changed, the CVaR mini-
mization method amounts to minimizing the deadzone-linear loss [29]:

Least Absolute Policy Iteration 19

6 Conclusions and Future Work

In this paper, we proposed using the absolute loss in value function approximation for
enhancing robustness and reliability. The change of loss functions resulted in a linear
programming formulation which can be solved efficiently by a standard optimization soft-
ware. We experimentally investigated the usefulness of the proposed method, LAPI, in
a simulated robot-control task, and confirmed the advantages of LAPI; the good per-
formance of the existing method, LSPI, is maintained in the noise-less case and higher
tolerance to outliers than LSPI is exhibited in the noisy case.

The state-action value function Q(s, a) is defined as the expectation of the discounted
sum of rewards (see Eq. (1)), which is to be maximized in the standard reinforcement
learning framework. On the other hand, one may want to be more risk-sensitive, and
maximize other quantities such as the median or a quantile of the discounted sum of
rewards. However, such risk-sensitive reinforcement learning is not straightforward since
the Bellman-like simple recursive expression is not available for quantiles of rewards. In the
paper [21], it was shown that a Bellman-like recursive equation holds for the distribution
of the discounted sum of rewards. Based on this preliminary theoretical result, it may be
possible to derive a TDQ algorithm that directly optimizes the median or a quantile of the
discounted sum of rewards. However, this seems to be an open research issue currently,
and would be a promising future direction to pursue.

Another important issue to be further discussed along the current line of research
would be the statistical efficiency of the LATDQ estimator. The least-absolute estimator
was shown to be more robust against outliers than the least-squares estimator, e.g., under
breakdown point analysis [13]. However, the least-absolute estimator may be statistically
less efficient (i.e., having a larger variance) than the least-squares estimator under the
Gaussian noise assumption. Thus loss of efficiency would be the price we have to pay for
gaining robustness in LATDQ. We believe that robustness is more important in practice
than (asymptotic) efficiency since we seldom have so many data samples that asymptotics
matter and the noise distribution may not be Gaussian. Nevertheless, the trade-off be-
tween robustness and efficiency in the context of value function approximation or policy
iteration would be an important theoretical research issue to be investigated.

Finally, we provided various possibilities for further extending the proposed method
in Section 5. Experimentally evaluating these variations is left open as future work.

Acknowledgments

We thank fruitful comments from Akira Ohgawara anonymous reviewers.

References

[1] S. Amari, “Theory of adaptive pattern classifiers,” IEEE Transactions on Electronic
Computers, vol.EC-16, no.3, pp.299–307, 1967.

Least Absolute Policy Iteration 20

[2] C.W. Anderson, P.M. Young, J.N. Buehner, M. R. Knight, H.A. Bush, and D.C.
Hittle, “Robust reinforcement learning control using integral quadratic constraints
for recurrent neural networks,” IEEE Transactions on Neural Networks, vol.18, no.4,
pp.993–1002, 2007.

[3] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath, “Coherent measures of risk,”
Mathematical Finance, vol.9, no.3, pp.203–228, 1999.

[4] P.D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific,
NH, USA, 1996.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,
Cambridge, UK, 2004.

[6] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic decomposition by basis pur-
suit,” SIAM Journal on Scientific Computing, vol.20, no.1, pp.33–61, 1998.

[7] A. Demiriz, K.P. Bennett, and J. Shawe-Taylor, “Linear programming boosting via
column generation,” Machine Learning, vol.46, no.1/3, p.225, 2002.

[8] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector
machines,” Advances in Computational Mathematics, vol.13, no.1, pp.1–50, 2000.

[9] H. Hachiya, T. Akiyama, M. Sugiyama, and J. Peters, “Adaptive importance sam-
pling for value function approximation in off-policy reinforcement learning,” Neural
Networks, vol.22, no.10, pp.1399–1410, 2009.

[10] M. Heger, “Considering of risk in reinforcement learning,” Proceedings of the 11th
International Conference on Machine Learning, pp.105–111, 1994.

[11] R.E. Henkel, Tests of Significance, SAGE Publication, Beverly Hills, CA, USA., 1979.

[12] A.E. Hoerl and R.W. Kennard, “Ridge regression: Biased estimation for nonorthog-
onal problems,” Technometrics, vol.12, no.3, pp.55–67, 1970.

[13] P.J. Huber, Robust Statistics, Wiley, New York, 1981.

[14] R. Koenker, Quantile Regression, Cambridge University Press, Cambridge, 2005.

[15] R.M. Kretchmar, P.M. Young, C.W. Anderson, D.C. Hittle, M.L. Anderson, and C.C.
Delnero, “Robust reinforcement learning control with static and dynamic stability,”
International Journal of Robust and Nonlinear Control, vol.11, no.15, pp.1469–1500,
2001.

[16] M.G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine
Learning Research, vol.4, pp.1107–1149, 2003.

Least Absolute Policy Iteration 21

[17] O.L. Mangasarian and D.R. Musicant, “Robust linear and support vector regres-
sion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, no.9,
pp.950–955, 2000.

[18] H.M. Markovitz, “Portfolio selection,” Journal of Finance, vol.7, no.1, pp.77–91,
1952.

[19] O. Mihatsch and R. Neuneier, “Risk sensitive reinforcement learning,” Machine
Learning, vol.49, no.2-3, pp.267–290, 2002.

[20] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural Computation,
vol.17, no.2, pp.335–359, 2005.

[21] H. Nakata and T. Tanaka, “Evaluation of return distributions in Markov decision
processes,” Proceedings of 2006 Workshop on Information-Based Induction Sciences
(IBIS2006), Osaka, Japan, pp.113–117, Oct. 31–Nov. 2 2006. (In Japanese).

[22] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of
the IEEE, vol.78, no.9, pp.1481–1497, 1990.

[23] D. Precup, R.S. Sutton, and S. Dasgupta, “Off-policy temporal-difference learning
with function approximation,” Proceedings of International Conference on Machine
Learning, pp.417–424, 2001.

[24] D. Precup, R.S. Sutton, and S. Singh, “Eligibility traces for off-policy policy evalua-
tion,” Proceedings of the Seventeenth International Conference on Machine Learning,
Morgan Kaufmann, pp.759–766, 2000.

[25] R.T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss distribu-
tions,” Journal of Banking & Finance, vol.26, no.7, pp.1443–1472, 2002.

[26] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection, Wiley,
New York, 1987.

[27] M. Sato, H. Kimura, and S. Kobayashi, “TD algorithm for the variance of return
and mean-variance reinforcement learning,” Journal of Japanese Society of Artificial
Intelligence, vol.16, no.3, pp.353–362, 2001. (In Japanese).

[28] R.S. Sutton and G.A. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, USA, 1998.

[29] A. Takeda, “Support vector machine based on conditional value-at-risk minimiza-
tion,” Tech. Rep. B-439, Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Mar. 2007.

[30] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society, Series B, vol.58, no.1, pp.267–288, 1996.

Least Absolute Policy Iteration 22

[31] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, NY, USA, 1998.

[32] G. Wahba, Spline Models for Observational Data, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1990.

[33] P.M. Williams, “Bayesian regularization and pruning using a Laplace prior,” Neural
Computation, vol.7, no.1, pp.117–143, 1995.

